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Abstract--A new multi-illuminant synthetic image test set called MIST is described and made publicly available. MIST is 

intended primarily for evaluating illumination estimation and color constancy methods, but additional data is provided to make it 
useful for other computer vision applications as well. MIST addresses the problem found in most existing real-image datasets, 
which is that the groundtruth illumination is only measured at a very limited number of locations, despite the fact that illumination 
tends to vary significantly in almost all scenes. In contrast, MIST provides for each pixel: (i) the percent surface spectral reflectance, 
(ii) the spectrum of the incident illumination, (iii) the separate specular and diffuse components of the reflected light, and (iv) the 
depth (i.e., camera-to-surface distance). The dataset contains 1,000 stereo pairs, each of the 2,000 images being a 30-band 
multi-spectral image covering the visible spectrum from 400nm to 695nm at a 5nm interval. Standard sRGB versions of the 
multi-spectral images are also provided. The images are synthesized by extending the Blender Cycles ray-tracing renderer. The 
rendering is done in a way that ensures the images are not only photorealistic, but physically accurate as well.  

Index Terms—spectral rendering, illumination estimation, color constancy, full-spectrum image dataset. 

I. INTRODUCTION  
ntil relatively recently, the majority of work on colour constancy has been based on the assumption that the scene is lit by a 
single illuminant. Everyone is aware that this assumption is very often violated, but there are only very limited image 

datasets providing groundtruth data for multi-illuminant scenes. Furthermore, these data sets are small and mainly consist of 
images of quite constrained single-object scenes. In response, we have developed and made public a new image test set called 
MIST that includes 1,000 full-spectrum stereo image pairs of complex scenes. The images are synthetically generated and 
accompanied by pixelwise groundtruth data that includes, for each pixel, its percent surface spectral reflectance, the spectrum 
of the incident illumination and its depth (i.e., camera-to-surface distance). The pixel-wise spectrum of the reflected light is 
also provided in terms of its separate diffuse and specular components. Although the primary objective in constructing MIST 
is to aid in the evaluation of illumination estimation methods for colour constancy, the inclusion of depth and stereo data is 
expected to be useful for testing other computer vision and hyper-spectral algorithms as well.  

II. RELATED WORK  
The majority of research on illumination estimation methods [1][2][3][4][5][6] has focused on determining the 

chromaticity of the dominant scene illuminant. These single-illumination methods are evaluated on datasets for which a single 
groundtruth measurement of the dominant scene illumination is measured using a ColorChecker [7] or a grey object placed 
in the scene. Examples of these datasets are the Gehler-Shi ColorChecker set [8] (recently improved and standardized by 
Hemrit et al. [7]), the NUS set [9] the SFU Greyball set [10], and the Cube+ dataset of 1,707  images taken with a single 
Canon EOS 550D camera [11]. However, as Xu and Funt [12] point out, not all the images are, in fact, of single-illuminant 
scenes. For the Gehler-Shi set, in particular, as many as 258 of the 568 scenes involve multiple illuminants. 

 
 Illumination estimation methods designed to handle multi-illuminant scenes include those of Beigpour et al. [13], Funt 

and Mosny [14], Gijsenij et al. [15], Bianco et al. [16] and Joze and Drew [17]. For testing Gijsenij et al. [15] created a small 
dataset consisting of 59 multi-illuminant laboratory images obtained using filters and multiple exposures of the same static 
scene. In addition, they provide an additional 9 multi-illuminant outdoor images, with the illumination measured using a 

 
. 

A Multi-illuminant Synthetic Image Test Set 
Xiangpeng Hao, Brian Funt; Simon Fraser University, Vancouver, Canada 

U 



Manuscript Version. Version of record to appear Color Research and Application 2020 2 

number of strategically placed grey balls that are subsequently removed. In this case, the groundtruth illumination is available 
only for the grey ball locations and not pixel-wise. Beigpour et al. [18] developed a dataset of multi-illuminant images again 
in a laboratory setting with groundtruth data specified in terms of the surface colours under a specific white light. They built 
the dataset by very careful construction of each scene and camera setup. After capturing images of a scene under 20 different 
lighting conditions, the scene is spray painted grey and photographed again under the same 20 lighting conditions. This 
provides the necessary information for computing the groundtruth. The scenes are quite limited in their complexity, usually 
of a single object. The final 600 images in the dataset are of 5 scenes under 20 different illumination conditions, photographed 
using 6 cameras. In other words, for a given camera there are only 100 images of 5 scenes/objects. Fig. 1 shows two examples 
from that dataset. 

 
In terms of synthesizing images of multi-illuminant scenes as done here, Beigpour et al. [18] synthesized images via 

Photon mapping using 6 bands. Their dataset is quite small, containing only 36 low resolution (480x270) images of 9 scenes 
under 4 different illumination conditions, 2 of which are more or less uniform in spectral power distribution. Hence, only 18 
of these are truly multi-illuminant. Fig. 1 (bottom) shows an example of a scene under two different illumination conditions 
along with the ground truth (middle). 

 
Spectral rendering has been used in applications such as the study of objects of cultural heritage [20]. However, with the 

exception of special cases such as the rendering of jewelry or prisms, spectral rendering is not widely used in the graphics 
industry, and existing tools are either incomplete or only focus on a particular purpose. The Mitsuba renderer [21] and Indigo 
renderer [22] both provide some support for spectral rendering; however, they require the user to specify fully the spectral 
information for each surface and illuminant, and they do not support complex textures. Textures, however, are very important 
for rendering photorealistic scenes. All the images in our dataset contain many textures, and so these renderers do not meet 
our requirements. 

 
Fig. 2. (top) Example of a full-spectrum image (displayed here in sRGB) in 
which each pixel is represented by the spectral power distribution of the light 
reflected from the corresponding surface location. (bottom) The spectral 
power distributions of the reflected light from the four points indicated in the 
image.  
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Fig. 1. Example images from the real image (top) and synthetic 
image (bottom) data sets of Beigpour et al. [18] 

 

 
Fig. 3.  Example of two different light settings. The dominant light in the left 
scene is out of sight and the lamp is very dim, while the dominant light in the 
right scene is a bright lamp along with sunset from a window (not visible). 
Images in the dataset are full-spectrum but shown here converted to sRGB. 
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III. BACKGROUND 
Our goal is to create a dataset of multi-illuminant images that can be used for researchers interested in illumination estimation, 
color constancy and automatic white balancing in multi-illuminant scenes. Since it is difficult to measure the illumination 
incident at every point in a real scene, photorealistic rendering of synthetic scenes is used instead. As a byproduct of the 
rendering process, we are also able to provide stereo pairs, groundtruth depth data, and separate diffuse and specular 
components of the reflected light, all of which should be useful in the context of computer vision research related to ‘intrinsic’ 
image properties [23].  
 

Blender Cycles [24] is used as the renderer. It is a free, open source, 3D graphics application for creating 3D models, 
visualizations, and animations. It only renders 3-channel, RGB images but since it is agnostic to the definition of R, G, and 
B we feed it spectral data and render the same scene multiple times to obtain a full-spectrum result. The typical application 
of Blender is to model and render 3D computer graphics images and animations using various techniques such as raytracing, 
radiosity, ambient occlusion and scanline rendering. Blender includes a 3D modeling environment and two original renders: 
Blender Internal and Blender Cycles. It can also be extended with external renderers such as Mitsuba [21] or Luxrender [25] 
to provide additional rendering features. Blender Cycles is designed to utilize multi-core CPUs and GPUs for rendering 
efficiency in both off-line and interactive rendering and is easily extensible via C++ and Python.  

 
Blender Cycles is used here to render ray-traced stereo images of multi-illuminant scenes. The rendered images in the 

dataset are stored in OpenEXR [26] format. OpenEXR is a high dynamic-range (HDR) image file format developed by 
Industrial Light & Magic (ILM) for use in computer imaging applications. ILM released OpenEXR as free software, and 
Blender Cycles [24] has built-in support for it. OpenEXR provides an HDR “HALF” format based on 16-bit floating-point 
values. HALF format provides 1,024 values per color component per f-stop, over a total of 30 f-stops. In addition to the 
HALF data type, OpenEXR also supports several lossless compression methods such as PIZ [27] and ZIP [27], which can 
achieve lossless compression ratios of approximately 2:1. OpenEXR supports images containing an arbitrary number of 
channels, each with a different data type. 

IV. DATASET OVERVIEW 
The dataset is based on 3 different geometric scene models with each geometry rendered from 50 different viewpoints, 

and each viewpoint (i.e., camera location and orientation) rendered using six different light settings. Fig. 2 (top) shows an 
example full-spectrum image from the dataset, where each pixel is represented by the spectral power distribution of the light 
reflected from the corresponding surface location. The bottom shows the spectral power distributions of reflected light from 
the four points indicated in the image. Fig. 3 shows two different light settings from the same viewpoint, and Fig. 4 shows 
the “living room” geometry and four sample viewpoints inside the geometry.  In total, the dataset consists of 1,000 
full-spectrum stereo image pairs. This combination of images covers a mixture of indoor and outdoor lights. 

 
Each image in the dataset has a resolution of 960𝑥720 pixels, with each pixel represented by a spectral power distribution. 

All the spectra in the dataset are sampled from 400nm to 695nm at 5nm increments, so an image array is 960𝑥720𝑥60. Apart 
from the full-spectrum images, the dataset also provides groundtruth data specifying for the surface location corresponding 
to each pixel: (i) the surface percent surface spectral reflectance for its matte reflectance component; (ii) the surface percent 
surface spectral reflectance for its specular reflectance component; (iii) the spectral power distribution of the light incident 
upon it; (iv) its depth/distance to the camera; and, (v) its surface normal. 

 
Images in the dataset are stored in OpenEXR Multilayer format, which allows multiple layers (channels) in a single 

image. In our case, each image consists of 60 channels with each channel storing the data for one wavelength represented in 
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OpenEXR’s 16-bit floating-point format.  The dataset is available online at 
https://www2.cs.sfu.ca/research/groups/Vision/data2/MIST-Dataset/ along with the source code and geometrical models for 
all the tools mentioned.  

V. METHODS 
Fig. 6 provides an overview of the method for generating a full-spectrum image for the database. We start with an existing 

sRGB scene model and convert it to a full-spectrum scene model by replacing each sRGB value with a metameric spectrum 
(details below). Then we use standard Blender to render the full-spectrum scene model 3 wavelengths at a time, and finally 
combine the 20 separate renderings into a full-spectrum image. Although we could build a full-spectrum scene model from 
first principles, it is simpler to start with an existing sRGB scene model and modify it. The standard Blender model specifies 
a color for each surface triangle in the geometric model based on linear sRGB (i.e., the linear color space defined by the Rec. 
709 chromaticities and D65 white point). 

 
Similarly, lights are also specified by their color in linear sRGB. Blender approximates the physics of light reflecting off 

a (Lambertian) surface simply by multiplying the light’s sRGB by the surface’s sRGB. Although this method usually 
produces realistic looking images, they do not model the physics of reflection correctly. To model the physics correctly, the 
full spectra of the lights and the surfaces must be multiplied, not simply sRGB 3-tuples. The next section describes a method 
for deriving full-spectra for reflectances and lights from the linear sRGB specified in standard Blender 3D models.  

 

A. Replacing sRGB with Metameric Spectra 
To convert an sRGB-based computer graphics model into a full-spectrum one, we replace every surface’s sRGB by a 

metameric (i.e., yields the same sRGB under the given light) percent surface spectral reflectance, and similarly every light’s 
sRGB by a metameric spectral power distribution. This requires a large enough database of reflectance spectra that for every 
sRGB in the model the database will contain a surface reflectance that is approximately the same color under the D65 since 
sRGB is based on D65. Note that it is not necessary to match the colors exactly because our goal is simply to create a set of 
interesting scenes to render, not to precisely match any given scene model. 

 
For reflectance spectra, we combine the 218 spectra of the Joensuu natural-color database provided by Parkkinen et al. 

[29] with the 1,269 spectra of the Munsell color system [28], the 350 spectra of the Krinov data set [30] and the spectra of 
120 Dupont paint chips [31]. The Joensuu reflectances are sampled from 400nm to 700nm in 5nm increments, while the 
Munsell reflectances are sampled from 380nm to 800nm at 1nm increments. We combine them into a set of 1,957 spectra 
using the range 400nm to 695nm at a step of 5nm. Perhaps surprisingly, we found this number of spectra large enough to 
match most sRGB colors in the Blender models reasonably well so long as arbitrary uniform scalings of the reflectances are 
included as matches.  

 

 
Fig. 6.  The process used to generate a full-spectrum image. Begin with an sRGB 
3D model, derive a full-spectrum model based on metameric lights and 
reflectances, use the model to render images wavelength-by-wavelength, and 
finally combine the renderings into a full-spectrum image. 

 
Fig. 4.  Example of the “living room” geometry. The four cameras 
represent four different rendering viewpoints and view directions. 

 
Fig. 5.  Example of a stereo image pair. There are 900 such stereo image pairs in 
the dataset. The left and right images are rendered using same camera parameters 
(focal length, clipping etc.). 
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For illuminant spectra, we use several standard lights, such as D65, D50, illuminant A, illuminant F and the 318 IES 
[32] spectra along with spectra based on the D-series formula, and the Planckian locus formula over the range 2,000 to 
10,000 Kelvin. 

 
The process of finding a metameric spectrum for a given sRGB is based on matching in CIE xy chromaticity space. 

Non-linear sRGBs are linearized (Eq. 1) and then the linear sRGBs are converted to CIE XYZs based on the 3x3 matrix from 
the sRGB standard (Eq. 2). The XYZ of the reflectance spectra are computed based on D65 and the CIE 1931 𝑥, 𝑦, 𝑧 
2º-observer color matching functions. All XYZ are then transformed to xyY (Eq. 3) so that matches can be made in terms of 
xy-chromaticity coordinates. Once a match in chromaticity is found, the spectrum is then scaled so that the Y-values match 
as well. Fig. 7 summarizes the procedure for converting an sRGB to a metameric spectrum. 
 
1) sRGB to linear RGB 

For each sRGB channel, we apply the following transformation to compute the linear RGB values:  

𝐶!"#$%& =

⎩
⎨

⎧
𝐶'&()
12.92,															 	𝐶'&() ≤ 0.04045

5
𝐶'&() + 𝑎
1 + 𝑎 8

*.,

, 𝐶'&() > 0.04045
(1) 

 
2) Linear sRGB to 𝑥𝑦𝑌 

Given a linear sRGB, its XYZ is computed by applying the following matrix [14]:  

=
X-./
Y-./
Z-./

A = =
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9504

A =
R012345
G012345
B012345

A	 (2) 

The 𝑥𝑦𝑌 value is derived by:  

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍 , 𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍 , 𝑌 = 𝑌	 (3) 

 
3) Reflectance Spectra to 𝑥𝑦𝑌 

Each reflectance spectrum 𝑆(𝜆) in the database is converted to	𝑋𝑌𝑍 using the following formulae [15]:  

𝑋 = K𝑆(𝜆)𝐼(𝜆)�̅�(𝜆)𝑑𝜆
	

7
 

𝑌 = K𝑆(𝜆)𝐼(𝜆)𝑦O(𝜆)𝑑𝜆
	

7
 

							𝑍 = K𝑆(𝜆)𝐼(𝜆)𝑧̅(𝜆)𝑑𝜆
	

7
(4) 

 
Fig. 7.  Converting an sRGB to a metameric spectrum. First non-linear sRGB 
is transformed to linear RGB, and from RGB to xyY space based on CIE D65 
as the illuminant. The xy-chromaticity component of the xyY is then used to 
find the spectrum in the database having the most similar chromaticity.  
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To match the sRGB standard, we use D65 as the illuminant 𝐼(𝜆). 
 

4) Match 𝑥𝑦𝑌 values 
Once both the reflectance spectrum under D65 and the given sRGB have been converted to 𝑥𝑦𝑌 space, we simply find 
the closest one in the database based on Euclidean distance in xy. That most similar spectrum is then scaled by 

8!"#$
8!%&'(")*

. 

B. Other Details 
1) Processing Textures 

Texture mapping plays an essential role in modern photorealistic 3D scene rendering, so RGB texture maps need to be 
converted to full-spectrum texture maps.  This is done simply by applying the sRGB-to-metameric-spectrum method 
described above to each pixel in the texture map. This texture conversion is only required for color textures. Other types of 
textures, such as surface normal textures and roughness textures, do not need conversion. 
 
2)  Efficiency 

Converting an sRGB texture map to a full-spectrum texture map can be computationally expensive when the texture is 
large if every pixel is treated independently.  The following strategies speed up the process significantly.  

 
a. The 𝑥𝑦𝑌 value of each spectrum in the database is computed once and cached so it need not be recomputed every time. 
b. A KD-Tree is used for indexing the 𝑥𝑦𝑌 values of the spectra, which reduces the time complexity of searching a database 

of 𝑘	 𝑥𝑦𝑌 values to 𝑂(𝑙𝑜𝑔	𝑘). 
c. Results for each pixel are cached in a hash table so that when the same sRGB is encountered the result is available for 

reuse. This greatly improves the performance when processing textures containing repeated patterns.  
d. The process is fully parallelizable since each pixel is independently evaluated. 

 
3) Linear versus non-Linear sRGB 

Blender uses linear sRGB internally during its computations but by default assumes the input to be nonlinear sRGB. To 
prevent Blender doing this conversion, the option “Color Management-Sequencer” is set to “Non-Color”. Similarly, every 
texture node is marked as “Non-Color”.  

  
Modern 3D modeling tools have developed quite complicated tricks to render better looking images. Since most such tricks 
break physical laws, they need to be disabled when rendering physically correct images. To exclude any such tricks, a 
manual check of the 3D model is required. The most common two tricks are specified by the settings “Color Ramping” and 
“Random Color.” These two features are typically used to add some visual variety, and they can generally be removed 
without changing the overall rendering result very much. 
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Fig. 8.  Spectral rendering involves invoking Blender Cycles 20 times to render 3 wavelengths each time, after which all 60 renderings are combined 
into a single full-spectrum image.  

 
 
Fig. 9.  Blender Cycles render layers. For each rendering, Blender Cycles carries out multiple rendering passes, then adds or multiplies them to generate the final 
combined image. The “Diffuse Component” corresponds to the reflectance ground truth. 
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C. Spectral Rendering via Blender Cycles 
The strategy for using Blender Cycles for spectral rendering is to store the reflectance data sampled at three wavelength 

samples into the 3 RGB channels Blender Cycles uses and repeat this for multiple wavelength 3-tuples. Fig. 8 illustrates the 
spectral rendering process. In total, Blender Cycles is invoked 20 times resulting in renderings for each of 60 individual 
wavelengths. These renderings are then combined into a single full-spectrum image, with each pixel’s spectrum sampled 
every 5nm from 400nm to 695nm (not the usual 700nm because of the 60 samples). 
 

D. Ground truth and additional data 
Blender Cycles renders the diffuse, specular and indirect lighting (i.e., interreflection) image components separately and 

stores them in OpenEXR Multilayer format, as shown in Fig. 9.  For the final rendering, these channels are added together; 
however, in the database they are retained, along with the final rendering for use by researchers interested in the analysis of 
specularities and interreflections.  In addition, the pixel-by-pixel groundtruth spectral reflectance is included in the database. 

 
In addition to the full-spectrum renderings, the database also includes sRGB versions of the groundtruth reflectance, 

specular and interreflection components. These are derived from the spectral data by first converting to CIE XYZ based on 
the CIE 1931 𝑥, 𝑦, 𝑧  2º-observer color matching functions, and then from XYZ to linear sRGB, and finally to non-linear 
sRGB. Conversion to linear sRGB is based on Eq. 5:  
 

=
R012345
G012345
B012345

A = =
3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

A =
X-./
Y-./
Z-./

A	 (5) 

If the converted 𝑅!"#$%& , 𝐺!"#$%& , 𝐵!"#$%& is out of the sRGB [0,1] range it is simply clipped to [0, 1]. Conversion to nonlinear 
sRGB is via Eq. 6:  

𝛾(𝜇) = [
12.92𝜇, 𝑢 < 0.0031308

1.055𝜇
9
*., − 0.055, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6) 

where 𝜇 is 𝑅, 𝐺 or 𝐵. 
 

 
The dataset also provides the depth map and the normal map associated with each viewpoint. These data can be similarly 

extracted from the render passes. In order to ensure that the depth data is comparable across all the images in the dataset, the 
values in the depth map are not independently scaled. Fig. 10 summaries this additional data.  
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E. Rendering Environment 
Raytraced rendering is computationally intensive, often requiring 10 minutes of CPU time to render a single frame. 

Creation of 1,000 full-spectrum stereo image pairs requires the rendering of 40,000 individual frames, which could require 
at least half a year.  The rendering is therefore performed on a High-Performance Computing Cluster named Cedar [33]  
which has a total of 58,416 CPU cores and is available free for academic research in Canada. Using Cedar, the dataset can 
be rendered in roughly four hours. Rather than interactively calling Blender, a Python script automates the rendering of 
different scenes for a variety of viewpoints and lighting conditions. The renderer is Blender 2.8 beta.  

 
Table 1 lists the Blender settings used. Blender uses a Monte-Carlo simulation of the rays, and for the dataset at least 800 

rays per pixel are used. Blender’s Max Bounces parameter is set to 16. More bounces are allocated to the Glossy and 
Transmission light paths. These two light paths tend to include sharp edges that may be missed during Monte-Carlo sampling, 
so allocating more resources can significantly improve the accuracy for sharp-edged, shiny objects. Light Clamping is 
disabled to maintain a physically accurate result. For the same reason, both Reflective Caustics and Refractive Caustics are 
disabled. 

 

F. Rendering Refraction 
Refraction effects are interesting but since they are not that common in standard scenes the MIST database does not 

contain any.  However, they are interesting to consider and can easily be generated using the full-spectrum extension of 
Blender Cycles described above. Since the index of refraction of a transparent object is a function of wavelength, traditional 

Light Path Settings 
Light Path Type Max Bounces 
Total 16 
Diffuse 4 
Glossy 10 
Transparency 4 
Transmission 15 
Volume 4 

 
Table 1. Light Path settings in the Blender. Extra ray-tracing resources in 
terms of the number of bounces are allocated to Glossy and Transmission 
to improve accuracy. “Total” is the limit on the number of bounces (e.g., 
Transmission followed by Glossy is still limited to 16).  

 

 
 
Fig. 10.  Illustration of the dataset’s data. First row:  full-spectrum image (left) 
and its groundtruth reflectance image (right).  Second row: reflected light’s 
diffuse reflection component (left) and specular reflection component (right). 
Third row: depth map (left) and normal map (right). Images in the first two rows 
are represented by full spectra in the dataset but displayed in sRGB here.  
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RGB renderers do not render the effects of refraction fully. Using the proposed spectral rendering method, however, it is easy 
to specify the index of refraction for each wavelength (rather than just the three indices Blender normally uses) and thus 
closely model the true physics of refraction in the rendering. Fig. 11 shows a full-spectrum rendering in which the prismatic 
effects of the glass create rainbow colors. The process models the physics correctly; however, since pure spectral colors are 
outside the sRGB gamut the true sRGB need to be clipped to the sRGB gamut when displayed.  
 
 
 

 

VI. BEST SINGLE ILLUMINANT ESTIMATION 
Hao et al. [34] found relatively poor performance when testing a small sample of illuminant estimation methods on the 

MIST dataset. While some of the methods were multi-illuminant, most provided only a single estimate of the illumination. 
For the single-illuminant case, it is interesting to consider what the best possible single-illuminant estimate might be in terms 
of its average error over an entire multi-illuminant image. The dataset provides the groundtruth illumination and reflectance 
on a pixel-by-pixel basis, which makes it possible to compute the single-illuminant chromaticity that minimizes the minimum 
average error in the estimated reflectance chromaticity. We call this optimal, single-illuminant illumination estimator the 
“Oracle” method. Oracle shows what the best any single-illuminant method can possibly do. 

 
   Oracle minimizes the squared Euclidean distance error between the rg-chromaticities of the corrected test image and 

the rg-chromaticities of the groundtruth image. The groundtruth images are generated by lighting the reflectance images with 
D65. The squared Euclidean distance error is used even though angular error is more common in the literature. Computing 
the minimal angular error requires an iterative optimization procedure and is thus slow. By minimizing the squared Euclidean 
distance error in rg color space, the optimal illuminant can be found in constant time using the following method. 

  
The best single illuminant estimate is calculated in chromaticity space, with both the test and the groundtruth images in 

linear sRGB converted to rg-chromaticity space. The squared Euclidean Distance error of two given images is defined by:  

𝐸𝑟𝑟 = f f (𝜅:𝜌;: − 𝛾;:)*
:∈&,(;∈%!!	>";$!'

(7) 

where 𝜌 (𝜌;& , 𝜌;() is the test image and  𝛾 (𝛾;& , 𝛾;() is the groundtruth chromaticity image.  Rewriting Eq. 7 as: 

Err = f 𝐸𝑟𝑟:
:∈&,(

	 (8) 

where 

 
Fig. 11.  An example rendering demonstrating the prismatic effects of 
refraction. The image was converted to sRGB for display. Since all pure 
spectral colors actually lie outside of the sRGB gamut, the sRGB are clipped to 
[0, 1]. 

  
Fig. 12.  An example in 2D showing the intuition for minimizing Eq. 10. 
using Eq. 11.  For directions 𝑘𝐴𝐵$$$$$⃗  and 𝐴𝐶$$$$$⃗ , the difference between the two 
vectors 	 is minimal for scaling by 𝑘  such that 𝑘𝐴𝐵$$$$$⃗ − 𝐴𝐶$$$$$⃗ 	  (i.e., 𝐶𝐺$$$$$⃗ ) is 
perpendicular to 𝐴𝐵$$$$$⃗ . 



Manuscript Version. Version of record to appear Color Research and Application 2020 11 

Err? = f (𝜅:𝜌;: − 𝛾;:)*
;∈%!!	>";$!'

(9) 

 
it is clear that minimizing 𝐸𝑟𝑟 is equivalent to minimizing the 𝐸𝑟𝑟: separately. To minimize 𝐸𝑟𝑟:, we vectorize 𝜌;: and 𝛾;: 
over x (note that 𝜅: is a scalar) and rewrite Eq. 9 as:   

Err? = ‖𝜅:𝜌:lll⃗ − 𝛾:lll⃗ ‖* (10) 

 Clearly,  𝜅:𝜌:lll⃗ − 𝛾:lll⃗  is minimal when it is perpendicular to  𝜌:lll⃗ , in other words, it is minimal when:  

(𝜅:𝜌:lll⃗ − 𝛾:lll⃗ )	 ∙ (𝜅:𝜌:lll⃗ ) = 0 (11) 

Fig. 12 shows the intuition for this process.  Rewriting for 𝜅::  

𝜅: =
𝛾:lll⃗ ∙ 𝜌:lll⃗
𝜌:lll⃗ ∙ 𝜌:lll⃗

	 (12) 

  The chromaticity (𝜅&, 𝜅() is the best single-illuminant estimate. Fig. 13 shows a test image (top left), the corresponding 
groundtruth image (top right), and the corrected image based on the Oracle method (bottom left). The reddish-orange box 
(bottom right) shows the chromaticity of the best single illuminant. The dataset includes the Oracle-derived illuminant for 
every image in the dataset. 

VI. CONCLUSIONS 
A new dataset of physically correct, photorealistic, multi-spectral, stereo images with corresponding pixel-wise 

groundtruth data is described.  The dataset is available for download from 
https://www2.cs.sfu.ca/research/groups/Vision/data2/MIST-Dataset/. This dataset will be useful for the testing of computer 
vision methods aimed at recovering ‘intrinsic’ image properties, and especially those directed at estimating the incident 
illumination in multi-illuminant scenes. Synthesizing images of complex scenes overcomes the crucial problem with real-
image datasets, which is that the groundtruth illumination is measured at a very limited number of locations, usually just one. 
This is inadequate since the illumination tends to vary across almost every real scene. The MIST images are rendered using 
Blender Cycles extended from 3-channel to 60-channel rendering. To make use of texture mapping, the standard sRGB 
texture components are extended to full spectra by replacing them with metameric reflectance spectra. Using this technique 
makes it possible to synthesize images that are both photorealistic and physically accurate.   
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Fig. 13. Example of a test image (top left), groundtruth image (top right) and the 
corrected image (bottom left). The blue box (bottom right) of the second image 
shows the best single-illuminant estimate as calculated by the Oracle method. 
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