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Abstract In this paper we describe the development of the BearCam, a camera system which was

deployed in Fall 2005 to monitor the behaviour of grizzly bears at a remote location near the arctic

circle. The system aided biologists in collecting the data for their study on bears’ behavioural responses

to ecotourists. We developed a camera system for operating in the challenging arctic conditions. We

describe a novel “motion shapelet” algorithm for automatically detecting bears in the video captured

by this camera system. This algorithm is an extension of the shapelet features Sabzmeydani and

Mori (2007), which are mid-level features capturing pieces of shape. Our extension of this technique

incorporates motion information and proves effective at automatically detecting the occurrence of

bears. We present quantitative results demonstrating that our algorithm can reliably detect bears in

the vast amounts of video footage collected by our system.
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1 Introduction

Wildlife-based ecotourism is rapidly increasing in popularity, especially when featuring large mammals

in their natural environment (Jelinski et al., 2002; Dyck and Baydack, 2004; Nevin and Gilbert, 2005)

Wildlife viewing was once considered a non-consumptive human activity with little or no impact on

animals. However, recent research has invalidated this assumption and instead revealed how wildlife-

viewing activities have negatively affected animals, e.g. (Duchesne et al., 2000; Crupi, 2003; Walker

et al., 2006; Olson and Gilbert, 1994; Chi and Gilbert, 1999; Nevin and Gilbert, 2005). In some

instances, ecotourism has benefited animals (e.g., female grizzly bears with young at Glendale Cove

in southwest British Columbia; Nevin and Gilbert (2005)). However, these positive effects are site-

specific, not wide ranging, and not shared by all individual animals at these sites. Thus, monitoring

of human impacts on wildlife populations that are the focus of ecotourism activities is necessary to

ensure that the health of individual animals and populations is not sacrificed for the economic, social,

and educational gains of ecotourism.

Wildlife managers use a variety of techniques that vary in their efficiency and effectiveness to mon-

itor wildlife around ecotourism sites. The traditional techniques for population-scale data collection,

such as mark-recapture or aerial counts, are labour intensive and extremely costly. As an alterna-

tive or complement to these methods, the use of camera systems, which collect information largely

in the absence of human operators, is increasing in popularity (Roberts et al., 2006). Cameras have

the additional advantage that their means of data collection is less intrusive or disruptive to the ani-

mals being monitored. For example, if animals’ behavioural responses to ecotourists are of interest, a

common data collection technique is to use an on-site observer to perform the necessary close-range

observations. These observers face two problems. First, it may be impossible to collect the data that

represents animal behaviour in ”ecotourist absence” if the observer’s presence generates a similar be-

havioural response as an ecotourist. Second, topography and vegetation at a site may severely limit

the observer’s ability to see the focal animals. Two techniques to resolve the topography issue are the

employment of additional observers stationed at strategic locations (e.g., Olson and Gilbert (1994);

Olson et al. (1998); Crupi (2003)) or to divide the single observer’s time between various areas (e.g.,

Pitts (2001)). Use of additional observers increases human activity in the area which can confound any
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Fig. 1 The BearCam camera deployed for viewing grizzly bears in the Yukon.

human impact monitoring being undertaken. The latter option decreases observer time spent in each

area, which reduces sample sizes making signal detection and analysis more challenging. Therefore,

it is advantageous to use camera systems to remotely collect data, without interference from human

observers. However, cameras generate large amounts of data, which are typically sorted manually to

collect the required data. As computer vision researchers, there is a great opportunity to aid natural

scientists by automating parts of the video analysis process.

In this paper, we describe the development of the BearCam (pictured in Figure 1), a camera system

deployed in Fall 2005 to monitor the behaviour of grizzly bears at the Ni’iinlii Njik (Fishing Branch)

Park. The system aids biologists monitoring grizzly bear behaviour at a new ecotourist destination, a

bear viewing site, in the Ni’iinlii Njik Park. The main objective of the biologists’ study was to assess

whether ecotourists negatively affected grizzly bear feeding behaviour at this salmon spawning stream,

which could potentially reduce their survival and reproductive success (Hilderbrand et al., 1999). This

camera system served two purposes: 1) to increase the observation area without additional observers or

without reducing the researcher’s time at the primary observation area, and 2) to record bear behaviour

in an area of minimal ecotourist activity without requiring the researcher’s physical presence, which

would effectively render this no longer a minimal human activity area.

This park is a remote wilderness area in the Yukon, Canada, just below the arctic circle. The only

man-made structures are a handful of wooden huts without running water and electricity is provided



4 Jens Wawerla et al.

by a small gas-powered generator, which can be operated for only about 4 hours a day due to the

expense of airlifting gasoline into the park. Lights in the huts are propane powered. The propane,

gasoline and the remaining equipment must be airlifted into the study site since the closest road is

approximately 30 helicopter flight minutes away. The nearest settlement is about 100km way.

One faces numerous challenges while designing and building a camera system to operate in this

remote environmentally protected, arctic site in the cold fall weather, including:

– Severe weather conditions (rain, snow, wind)

– Energy is sparse and expensive to generate

– Temperatures of −15◦C exceed the specified range of off-the-shelf electronic components and require

components with an extended temperature range

– The system has to be air-portable, which constrains size and weight

– Minimize impact of the system on the habitat and animals in the area

– Storage and processing of large amounts of video data.

The main contribution of this work is developing a system to aid biologists in data collection in

Ni’iinlii Njik Park. We describe the development of a camera system for operating in these challenging

conditions. We also develop a novel “motion shapelet” algorithm for automatically detecting bears

in the video captured by this camera system. This algorithm is an extension of the shapelet features

described in Sabzmeydani and Mori (2007). These shapelets are mid-level features, capturing pieces of

shape which are more descriptive than the small-scale local features used in other algorithms. These

shapelets have been applied to the related task of detecting pedestrians in still images1, and here we

extend them for use in detecting bears in videos.

In this paper we review related work in Section 2, provide an overview of our system in Section 3,

detail the recording system in Section 4, outline the bear detection algorithm in Section 5, present

experimental results from video collected in Fall 2005 in Section 6, and conclude in Section 7.

1 There was an error in the experiments reported in Sabzmeydani and Mori (2007). In particular, this method

does not outperform the HOG method of Dalal and Triggs (2005).
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2 Related Work

2.1 Wildlife Monitoring Data Collection in Biology

Use of camera systems in wildlife monitoring is an option that allows data collection largely in human

absence (ecotourist or observer). Cameras can also increase the size of the area sampled without

requiring additional observers or the attenuation of a single observer’s field time. The difficulty is then

in finding the interesting events (animal presence) in the volume of video data collected. Often, remote

triggers (e.g. motion or heat) are used to activate the camera. MacHutchon et al. (1998) and Johnson

et al. (2006) used triggered still cameras to record bear activity in areas of varying human density and

tiger activity, respectively. Their simplicity makes these cameras attractive but the number of false

positives is quite high because the trigger cannot distinguish between the target animal, other animals,

or motion artifacts. In addition, analyzing animal behaviour from just one still image is extremely

challenging.

Song and Goldberg (2006) built a camera system to assist the search for the Ivory Billed Wood-

pecker, which is believed to be extinct. Their system was deployed in Fall 2006 in the Bayou DeView

wildlife refuge in Arkansas, USA. The cameras and the hard-drives are mounted on a power line pole,

which provides all the electric energy required for the system. Full details are not available, but video

frames are automatically analyzed using motion detection.

Every summer National Geographic operates a ’webcam’ allowing Internet users to view Alaskan

grizzly bears from the comfort of their living room (Geographic, 2006b). SeeMore Wildlife Systems

2, a commercial provider of remote wildlife viewing systems, built this system. The video signal is

transmitted via multiple microwave links and made publicly accessible by National Geographic. We

were unable to find information on this system’s power source. National Geographic operates a second

remote viewing system to allow Internet users to view seals about 90 km south of San Francisco

(Geographic, 2006a). Technical details are not available.

¿From September 2002 to September 2005 Dodd et al. (2007) operated four low-lux black-and-

white cameras at two bridged wildlife highway underpasses in Arizona, USA, to assess elk use of

2 www.seemorewildlife.com
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these underpasses. They used infrared illuminators to ensure images had sufficient light, powered their

system from the grid and buried power supply wires and data-lines. To cope with the vast amount of

potential video data, break beams triggered recording.

Our recording system differs from those mentioned previously because (1) the remote location

requires power grid independence and economical use of energy, (2) the protected area status limits

instrument options such as long cables, large microwave transmitters and similar equipment are not

viable options and (3) the system has automatic video processing to detect video scenes of interest to

biologists.

2.2 Related “Looking at People” Work

Our system automatically detects bears within the captured video, which is essentially identical to

many surveillance tasks involving human subjects. The computer vision community has substantial

amounts of work on this problem and Gavrila (1999); Moeslund and Granum (2001) summarize this

work.

We based our bear detection algorithm on our previous work on detecting pedestrians in still images

(Sabzmeydani and Mori, 2007). Pedestrians have also been detected using a combination of parts -

legs, torso, and arms (Mohan et al., 2001), where individual Support Vector Machine (SVM) detectors

are trained for each part and their outputs are combined into a final classifier after applying geometric

constraints. Gavrila and Philomin (1999) and Felzenszwalb (2001) compare edge maps of pedestrian

templates to edges found in images. Gavrila and Philomin use the Chamfer distance, and develop an

efficient hierarchical system. Felzenszwalb uses a generalization of the Hausdorff distance, and learns

pedestrian templates from training images. Viola et al. (2003) compute spatial and temporal rectangle

filters efficiently using the integral image technique, and learn a pedestrian classifier using a variant of

AdaBoost. Mikolajczyk et al. (2004) use a part-based detector to detect humans. They model humans

as assemblies of parts that are represented by SIFT-like orientation base features. Feature selection

and the part detectors are learned using AdaBoost. Fink and Perona (2004) describe the MutualBoost

algorithm for building a combined detector from a set of pre-defined and labeled object parts.

Leibe et al. (2005) start with a local feature detection to generate a set of pedestrian hypotheses. By

using a training set which contains foreground masks for pedestrians, segmentation masks are computed
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for these hypotheses. A top-down verification step, using these segmentation masks and Chamfer

matching is then applied. Impressive results on images with substantial overlap of pedestrians are

presented. Wu and Nevatia (2005) also address the problem of overlapping pedestrians and formulate

a joint likelihood that is optimized using a greedy algorithm. Dalal and Triggs (2005) use Histogram

of Oriented Gradient (HOG) descriptors and SVMs for building a pedestrian detector. By tuning all

the parameters of their HOG features, they compare the use of a variety of feature configurations to

find the best configuration for pedestrian detection, on a challenging dataset of human figures. Dalal

et al. (2006) extend this line of work to include motion features. Munder and Gavrila (2006) studied

the problem of pedestrian classification with different features and classifiers. They find that local

receptive fields can do a better job in representing pedestrians and also SVMs and AdaBoost classifiers

outperform the other classifiers tested.

Other approaches use video sequences and apply background subtraction to reduce clutter. The

Pfinder system of Wren et al. (1997) is an early example of such an approach. Zhao and Nevatia (2003)

work on difficult scenes involving large crowds of people, and segment foreground blobs into individual

people using a Markov chain Monte Carlo technique. Elgammal and Davis (2001) handle overlapping

people by segmenting foreground regions according to a colour model that is initialized when the people

are unoccluded.

2.3 Computer Vision for Biology Data Collection

Other computer vision researchers have also developed algorithms for biological research. Khan et al.

(2005) developed methods for tracking multiple ants, and suggest the use of Hidden Markov Models for

analyzing their behaviours (Balch et al., 2001). Khan et al. (2004) also developed a Rao-Blackwellized

Particle Filter for tracking bees with complex appearance changes in cluttered environments. Dollar

et al. (2005) and Belongie et al. (2005) analyze the behaviour of mice in caged environments by

first tracking and then computing spatio-temporal patch features. Betke et al. (2007) develop data

association techniques for large numbers of objects, and apply them to tracking bats viewed in infra-

red video.

The BearCam is part of the Scientific Data Acquisition, Transportation and Storage (SDATS)

project, with the aim of reducing the expense and manual labour involved in gathering scientific data
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in the field. Other SDATS projects include (1) stereo tracking of grasshoppers in cages and attempting

to recognize their actions by analyzing their 3D movement (Naeini et al., 2007) and (2) developing a

method for automatically determining the species of fish from images collected with an underwater

video camera (Rova et al., 2007).

3 System Overview

The biological research objective is to assess whether ecotourists negatively affect grizzly bear feeding

behaviour. To this end, the biologists require data collection at a variety of resolutions. At the coarsest

level, they must determine the amount of time bears are active at the study site. Next, they desire

a measure of the time bears spend performing various behaviours (e.g., walking, sitting, foraging).

Finally, at the most detailed level, they must estimate the caloric intake of individual bears. This

estimate typically involves counting the number of fish caught by bear and the proportion of each fish

consumed.

As argued above, there are numerous drawbacks to the typical method of acquiring these data,

namely using a human observer stationed on site. In particular, for our site, a map of which is shown

in Figure 2(a), stationing human observers at the required viewpoint would be non-trivial, and certainly

intrusive. In order to address this problem, we have constructed a remote monitoring system that can

be used by a human observer to efficiently gather these data off-site. Our system consists of two main

components. The first is a video recording system, which records video from the monitoring site noted

in Figure 2(a). Given the volume of data acquired by this recording system, manually searching through

the video to find the occurrences of bears would be a time-consuming, error-prone process. Instead,

we have developed algorithms for automatically detecting the bears in the captured video sequences.

A user can then manually collect the required data regarding activity levels, behaviours, and estimate

caloric intake by inspecting only the relevant clips. In the following sections we describe each of these

two components in detail.

4 Video Recording System

The video recording system consists of two main components. One is the remotely deployed camera

and the other is the base station located in the main hut of the wildlife viewing area. Figure 3 shows
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(a) (b)

Fig. 2 (a) Bear viewing site Ni’iinlii Njik (Fishing Branch) Park. Being at any one viewing site, it is impossible

to monitor bears at the othersides due to trees in the line of sight and due to distance between the sites. (b)

Camera and battery pack mounted on a tree

1.3 TB

DataLink VideoLink

MPEG 
Encoder

HeaterController

Camera

VideoLink DataLink

MPPT Charger

Solar cells

Battery Pack

Fig. 3 System overview, left: solar powered camera system. Right: base station to control the cameras and

store the mpeg encoded video

an overview and depicts the subcomponents of the system. For clarity we only show one camera, but

we actually built four camera systems and deployed one in 2005 and two in 2006 in the Yukon.

The operator controls (enables or disables) and monitors each camera from the base station. Once

enabled a camera sends the video signal via a 2.4 GHz radio signal to the base station. Here the video

is MPEG-2 encoded by an off-the-shelf hardware encoder 3 and then stored on portable hard drives.

Each of the six hard drives holds 230 GB of data, which allows us to store about 600h of video in total.

In the base configuration each camera is battery powered. One battery can power a camera for at

least 24h, depending on the ambient temperature 48h or longer. To be on the safe side each camera has

two battery packs, which we swapped every day. This allows one pack to recharge while the camera is

3 WinTV-PVR-USB2 from Hauppauge, http://www.hauppauge.com
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still powered by the other. Electricity for recharging and operating the base station was provided by a

small gasoline powered mobile generator.

The heart of the base station is a laptop that runs custom-made software to control the cameras and

monitor their state, that is battery level, temperature, state of video camera and heater. In addition

off-the-shelf software handles storing compressed video data on hard drives.

4.1 Camera

A wildlife monitoring camera for the arctic circle (as shown in Fig. 2(b)) must be able to withstand

rain, snow, wind, intrusion attempts from noisy animals, deal with an extended temperature range

between −15◦C to 30◦C, handle condensation, be affordable, light and small enough to be airlifted as

well as operatable by biologist without interfering with their research.

Due to cost considerations we used consumer products whenever possible. If those were not available

or not rated for our purposes we devised our own components.

We choose WV-CP484 (wvc) cameras from Panasonic, housed in EH4718 (Pelco, 2003) enclosures

for weatherproofing. These cameras are intended for outdoor surveillance applications and therefore

handle varying light conditions well, are designed for longterm continuous use, and a variety of lenses

are readily available. With a specified temperature range from −10◦C to +50◦C, these cameras almost

meet our requirements.

A set of electrical heating elements were integrated into the enclosure. These heaters kept the

temperature inside the enclosure above the minimum operational temperature of all components and

eliminated any build-up of condensation or frost on either the camera lens or the glass window of the

housing. The two foil based heating elements have a power of 12W each, which was enough to keep

the inside temperature well above freezing.

To regulate the temperature and remotely operate the video camera, we custom built a small

microcontroller board. This controller is equipped with a thermometer to measure the in-house tem-

perature, furthermore it has a 900 MHz radio modem (MaxStream, 2005). During camera operation

the controller regulates the temperature, monitors the supply voltage, protects the batteries from over

discharge and sends video data to the base station. The controller also regulates the voltage for the
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camera and the video link. While the camera is off-line, the controller is in an energy saving mode

waiting for commands from the base station. All parts used for the controller, including the radio, are

rated up to −40◦C. Therefore the control does not require the energy expensive heater, thus allowing

it to be in stand-by for several days on one battery charge.

Video data are wirelessly transmitted to the base station because lack of power does not permit

video storage at the camera location. An off-the-shelf 3 watt video transmitter operating at 2.4 GHz is

used here. Although the distance between cameras and base stations is relatively small, less than 500m,

transmitting the video signal in the forested wildlife refuge required mounting the receiver antenna

well above the tree tops.

The final component, the battery packs, powers the whole system. We use a standard 12V 33Ah

lead acid battery (Panasonic, 2003). Although this is not the ideal battery for our needs, we choose

it with cost in mind. For example Streeter (2005) used a battery for his Antarctica robot that is

much more suitable for cold environments. The main problem with our battery is that the capacity

drops to 65% at −15◦C. A simple solution is to select a battery with enough capacity even at low

temperatures. To waterproof and protect the battery from impacts, we modified second hand, metal

ammunition boxes and used them as housing for the batteries.

We charge the batteries using standard car battery chargers, each capable of recharging one battery

at 10A. Fast charging was required since the availability of electricity was strongly rationed. Due to

fuel limitations the operational time of the generator was about 4-5h per day.

4.2 Solar Power

¿From an engineering point of view, energy is one of the main challenges in this project, the other

being temperature. From the first deployment in 2005, we learned that exchanging the batteries and

charging the batteries was inconvenient and time consuming for the biologist. The batteries needed to

be at room temperature for charging and unexpectedly, it took approximately 48h to warm batteries to

this temperature in the hut. Thus, we developed a solar energy extension for the most remote camera

in 2006.

Solar power use had several problems:
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– sun energy is limited in fall at the arctic circle because the days are short and the sun’s elevation

angle is small

– modelling or even estimating the available solar energy proved difficult since reliable weather or

solar irradiation data for the Ni’iinlii Njik Park is not available

– testing a solar power generator under realistic conditions almost 17◦ south of the intended deploy-

ment site four months ahead of time is very difficult.

Because solar irradiation data for the Fishing Branch River was not available we used the National

Renewable Energy Laboratory (NREL) 30 year average for Fairbanks, Alaska and Bettles, Alaska

(International, 2004). Both cities are a close approximation in latitude and elevation but neither account

for local weather patterns or geographical properties such as shadows cast by hills or trees. We estimated

the average solar radiation for a fix angle solar panel at 3.3KWhm−2 in September, and 1.9KWhm−2

in October.

Operating the whole system, including the heater, for four hours per day requires 10 Ah per day at

12V. Assuming a battery efficiency of 80% and solar radiation of 2KWhm−2 the solar pannels must

be able provide a peak current of 6.25 A. Therefore, we selected two 50W solar panels (Kyocera). Two

panels instead of one were used due to the size limitation of the helicopter.

As mentioned earlier the battery used during the first deployment was not rechargeable in a cold

state. We required a different battery for the solar system because it was intended to operate without

maintenance for two months. A growing number of batteries rechargeable in low temperature envi-

ronments are available mainly for defence and aerospace purposes. We choose a 42 Ah lead battery

rechargeable at −40◦C (EnerSys, 2006). At −15◦C the capacity drops to about 70% of the nominal ca-

pacity at 25◦C, which still provides about three days of autonomy, meaning the system can be powered

for three consecutive days without sunlight.

We designed, built and airlifted the solar powered camera to the Ni’iinlii Njik Park but due to low

bear activity in 2006, we did not test it. It remains for a future research mission to determine if the

solar system will generate enough electric energy in the high northern regions of Canada to power a

grizzly bear monitoring camera.
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5 Detecting Bears in Recorded Video

Our system monitors the river site for 4 hours per day. Biologists require enormous amounts of time

to manually search these videos for bear activity. For this reason, we developed an algorithm for

automatically detecting the presence of bears in the recorded video.

The algorithm we use is an extension of the shapelet features described in Sabzmeydani and Mori

(2007). The shapelet features were designed for the task of detecting pedestrians in still images. We

adopt this approach to the related task of detecting bears. We extend it to incorporate the additional

information which is present in a video dataset, calling these motion shapelet features. In the following

sections, we describe our use of features from video data in the motion shapelet learning algorithm.

5.1 Motion Shapelet Feature-based Detection

A major drawback in many object detection algorithms is the fixed set of feature descriptors they

use. The problem with defining features before training the classifier is that there could be some

discriminative information that is missed by those features. In the shapelet feature work (Sabzmeydani

and Mori, 2007), a specific feature set is learned while using information about the object classes in

building these features.

The approach is related to that of Viola and Jones (2001); Viola et al. (2003), who use AdaBoost for

face and pedestrian classification, using Haar-like wavelet features. The features they use are low-level,

and AdaBoost selects a subset of these features to form the final classifier. Wu and Nevatia (2005) use

AdaBoost with a set of hard coded mid-level features, called “edgelets”, as its weak classifiers. These

edgelets are a set of pre-defined patterns of edges in different locations. Unlike the Haar-like features,

they contain more information, but since they are fixed a priori they may not capture all the available

information that is useful to discriminate between our object classes.

In the shapelet feature approach, a set of informative mid-level features are automatically learned,

rather than hand-coded. These mid-level features, called shapelet features, are constructed from low-

level features. Shapelet features which best discriminate between object and non-object classes are

built. The AdaBoost algorithm is used as the core computational routine, using it once to build the
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shapelet features, and again to build a final classifier from these shapelets. Our method directly follows

the variant of AdaBoost developed by Viola and Jones (2001).

The training phase of our algorithm consists of three steps:

1. Low-level Features: The input to this step is labeled training image sequences. We compute

two types of low-level feature on the input sequences. First, we extract the gradient responses

of each image in different directions, and compute local average of these responses around each

pixel. Second, we compute a background difference, comparing pixels values in each image to the

estimated background computed from the entire sequence. These low-level features will be used to

build more sophisticated mid-level features (motion shapelets).

2. Motion Shapelet Features: For each of a number of small sub-windows inside the detection

window, we run Adaboost to select a subset of its low-level features to construct a mid-level motion

shapelet feature. By only using the features inside each sub-window, we force AdaBoost to extract

as much information as possible at local neighbourhoods of the image. This process will provide us

with a motion shapelet feature for each sub-window. Each of these is intended to be more descriptive

than the low-level features and discriminative regarding our object classes. Each motion shapelet

feature consists of a combination of motion responses and gradients with different orientations and

strengths at different locations within the sub-window.

3. Final Classifier: The motion shapelet features only describe local neighbourhoods of the image

and therefore their individual classification power is still limited. By merging these features together

we can combine the information from different parts of the image. In order to achieve this goal, we

use AdaBoost for the second time to train our final classifier, using motion shapelet features as its

input.

5.2 Low-level features

Many detection approaches capture local information as their lowest level features. Approaches include

computing image gradients (Dalal and Triggs, 2005), computing wavelet coefficients (Schneiderman and

Kanade, 2000), and applying simple rectangular filters spatially (Viola and Jones, 2001) or temporally

(Viola et al., 2003) or more sophisticated features such as edgelets (Wu and Nevatia, 2005). In our
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Fig. 4 Low-level features of two sample images. First column shows input image. Next four columns show

gradients in each of four directions. Final column shows background difference.

work, we use background differences and gradient responses as our lowest level features. We use the

absolute value of gradient responses, computed in four different directions. The absolute value is used

because the sign of the gradient is uninformative due to varying background colours. To reduce the

influence of small spatial shifts in the detection window, we locally average each of these cues by

convolving the responses with a box filter:

Sd(x) = (|I ∗ Gd| ∗ B)(x) where d ∈ D (1)

Sm(x) = (|I − Ib| ∗ B)(x) (2)

where ∗ denotes convolution, I is the intensity image. Gd is the gradient kernel (e.g. [−1, 0, 1] or

[−1, 0, 1]T ) that we use to get derivatives in direction d ∈ D. Ib is the background image, computed

by taking a median over a sampled set of the frames from the image sequence being analyzed. B is

a 2-D box filter (e.g. a 5 × 5 matrix with all the elements 1
25 ) used for averaging. Sd(x) captures the

amount of gradient at every pixel in direction d. D is the set of directions in which we are computing

the gradients. In our experiments we use four directions; D = {0◦, 45◦, 90◦, 135◦}. {Sd(x)} and Sm(x)

are our final low-level features. Figure 4 shows two examples of bears and their low-level features.

The information captured about the classes by each of the low-level features is very little. If used as

a classifier, each of these low-level features (an Sd(x) or Sm(x)), can only separate our two classes (bear

and background) slightly better than random classification. To make our features more informative,

we use AdaBoost to combine them together to create more informative mid-level features, the motion

shapelet features.

5.3 Motion Shapelet Features

We define a motion shapelet feature as a weighted combination of low-level features. Each low-level

feature consists of a location, a direction or motion, and a strength. Each motion shapelet feature will
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cover a small sub-window of the detection window, and its low-level features are chosen from that

sub-window.

We will consider k sub-windows wi ∈ W , i = 1, . . . , k inside our detection window. Selecting the

set of sub-windows W will be explained in detail in Section 6.1. We will build a separate mid-level

motion shapelet feature for each sub-window wi. To do this, we collect all the low-level features that

are inside that sub-window {fp
u = Su(p) : p ∈ wi, u ∈ D ∪ {m}} and consider them as potential weak

classifiers of an AdaBoost run.

In each iteration t of the AdaBoost (Viola and Jones, 2001) training algorithm, one of the features

ft ∈ {fp
u} is chosen as the feature of the weak classifier ht(x) to be added to the final classifier. This

weak classifier is of the form:

ht(x) =











1 if ptft(x) < ptθt

0 otherwise

(3)

for an image detection window x, where θt ∈ (−∞,∞) is the classification threshold of the classifier

and pt = ±1 is a parity for the inequality sign.

AdaBoost calls the weak learner algorithm repeatedly in a series of rounds. The algorithm maintains

a set of weights vl over the training set. On each round, the weights of incorrectly classified examples

are increased so that the weak learner is forced to focus on the hard examples in the training set. In

every iteration, the best ht(x) is added to the set of selected weak classifiers, where the best is that

which minimizes has minimum error. The error ǫj of a weak classifier hj is calculated as:

ǫj =
∑

l

vl|hj(xl) − yl| (4)

This is a sum of the weights of examples xl with labels yl ∈ {0, 1}, mis-classified by weak classifier hj .

After choosing this best classifier ht, the new weight vt+1,l for the l-th sample is recalculated

according to its classification result:

vt+1,l = vt,le
(−αtht(xl)) (5)

where αt = 1
2 ln(

1−ǫj

ǫj
).
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After all T iterations of the algorithm, we get the final classifier Hi(x) for sub-window wi. This

classifier is of the form:

Hi(x) =











1
∑T

t=1 αi
th

i
t(x) ≥ 0

0 otherwise

(6)

where αi
t is the selected weight for classifier hi

t(x), as chosen by the AdaBoost algorithm. We train

such a classifier for every sub-window wi.

Each Hi(x) is a local classifier, containing some of the low-level features inside the sub-window wi.

If we take a second look at the classifier form in equation 6, it can be seen that the weighted sum of

weak classifiers is a continuous value. Let us call this sum si(x) =
∑T

t=1 αi
th

i
t(x). A useful characteristic

about these classifiers is that this si(x) contains more information than only specifying the class by its

sign. The further away the value of si(x) from the zero, the more certain we are about its estimated

class. Therefore this value can be used as a confidence measure of the classification. This is similar to

the confidence prediction AdaBoost that has been developed by Schapire and Singer (1998).

We define our motion shapelet features as these {si(x) : i ∈ {1, 2, . . . , k}}. The index i corresponds

to one of the sub-windows wi ∈ W , and hi
t(x) and αi

t are the parameters associated with the classifier

Hi(x). Note that si(x) is a motion shapelet feature that is trained specifically to distinguish between

the two classes, based on background differences and gradients from its sub-window.

We train these motion shapelet features for a set of sub-windows inside the detection window. We

visualize the results of the motion shapelet learning algorithm in Figure 5, which shows the sum of

all the low-level features selected inside all the motion shapelet features over the entire the detection

window. The selected low-level features are separated in two groups according to their classification

parity pt. This parity shows whether the selected feature is part of a positive (bear) or negative (non-

bear) discriminating motion shapelet feature.

5.4 Final Classifier

Now that we have defined our motion shapelet features si(x), we use AdaBoost to create a final classifier

from them. The details of creating weak classifiers gt(s) are the same as the previous step. Each gt(s)

consists of one of the motion shapelet features st(x), a threshold θt, and a parity pt.
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(a) (b) (c) (d)

Fig. 5 Illustration of learned motion shapelets. Column (a) shows low-level gradient features with positive

parity, (b) those with negative parity. Column (c) shows motion features with positive parity, (d) those with

negative parity. The first row shows all motion shapelets, the second only those chosen for use in the final

classifier.

The final classifier is in the form of:

C(s) =











1
∑T

t=1 αtgt(s) ≥ λ

0 otherwise

(7)

where s = (s1(x), s2(x), . . . , sk(x)) denotes all the motion shapelet features for input image detec-

tion window x. λ is the final classifier’s threshold; originally zero but can be adjusted to get different

detection and false positive rates. Note that this time the weak classifiers gt(s) (equivalent of ht(x)

in the previous step) are applied in the new feature domain s instead of the low level features x, and

therefore the final classifier will be a combination of weighted thresholded motion shapelet features.

Again, the selection of the motion shapelet feature, threshold, and parity for use in classifier gt(s), along

with its weight αt, are chosen using the variant of AdaBoost used by Viola and Jones (2001). When

the final classifier is trained, one can illustrate all the low-level features that are inside the selected

motion shapelet features. Depending on the parity pt assigned to each of the features (classifiers), these

features are indicative of either bears or non-bears. An illustration of both sets of features are shown

in Figure 5. Note that the gradient features with positive parity tend to correspond to the shape of the

bear. The negative gradient features are horizontal gradients in the centre of the window (where there

should be no edges for a bear image) and gradients around the outside of the window, likely denoting
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confounding background clutter. Similarly, the motion features with positive parity depict the rough

silhouette of a bear, while the negative parity features are on the boundary of the window.

6 Experiments

The BearCam system was deployed in the Yukon from October 10-25, 2005, to monitor the river.

Each day approximately four hours of video were recorded, over a time frame of approximately 15

days. As described above, our system streams video from the cameras over a wireless link, and records

it onto hard drives contained in a hut adjacent to the river. A generator outside the hut powers

the recording computer and hard drives. The cameras, mounted across the river, are powered by

rechargeable batteries. Due to the inclement weather conditions, with temperatures ranging between

−15◦C and 5◦C, the batteries were difficult to charge. We changed the batteries daily despite requiring

up to 48 hours before reaching room temperature. As mentioned earlier the batteries could only be

safely fasted charged at room temperature.

In order to test the efficacy of our bear detection algorithms we manually annotated frames from the

video. Rectangular windows from the image were manually cropped and labeled as either containing

a bear or not. For training, we marked 451 windows containing bears from 6 different clips of video

as our positive set, and extracted 45100 non-bear windows from the same videos. A separate test set

consisting of 400 bear and 40000 non-bear windows from a separate set of 4 video clips was extracted.

The mean size of the bear windows in the training set was 36x40, and all windows were resized to this

size for the experiments described below.

In cases where the (darkly-coloured) bear appears on regions of white snow, the detection problem

is relatively straight-forward, with the background difference features providing adequate information

for detection. However, in some cases the movement of the water and trees, or camera motion caused

by wind will create imperfections in the background difference features. Examples of such difficult cases

are shown in Figure 6.

In the following sections we describe our experiments using these manually labeled ground truth

sets. We performed cross-validation using the training set in order to experiment with and tune the

parameters of our detector. Then, we performed two experiments on the test set, using the best
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Fig. 6 Examples of difficult cases for bear detection using background difference features. False positives are

often found along the river bank in examples such as these.

parameters from the cross-validation runs. The first experiment tested classification performance on the

manually labeled, cropped windows. The second tested a full window-scanning detector that processes

entire input video frames.

6.1 Motion Shapelet Parameters

We perform two experiments using the training set to explore the sensitivity of our algorithm to various

parameters. The first experiment jointly explores the use of different sub-window sizes for computing

motion shapelets, and the spacing of these sub-windows within the detection window.

As we described in section 5.3, there is a sub-window set W that defines the area of influence of

each of the mid-level motion shapelet features. In our experiments, each sub-window in W is a square

window; we used windows of size 5x5, 10x10, and 20x20. For each sub-window size, we experimented

with a variety of values for the stride parameter, which determines how far apart to place each sub-

window. We used equal values for strides in the horizontal and vertical direction, experimenting with

stride values of 2, 4, and 8. For example, a stride of 4 would place the upper-left corner of the sub-

windows at pixels (1,1), (1,5), (1,9), . . . , (5,1), (5,5), . . . .
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When comparing these detectors using different sub-window sizes and strides, we ensure that they

are able to use the same amount of computational resources. We fix the total number of weak classifiers

that is used in constructing all of the motion shapelet features to be 1000. For example, for 5x5 sized

motion shapelets, tiled at a stride of 4 across the 36x40 detection window, there would be a total of 72

sub-windows within the detection window. We would therefore select 14 (≈ 1000/72) weak classifiers

from low-level features to construct a motion shapelet for each sub-window.

Our results are presented using Detection Error Tradeoff (DET) curves (Martin et al., 1997). DET

curves plot miss rate versus false positives per window (FPPW), on a log-log scale. The log-log scale

enables one to more easily view differences that can be obscured in standard Receiver Operating

Characteristic (ROC) curves.

Figure 7(a) shows DET curves for the 9 parameter settings, all combinations of motion shapelet

sub-window size and strides. DET curves show average miss rate at FPPW values. Miss rate is averaged

over 6 folds of leave-one-out cross validation. A bear detector with the given parameters is computed

using 5 of the 6 sets in the training set, and a miss rate is calculated on the one held-out set.

From Figure 7(a), the algorithm is relatively insensitive to the settings of the parameters, provided

a smaller sub-window size for the motion shapelets is used. Motion shapelets of sizes 5x5 and 10x10,

within the 36x40 detection window, have similar performance.

The tradeoff between the strides and the and the number of weak classifiers used in each motion

shapelet feature is less clear. For both 5x5 and 10x10 motion shapelets, a stride of 4 (resulting in 14

and 18 low-level features per motion shapelet respectively) gives the best performance, presumably

striking a balance between motion shapelet overlap, and the redundancy in choosing too many similar

features in one motion shapelet.

The second experiment we perform on the training set is to explore how the performance of our

algorithm varies with the total number of weak classifiers or low-level features used in constructing

the motion shapelets. In the previous experiment, we kept this number fixed at 1000, and varied the

motion shapelet size and spacing. In this experiment, we use the best values (5x5 motion shapelet,

stride of 4) from the previous experiment, and train bear detectors using 200, 600, 1000, 1400, and
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1800 low-level features for constructing the motion shapelets. Figure 7(b) shows DET curves for these

detectors.

As expected, performance increases as the total number of features used increases. However, this

improvement plateaus after 1000 features. The difference between 1000 and 1400 or 1800 low-level

features is marginal at the low FPPW values, which are likely to be of interest. For this reason, we

choose 5x5 motion shapelets, with a stride of 4, and 1000 total low-level features, as our parameters

for our experiments on the test set.

In addition, we performed an experiment to measure the relative contributions of the gradient

(shape) and motion features in classifying bears in our videos. Figure 7(c) compares the results of

3 different detectors. All use the same 5x5 shapelet size, with a stride of 4, and 1000 total low-level

features. We build detectors selecting only from the gradient, only from the motion, and both features

respectively. As one would expect, the motion features are more important, but adding gradient features

does improve performance. In regions where moving trees or rippling waves cause motion, the spatial

gradient features can help to reduce false positives.

Qualitative examples of performance are shown in Figure 8. False negatives from the window-based

classifier are shown. High-ranked false negatives include frames with noise in the video data and those

where bears are near or in the river, in which reflections and the motion of water cause extraneous

patterns of motion.

6.2 Results on Cropped Test Set

The first experiment on the test set was done on the manually cropped windows, 400 positive which

contain bears, and 40000 negative which contain background. The purpose of this experiment is to test

the generalization performance of our detector to unseen data, while remaining in the cropped-window

framework for ease of comparison.

We took the best detector parameters from the previous cross-validation phase, namely 5x5 motion

shapelets sampled at a stride of 4 over the detection window, with 1000 total low-level features used

in all of the motion shapelets. We trained a final detector using these parameters and all of the 451
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Fig. 7 (a) Detection Error Tradeoff (DET) curves averaged over 6 folds of leave one out cross-validation.

Error rate versus false positives per windows is shown on a log-log scale. 9 different parameter settings, with

3 sizes of motion shapelets and 3 stride sizes are shown. (b) DET curves averaged over 6 folds of leave one

out cross-validation. Error rate versus false positives per windows is shown on a log-log scale. All detectors

use 5x5 motion shaplets, with a stride of 4 over the detection window. Results are shown for 200, 600, 1000,

1400, and 1800 total low-level features in all motion shapelets. (c) DET curves averaged over 6 folds of leave

one out cross-validation. Error rate versus false positives per windows is shown on a log-log scale. Results for

detectors selecting only from the spatial gradient, only from the motion, and from both features are shown.

(d) DET curves on the test set of full video frames. Error rate versus false positives per image is shown on a

log-log scale. All detectors use 5x5 motion shaplets, with a stride of 4 over the detection window, and 1000

total low-level features. Results are shown for initial detector with 2000 negative windows, and first and second

round bootstrap-trained detectors with 5000 and 8000 total negative windows respectively.

positive bear windows. The negative set for this detector was selected by randomly choosing 2000

negative windows from the training set.

This test set proved to be too simple for our algorithm. Near-perfect performance was obtained,

with zero error rate with a negligible number of false positives. For this reason, we proceeded to a more
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Fig. 8 Examples of false negatives from window-based classifier. High-ranked false negatives include frames

with noise (e.g. top row), and those where the bears are near or in the river, with reflections and motion of

water.

difficult test, scanning entire video frames, running our detector at every possible location to look for

bears.

6.3 Results on Video Frames

The final test we performed processed whole video frames, a realistic test of the final system. We ran

our detector in a “window-scanning” fashion, sliding it across the input frame and running our classifier

at each location.

We created a test set from the same set of videos used in the cropped test set. For the purposes

of this experiment, an image is considered a true positive if it contains at least one bear, and a false

positive if it contains no bears. 405 images containing at least one bear were labeled as our positive

set, while 16000 images not containing bears comprise the negative set.

We marked a region of interest (ROI) within the video, in order to ignore areas where bears cannot

appear. The ROI consists of the entire frame, except the upper regions of the frame where only trees

are present. We ran our detector over each image, and kept the single highest-valued response over

all detection windows within the ROI as the response for each image. This process is quite efficient,

and our MATLAB implementation processes a frame in less than 3 seconds, on a 2.4GHz Opteron

processor. A real-time implementation would likely be feasible, particularly if one employed cascades

(Viola and Jones, 2001) for efficiency.

The parameters for the detector and the positive training set are the same as those described

in the preceding subsection. The negative set for this detector was selected using bootstrapping on

the training set. In the first round, 2000 negative windows were randomly selected from the negative

training set. We performed two rounds of bootstrapping. In each round we added 3000 additional
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Fig. 9 Top row: Examples of correct bear detection results. Second and third row: Examples of bear detection

failures. The top ranked false positives are shown.

negative windows, chosen as the most difficult negative examples for the previous classifier (those with

highest score under the previous classifier).

DET curves showing the results of these experiments are shown in Figure 7(d). We note that the

first initial run of bootstrapping significantly improves the performance of our detector, for example

reducing the error rate from 0.43 to 0.24 at 10−3 false positives per image (FPPI). The second stage

of bootstrapping does not significantly alter the results at low FPPI rates, and performs slightly worse

at higher FPPI rates (note the log scale, the difference is of a few hundreths in error rate).

Example frames with detection results are shown in the first row of Figure 9. The second and third

row of Figure 9 shows the worst false positives, i.e. the frames without bears for which the detector

returned the highest value. The false positives are often found in textured areas, such as those on the

banks of the river, or regions of the water, which contain large amounts of gradient information. In

addition, areas of motion, such as the birds which appear in the upper left of the frames, or the ripples

in the water, also lead to false positive detections.
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7 Conclusion

In this paper we described the development of the BearCam, a camera system used to monitor the

behaviour of grizzly bears at a remote location near the arctic circle. The system aided biologists in

data collection for their study on behavioural effects of ecotourists on bears. We developed a camera

system for operating in the challenging arctic conditions. The system collected vast quantities of video

data, much of it devoid of bears. In order to reduce the amount of manual labour that would be required

to process these data and extract information regarding the behaviour of the bears, we developed a

novel algorithm for detecting the presence of bears.

This “motion shapelet” algorithm is an extension of the shapelet features (Sabzmeydani and Mori,

2007), which are mid-level features capturing pieces of shape. Our extension of this technique incorpo-

rates motion information, and proves effective at automatically detecting the occurrence of bears. We

presented experiments on tens of thousands of frames of video, showing that we can obtain low false

negative rates for bears while eliminating large amounts of data. For example, we can detect 76% of

the frames containing bears at 0.001 false positive images per image examined, or 88% at 0.01. Such

a detection rate would be useful for building an interactive system, where a user could be guided to

frames in the video where bears are likely to be present.

Future work includes automating more of the data collection for our biologist partners. For example,

one could attempt to extract some of the more detailed data, such as the percentage of time the bears

spend walking, fishing, or feeding, automatically. One could build a tracker on top of the current bear

detection algorithm, and attempt to use action recognition algorithms to classify the resulting tracks

of the grizzly bears.
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