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Abstract

Our goal is to recognize human actions at a distance,
at resolutions where a whole person may be, say, 30 pix
els tall. We introduce a novel motion descriptor based on
optical flow measurements in a spatio-temporal volume fo
each stabilized human figure, and an associated similari
measure to be used in a nearest-neighbor framework. Maki
ing use of noisy optical flow measurements is the key cha
lenge, which is addressed by treating optical flow not as
precise pixel displacements, but rather as a spatial pattern
of noisy measurements which are carefully smoothed an
aggregated to form our spatio-temporal motion descriptor.
To classify the action being performed by a human figure
in a query sequence, we retrieve nearest neighbor(s) from aFigure 1. A typical frame from the NTSC World Cup broad-
database of stored, annotated video sequences. We can alseast video that we use as our data. Humans are extremely good
use these retrieved exemplars to transfer 2D/3D skeletonsat recognizing the actions of the football players, despite the low
onto the figures in the query sequence, as well as two formgesolution (each figure is about 30 pixels tall; see the zoomed in
of data-based action synthesis “Do as | Do” and “Do as |  Player atthe lower left corner).

Say”. Results are demonstrated on ballet, tennis as well as o o )
football datasets. tracking is good enough for applications such as measuring

pedestrian traffic, but given that the only descriptor we can
extract is the translation of the blob as a whole, we cannot
expect to discriminate among too many action categories.

Consider video such as the wide angle shot of a foot- In this paper, we develop a general approach to recog-
ball field seen in Figure 1. People can easily track individ- nizing actions in “medium” field. Figure 2 shows a flow di-
ual players and recognize actions such as running, kicking,agram. We start by tracking and stabilizing each human fig-
jumping etc. This is possible in spite of the fact that the ure — conceptually this corresponds to perfect smooth pur-
resolution is not high — each player might be, say, just 30 suit movements in human vision or a skillful panning move-
pixels tall. How do we develop computer programs that can ment by a camera operator who keeps the moving figure in
replicate this impressive human ability? the center of the field of view. Any residual motion within

It is useful to contrast this medium resolution regime the spatio-temporal volume is due to the relative motions of
with two others: ones where the figures are an order of mag-different body parts: limbs, head, torso etc. We will char-
nitude taller (“near” field), or an order of magnitude shorter acterize this motion by a descriptor based on computing the
(“far” field). In near field, we may have 300 pixel tall fig- optical flow, projecting it onto a number of motion chan-
ures, and there is reasonable hope of being able to segmentels, and blurring. Recognition is performed in a nearest
and label parts such as the limbs, torso, and head, and thuseighbor framework. We have a stored database of previ-
mark out a stick figure. Strategies such as[19, 12, 11] work ously seen (and labeled) action fragments, and by comput-
best when we have data that support figures of this resolu-ng a spatio-temporal cross correlation we can find the one
tion. On the other hand, in far field, we might have only most similar to the motion descriptor of the query action
3 pixel tall figures — in this case the best we can do is to fragment. The retrieved nearest neighbor(s) can be used for
track the figure as a “blob” without the ability to articulate other applications than action recognition — we can transfer
the separate movements of the different locations in it. Blob attached attributes such as appearance or 2D/3D skeletons

1. Introduction
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Figure 2.Data flow for our algorithm. Starting with a stabilized figure-centric motion sequence, we compute the spatio-temporal motion
descriptor centered at each frame. The descriptors are then matched to a database of preclassified actionk-nsiagsh@eighbor
framework. The retrieved matches can be used to obtain the correct classification label, as well as other associated information.

from the action fragment in the database to the one in the[10, 15, 5, 4]. Of particular relevance is the work of Cut-
query video sequence. ler and Davis [5], which is one of a few attempts at ana-
Note that we daoot use the movement of the figure as a lyzing poor quality, non-stationary camera footage. Their
whole — the stabilization step intentionally throws away this approach is based on modeling the structure of the appear-
information. In far field, this would in fact be tranly infor- ance self-similarity matrix and can handle very small ob-
mation available for a moving figure blob, and it would cer- jects. They report classification results on three categories:
tainly make sense for an integrated system for action recog-"person”, "dog”, "other”. Unfortunately, methods based on
nition to capitalize on this cue. Our motivation is scientific periodicity are restricted to periodic motion.
— we want to understand the “extra” information available  Action classification can be performed in a nearest
corresponding to relative motions among the different loca- neighbor framework. Here the main challenge is to find the
tions of the figure, just as one might ignore color to better right representation for comparing novel data with stored
understand the role of shape in object recognition. It may examples. Bobick and Davis [3] derive the Temporal Tem-
also be worth remarking that there are situations such as glate representation from background subtracted images.
person on a treadmill, or when the camera pans to keep arThey present results on a variety of choreographed actions
actor in the field of view, when the overall motion of the across different subjects and views, but require two sta-
figure blob is unavailable or misleading. tionary cameras with known angular interval, a stationary
This paper is organized as follows. Section 1.1 reviews background, and a reasonably high-resolution video. Song
related work. In Section 2, we develop the motion descrip- et al. [17] demonstrate detection of walking and biking
tor. This is the core of the paper — it is well known that people using the spatial arrangement of moving point fea-
optical flow measurements are noisy, so to be able to usetures. Freeman et al. [6] use image moments and orienta-
them in a robust way for action matching is a fundamental tion histograms of image gradients for interactive control
contribution. Given the descriptor and matching technique, in video games. Developing this theme, Zelnik-Manor and
in Section 3 we show classification results on a variety of [rani [20] use marginal histograms of spatio-temporal gra-
datasets — ballet, tennis, football. In Section 4, we show dients at several temporal scales to cluster and recognize
how the process of extracting best matching action frag- video events. Despite its simplicity, this representation is
ments from the database has other side benefits. We areurprisingly powerful. The paper reports promising action
able to perform “skeleton transfer” on to the input figure se- similarity results on three different datasets with 3-4 classes,
quence, as well as synthesize novel video sequences in twassuming a single actor and a static background. However,
ways we call “Do as | do” or “Do as | say”. We conclude in  since only the marginal information is being collected over

Section 5. each frame, the classes of actions that can be discriminated
must have substantially different motion speed and orienta-
1.1 Related Work tion profiles.

This work addresses action recognition in “medium
field” based on analyzing motion channels. As discussed2, Measuring Motion Similarity
above, most work in human tracking and activity recogni-
tion is only appropriate for “near field” with higher resolu- Our algorithm (Figure 2) starts by computing a figure-
tion figures. Shah and Jain [16] review the previous work centric spatio-temporal volume for each person. Such a
on activity recognition, much of which involves tracking at representation can be obtained by tracking the human fig-
the level of body parts. Gavrila and Davis’ survey paper [7] ure and then constructing a window in each frame centered
provides a thorough review of the tracking literature, but it at the figure (see Figure 3). Any of a number of track-
is largely inapplicable for the type of data we are consider- ers are appropriate; in our experiments, we used a simple
ing in this work. normalized-correlation based tracker, either on raw video
Another class of methods analyze motion periodicity or on regions of interest selected by thresholding the tem-
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Figure 3.We track each player and recover a stabilized spati

temporal volume, which is the only data used by our algorithm. -
-

poral difference image. The main requirement is that the(c) Fz, F, (d)Ff, F, Ff,F,  (e)Fb;, Fb,, Fb}, Fb,
traclgng be consistent —a personin a partlcular body Conflg'Figure 4 .Constructing the motion descriptor. (a) Original image,
u.r:_:ltlon.should always map to approximately the same sta—(b) Optical flow, (c) Separating the andy components of opti-
bilized image. cal flow vectors, (d) Half-wave rectification of each component to

Once the motion sequences are stabilized it becomesroduce 4 separate channels, (e) Fiiatry motion channels
possible to directly compare them in order to find corre-

spondences. Finding similarity between different motions are aggregated using our motion descriptor. We think of

requires b.Oth spatial ar_1d temporal mfo_r mation. Th's Ieadsthe spatial arrangement of optical flow vectors as a template
to the notion of thespatio-temporal motion descriptoan that is to be matched in a robust way

aggre_gate set of-features sampleq in space and time,_ that The motion descriptor must perform reliably with fea-
describe the motion over a local time period. Computing tures that are noisy, and moreover, be able to deal with in-

Suih motion defscrlpto][s cer;?rred ‘? each framebwnl gnablleput data that are not perfectly aligned either temporally or
us to compare frames from difierent sequences based on 0'spatially. Matching under noise and positional uncertainty

caITmhot!on chta ratCte”Stt'.CS' is what inte feat is often done using histograms of features over image re-
€ |mpr<]Jr an guej lon 1s w aE aredgpprr?prla e Ie_a ures'gions [20, 13, 1]. Interestingly, a very similar effect can
to putinto the motlor_1 esconor. nco mgt € aqtua IMage e obtained by simply blurring the input signal in the cor-
appearance by storing the pixel values directly is one POS-yact way [2]. This is a very simple yet powerful technique
Sllzmty’ fW T;Ch h.?s 'be(te)n successfully l;]SEd by &;ikel al. of capturing only the essential positional information while
[14] to mH similarity between pqrts dhe samevi .leo Se- isregarding minor variations. However, one must be care-
quence. However, appearance Is not necessarily préserveg, i important information in the signal is not lost due to

across different sequences (e.g. people wearing d'ﬁeremolurring together of positive and negative components. In

Clﬁth;]ng)' Tgel_ samle IS ftrue for slpatlalTlmage ?radgntiorderto deal with this potential loss of discriminative infor-
which depend linearly on image values. 1emporal gradient y,iq, e use half-wave rectification, separating the signal

|sfan0th(Tr usc?ful fegtl:)rg [6, 2|Q], butf it Sh'aresfthe problemsinto sparse, positive-only channels before it is blurred. In
g spatia grla lents in Iemg; Inéar Lt11r_1bc_t|on 0 appearance;:the primate visual system, one can think of each of these
or example, temporal gradients exhibit contrast reversaliy, e motion channelss corresponding to a family of

a IighF—dark edge m_oving right-is indistinguishable from a complex, direction selective cells tuned to roughly the same
dark-light edge moving left (taking the absolute value of the direction of retinal motion

gradient will fix this but it will also remove all information
about the direction of motion).

We base our features on pixel-wise optical flow as the
most natural technique for capturing motion independent of ~ Given a stabilized figure-centric sequence, we first com-
appearance. In biological vision, neurons sensitive to direc-pute optical flow at each frame using the Lucas-Kanade [8]
tion and speed of retinal motion have been found in many algorithm (see Figure 4(a,b)). The optical flow vector field
different species. On the other hand, computer vision expe-F is first split into two scalar fields corresponding to the hor-
rience suggests that computation of optical flow is not very izontal and vertical components of the fla, andF,,, each
accurate, particularly on coarse and noisy data, such as typef which is then half-wave rectified into four non-negative
ical NTSC video footage. Our insight is to treat these opti- channelsF,, F, -, F,\, F,", so thatF, = F,; — F, and
cal flow vectors not as precise pixel displacements at points,F, = FyJr — F,” (see Figure 4(c,d)). These are each blurred
but simply as a spatial pattern of noisy measurements whichwith a Gaussian and normalized to obtain the final four

2.1 Computing Motion Descriptors
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Figure 5.(a) A typical frame-to-frame similarity matris ;s for
running, (b) the “Blurryl” kernel K (not shown to scale) used for
aggregating temporal information within the similarity matrix, (c)
the resulting motion-to-motion similarity matriX.

Figure 6.Representative frames from the sixteen ballet actions
7 I

used for our experiments. The actions are (left to right)2"1%
Figure 7.Best matches for classification (ballet, tennis, football).

pos. plies, 2)1°* pos. plies, 3) releve, 4) down from releve, 5)
point toe and step right, 6) point toe and step left, 7) atifigpos.

The top row of each set shows a sequence of input frames, the
bottom row shows the best match for each of the frames. Our

to 2" pos., 8) rotate arms 3" pos., 9) degage, 10) arms’
pos. forward and out t8"? pos., 11) arms circle, 12) arn2g<
to high fifth, 13) arms high fifth td**, 14) port de dras, 15) right
arm from high fifth to right, 16) port de bra flowy arms

method is able to match between frames of people performing the
channeIst:, Fb;, Fb:, F’b;, of the motion descriptor ~ same action yet with substantial difference in appearance.
for each frame (see Figure 4(e)). Alternative implementa-
tions of the basic idea could use more than 4 motion chan-_ ) ) o )
nels — the key aspect is that each channel be sparse and nofin@ motion-to-motion similarity matrix5, we sum up the
negative. frame-to-frame similarities over @ temporal window by

The spatio-temporal motion descriptors are comparedC0nvolutionwith &> T"identity matrix, thuss = Sy yxI7.
using a version of normalized correlation. If the four mo- If motions are similar, but occur at slightly different rates

tion channels for frame of sequence! area? a3,a%, and then t_he strong fram_e to frame similarities will occur along
o, and similarly for framej of sequenceB then the simi- directions closg to <_j|agonal but somewhat slanted (note the
larity between motion descriptors centered at framasd angle of bands in Fig. 5a). In order to take gdva_ntage of this
jis: cht, we I(_)ok for strong responses a!on_g dlrectlions close to

diagonal in the frame to frame similarity matrix between

‘ A A and B. In practice this is achieved by convolving the

=> 3> alft@ybit(xy) (1) frame to frame similarity matri ; with the kernel shown
teT e=lz,yel in Figure 5(b) instead of the identity matrix to obtain the

whereT and 1 are the temporal and spatial extents of the final similarity matrix. The kernel is a weighted sum of near
motion descriptor respectively. To compare two Sequencesd|agonal lines, with more weight put closer to the diagonal.
A and B, the similarity computation will need to be done . .o

for every frame ofA and B so Eq. 1 can be optimized in K(i.j) = Z w(r)x(i,7j) 2)

the following way. First, a frame-to-frame similarity ma- ekt
trix of the blurry motion channels (the inner sums of the wherew(r) weights values of near one relatively more,
equation) is computed between each framedoand B. andR is the range of rates. (Note that we gét, ;) to one

Let us define matrix4; as the concatenation af;'s for if 4 andrj round to the same value and zero otherwise). The
each frame stringed as column vectors, and similarly for the similarity between two sequences centered at two particular
other 3 channels. Then the frame-to-frame similarity matrix frames can be read from the corresponding entry in the final
Str = ATBy + AT By + AT B3 + AT B,. To obtain the  similarity matrix.
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Figure 8. Confusion matrices for classification results. Each row represents the probabilities of that class being confused with all the
other classes(a) Ballet dataset(24800 frames). The 16 classes are defined in Figure 6. Video of the male dancers was used to classify
the video of the female dancers and vice versa. Classification used 5-nearest-neighbors. The main diagonal shows the fraction of frames
correctly classified for each class and is as follows: [.94 .97 .88 .88 .97 .91 1 .74 .92 .82 .99 .62 .71 .76 .92 .96]. The algorithm performs
quite well on the ballet actions, matching or exceeding previous work in this area. However, the highly controlled, choreographed nature
of the actions make this a relatively easy teg&t) Tennis dataset. The video was subsampled by a factor of four, rendering the figures
approximately 50 pixels tall. Actions were hand-labeled with six labels: “swing”, “move left”, “move right”, “move left and swing”,
“move right and swing”, “stand”. Video of the female tennis player (4610 frames) was used to classify the video of the male player (1805
frames). Classification used 5-nearest-neighbors. The main diagonal is: [.46 .64 .7 .76 .88 .42]. While the classification is not as good as in
the previous experiment, the confusions make sense. For example, the “go left and swing” class gets confused with “go left”. In addition
some of the swing sequences are misclassified because optical flow occasionally misses the low contrast, motion blurred tennis racket.
(c) Football dataset(4500 frames, taken from 72 tracked sequences, supplemented by mirror flipping some of the sequences). We hand-
labeled subsequences with one of 8 actions: “rundgft, “run left”, “walk left”, “walk infout”, “run infout”, “walk right”, “run right”,

and “run right45°”. The classification used a 1-nearest-neighbor classifier on the entire data set with a leave-one-sequence-out testing
scheme. The main diagonal is: [.67 .58 .68 .79 .59 .68 .58 .66]. The classes are sorted according to the direction of motion — confusion
occurs mainly between very similar classes where inconsistent ground truth labeling occurs. There is virtually no confusion between very
different classes, such as moving left, moving straight, and moving right. Here as with the tennis example the player’s direction of motion is
successfully recovered even though the algorithm nsdsanslational information at allThis means that the method correctly interprets

the movement of human limbs without explicitly tracking them. The results are particularly impressive considering the very poor quality
of the input data. Figure 7 shows nine consecutive frames from a “run right” sequence (top row) together with the best matching frames
from the rest of the database (bottom row). Note that while the best matches come from different players with different appearance and
scale, the motion is matched very well.

3. Classifying Actions Tennis: real actions, stationary camera. For this ex-
periment, we shot footage of two amateur tennis players
Given a novel sequence to be classified and a database afutdoors. Each player was video-taped on different days in
labeled example actions, we first construct a motion simi- different locations with slightly different camera positions.
larity matrix as outlined above. For each frame of the novel Motion descriptors were computed with 7 frames of tempo-
sequence, the maximum score in the corresponding row ofral extent.
this matrix will indicate the best match to the motion de- Football: real actions, moving camera. We digitized
scriptor centered at this frame (see Figure 7). Now, clas-several minutes of a World Cup football game (caiedcer
sifying this frame using &-nearest-neighbor classifier is in the U.S.) from an NTSC video tape. We used wide-angle
simple: find thek best matches from labeled data and take shots of the playing field, which have substantial camera
the majority label. motion and zoom (Figure 1). We take only the odd field
We show results on three different domains: of the interlaced video in grayscale, yielding, on average,
Ballet: choreographed actions, stationary camera.  about 30-by-30 noisy pixels per human figure. All motion
Clips of motions were digitized from an instructional video descriptors were computed with 13 frames of temporal ex-
for ballet showing professional dancers, two men and two tent.
women, performing mostly standard ballet moves. The mo-  Figure 7 shows the best matches for each frame of some
tion descriptors were computed with 51 frames of temporal example sequences while Figure 8 shows the quantitative
extent. classification results in the form of confusion matrices.
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locations. Figure 10 shows how, given a video sequence

(first row), we are able to recover a 3D skeleton (third row).

Alternatively we could go to the 3D skeleton from the 2D

skeleton, as in [18]. While lifting a 2D figure into 3D is

 "Doasl Sy clearly ambiguous (e.g. in side view, the left and right legs
Action Label often get confused), nonetheless we believe that the infor-
mation obtained this way is quite valuable.

|
3D Skel et on retridve . .
4.2 Action Synthesis
The visual quality of our motion descriptor matching

Figure 9.Action Database. Our classification algorithm can be (see Figure 7) suggests that the method could be used
interpreted as a database query: given a motion descriptor, retrievén graphics foraction synthesiscreating a novel video

the best matching action label. Other similar queries are pOSSib|e,sequence of an actor by assembling frames of existing
resulting in a number of useful applications, such as skeleton transfgotage. The idea is in the spirit of Video Textures [14],
fer, action synthesis, and figure correction. (This diagram does ”Otexcept that we would like to have control over the actions
show the temporal aspect of our action synthesis method.) that are being synthesized. The ultimate goal would be to

) . collect a large database of, say, Charlie Chaplin footage and
4. Querying the Action Database then be able to “direct” him in a new movie.

The classification procedure described above can beT Dg as“I dD_O ?ynt?ess.leer;g tte;rget alcFortdatabatse
thought of as a particular type of database query. Given an that' river ac;fg:hs?quertl . the go? '? (r)ﬂcreae
a database of example sequences annotated with action Ia?—1 synthetic sequen at contains the actor Iroth per-

bels, the classifier uses the motion descriptor as a key to orming actions described k. This problem can be posed

guery this database. The result of such a query is to retrieve®> simple query: retrieve the frames frafrassociated with

the action label of the database entry with the most simi- tmh_otlon descrlpltors be_ﬁt ma(tjchmg th(_)dse frﬁn tl—_|ov2/eve_r, K
lar motion descriptor. We can also store additional fields IS process alone will produce a video that 1S 100 Jerky,

in each of these database entries, facilitating several otheP'nCtﬁ nq srgootr:pess constrgént IS tpref_ent. t\:vn pralttcn_ce., the
applications (see Figure 9). synthesized motion sequenéemust satisfy two criteria:

the actions inS must match the actions in the “driver” se-
4.1 Skeleton Transfer quenceD, and the “target” actor must appear natural when

L . . performing the sequenc¢® We pose this as an optimization
Recovering joint positions (i.e. the skeleton) of a hu- problem.

man figure from video is an important and difficult p_rob— Let We (u, v) contain the motion descriptor similarity
lem. Most approaches rely on a person’s appearance in €acanveen frame: of D and framev of T. A second ma-
frame to identify limbs or other salient features (e.g. [9]). {ix W, is used to enforce the smoothness of the synthe-
This will not work for our data — the figures are usually ¢;,qq éequence. L&Y, (u, v) hold the similarity in appear-
much too small to have identifiable parts at any given frame. yce (frame-to-frame normalized correlation) and in motion
Here, again, our solution is to rely on motion instead of ap- (motion descriptors) of framesandu, both from the target
pearance. The idea is simple: we annotate each frame iny,tapasq”. Since we are comparing frames from tme

our database with hand-marked joint locations. This Means,.tor. we are able to use actual pixel values in the compu-

that a novel sequence can now be automatically labeled withyaion, of the appearance term. We define the following cost
joint position markers, essentially transferring a 2D skele- ¢,1+tion ons. a sequence of frams1, 7, ..., 7, } picked
ton from the stored example onto the novel sequence (sego, 7 ’ e

Figure 10, second row). Note that since the motion descrip- n n-l

tor is designed to be robust to misalignment, the skeletonC(S) = Y _ dact Waer (i, m) + > asWi(miga, suce(m)),

transfered in this way may not be placed precisely on the i=1 i=1

figure. Hence we use a simple refinement step to better alignvheresucc(;) is the frame that follows; in T'. The cost

the two sequences by searching for the scale and shift thafunction has only local terms, and therefore lends itself to

maximizes the motion descriptor matching score. being optimized using dynamic programming. A sequence
An alternative to hand-marking the joint locations is to of lengthn can be chosen fromn frames in7" in O(nm?)

use available 3D motion capture data (produced in a lab ustime. Figure 11 shows a few frames from our “Do as | Do”

ing special markers) tgenerate suitable database. We can results. See the web page for our video results.

render the MoCap data (using a stick figure) from several “Do as| Say” Synthesis.We can also synthesize a novel

viewing directions to create a database of synthetic 2D mo-“target” actor sequence by simply issuing commands, or ac-

tion sequences, fully annotated with the original 3D joint tion labels, instead of using the “driver” actor. For example,

Classification auery
Motion Dscrptr ig;zgpahge
Action Label Motion Dscrptr

m\/e/ Action Label
2D Skel et on

3D Skel eton

Skeleton Transfer  auey

Mbtion Dscrptr

Appear ance
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Figure 10.Skeleton Transfer. Given an input sequence (top row) we are able to recover rough joint locations by querying the action
database and retrieving the best-matching motion with the associated 2D/3D skeleton. Second row shows a 2D skeleton transferred from a
hand-marked database of joint locations. Third row demonstrates 3D skeleton transfer, which utilizes Motion Capture data rendered from

different viewing directions using a stick figure.

Figure 11.Do as | Do” Action Synthesis. The top row is a sequence of a “driver” actor, the bottom row is the synthesized sequence of
the “target” actor (one of the authors) performing the action of the “driver”.

LEFT LEFT RIGHT RIGHT LEFT LEFT SWING STAND RIGHT RIGHT

FAST sLow |_SWING BTAND g o Fast FAST |sLow SLOW  FAST

Figure 12.“Do As | Say” Action Synthesis. Shown are two frames from a synthesized video of a tennis player performing actions as
specified by the commands (at the bottom). For the full video, visit our website.
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