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Figure 1: The problem: (a) Input image. (b) Extracted skeleton of
localized joints and limbs. (c) Segmentation mask associated with
human figure.

Abstract

The goal of this work is to take an image such as the one in
Figure 1(a), detect a human figure, and localize his joints
and limbs (b) along with their associated pixel masks (c).
In this work we attempt to tackle this problem in a general
setting. The dataset we use is a collection of sports news
photographs of baseball players, varying dramatically in
pose and clothing. The approach that we take is to use seg-
mentation to guide our recognition algorithm to salient bits
of the image. We use this segmentation approach to build
limb and torso detectors, the outputs of which are assem-
bled into human figures. We present quantitative results on
torso localization, in addition to shortlisted full body con-
figurations.

1. Introduction
The goal of this work is to take an image such as the
one in Figure 1(a), detect a human figure, and localize his
joints and limbs (b) along with their associated pixel masks
(c). This problem is arguably the most difficult recogni-
tion problem in computer vision. Difficulties arising from
appearance variation due to clothing are compounded by
articulated deformation. Consider the people in Figure 2.
Their poses are notprobable, yet are definitelypossible.
Moreover, the appearance of their limbs varies rather dra-
matically between the different people. The ability to accu-

rately find people in images such as these would facilitate
many useful applications such as initializing 3D kinematic
trackers, understanding human actions, and re-rendering for
graphics.

The difficulties described above have led researchers to
simplify the problem, often using datasets of unclothed peo-
ple, or those processed with background subtraction from
video sequences. The range of variation in pose is usually
limited, and there is little or no background clutter.

In this work we attempt to tackle this problem in a more
general setting. The dataset we use is a collection of sports
news photographs of baseball players collected from the In-
ternet. The images selected are full body pictures of a sin-
gle player. These players are in a wide variety of poses,
are wearing different clothes that are often textured, and are
photographed outdoors under varying lighting conditions,
in natural, cluttered scenes.

The structure of this paper is as follows. In Section 2
we discuss related previous work. In section 3 we describe
our approach at a high level. Section 4 and 5 provides the
details of our algorithm. We discuss the positive aspects and
limitations of our method in section 6.

2. Related Work

Some of the earliest research related to this problem is the
pedestrian tracking work of Hogg [3]. A vast quantity of
work continued in this vein, using high degree-of-freedom
3D models of people, rendering them in the image plane,
and comparing them with image data. Gavrila [2] provides
a survey of this work. These approaches typically require
a hand-initialized first frame, and the large number of pa-
rameters in their models lead to difficult tracking problems
in high dimensional spaces. More recent developments in
pedestrian detection, such as Mohan et al. [7] and Viola et
al. [18], are fairly successful in detecting people in common
standing poses. However, these template-based window-
scanning approaches do not localize joint positions, and it
is not clear whether they generalize to finding people in ar-
bitrary poses.
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Figure 2: The challenge of unlikely pose

The complexities in 3D model-based tracking have led
researchers to pose the problem as one of matching to stored
2D exemplars. Toyama and Blake [16] used exemplars for
tracking people as 2D edge maps. Mori and Malik [8], and
Sullivan and Carlsson [14] directly address the problem we
are interested in. They stored sets of 2D exemplars upon
which joint locations have been marked. Joint locations
are transferred to novel images using shape matching. The
problem with such exemplar based approaches is the com-
binatorial explosion in the number of exemplars needed to
match a wide variety of poses. Shakhnarovich et al. [12] at-
tempt to address variation in pose and appearance through
brute force, using a variation of locality sensitive hashing
for speed to match upper body configurations of standing,
front facing people. It is not clear whether such an approach
will scale to handle a variety of poses such as those in Fig-
ure 2. One fundamental problem with the exemplar-based
methods is that they do not take full advantage of the salient
low-level cues.

Another family of approaches model people as an as-
sembly of parts. Typically a simple low-level detector is
applied to produce a set of candidate parts. Then a top-
down procedure makes inferences about the parts and finds
the best assembly. Song et al. [13] detect corner features
in video sequences and model their joint statistics using
tree-structured models. Felzenswalb and Huttenlocher [1]
score rectangles using either a fixed clothing model or sil-
houettes from background subtraction of video sequences
and then quickly find an optimal configuration using the dis-
tance transform to perform dynamic programming on the
canonical tree model. Ioffe and Forsyth [4] use a simple
rectangle detector to find candidates and assemble them by
sampling based on kinematic constraints.

The difficulty with the tree-based methods is that there
are dependencies among the body parts that cannot be cap-
tured by a tree. For example, there are anthropometric
constraints (we use data from [9]) on the relative scales of
the limbs. Symmetry in appearance between left and right
limbs, such as the arm in Figure 2(left) is another cue that
can’t be captured in a tree. Reasoning about self-occlusion
cannot be done either. Finally, in a tree model there is no
direct mechanism for preventing the reuse of image pixels.
An arm with a good low-level score could be labeled as both
the right and left arm.

Recently, there has appeared promising work exploring
the interplay between low-level cues and high-level knowl-
edge. The line of research by Torralba et al. [15] develops
relationships between local object detectors and the global
scene context. Others combine segmentation with recog-
nition, making more sophisticated uses of low-level cues.
Yu and Shi [19] add object-specific patch-based templates
into the Normalized Cuts framework. Tu et al. [17] com-
bine face and letter detectors with segmentation in the DD-
MCMC framework. However, most of these approaches are
tested on simple rigid objects and it is yet to be shown how
these frameworks handle complicated objects such as artic-
ulated human bodies in arbitrary poses.

3. Motivation and Approach
One classic approach to recognizing objects such as peo-
ple would be to model them as a collection of generalized
cylinders which one could aim to detect in a bottom-up ap-
proach (“ribbon finding”). These strategies were common
in the 1980s, but have fallen into disfavor in recent years.
The basic problem is that trying to reliably detect each part
individually is problematic (if not hopeless) in a real-world
setting. Zoom in on an image of a person’s arm and you will
find that it looks no different than a piece of grass, or a tree
trunk. But look at that same arm within its context (a hand,
a shoulder, a side of a torso), and it instantly becomes rec-
ognizable. That is, most low-level features are informative
only when considered within their context, which represents
the global information present in the scene. But, of course,
the context is made up of low-level features as well, leading
to a classic chicken-and-egg problem. How do we crack it?

Let us start with the few low-level features that are, in
fact, informative independent of the context. These features
usually represent parts that are salient, that stand out, having
enough information in themselves. This is akin to viewing
a modern painting, say a Picasso canvas from his Cubist
period: among a crowd of cubes a few salient shapes jump
out – an elbow, a hand, a face. We call themislands of
saliency. Starting from a set of these islands a viewer is
usually able to explain the rest of the picture by making
educated guesses based on context (“if that’s an elbow and
that’s a torso, then this line must be an arm”), in a sense,
bridging the islands of saliency. We operationalize this idea
by using a number of low-level pre-processing stages.

The low-level procedure gives us a collection of salient
parts, in our case torsos and “half-limbs” (upper and lower
legs or arms). Note that we expect this low-level process to
be noisy – many correct parts will not appear salient while
some salient parts will turn out to be wrong. All we need is
enoughgood, salient parts to jump-start our search. “Partial
configurations” consisting of a few half-limbs and a torso
are assembled from these salient parts. There is a combi-
natorial problem to determine which parts can be used to-
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Figure 3: Image analysis at the low-level: (a) Input image. (b) (c) Canny edges at two different scales. Texture on clothing and background
clutter pose severe problems for recognition. (d)pb (“probability of boundary”) image [6]. It handles high-frequency texture nicely. (e) A
Normalized Cuts segmentation withk = 40. Salient limbs pop out as single segments; head and torso consist of several segments. (f) A
“superpixel” map with200 superpixels. It captures all the details.

gether to form a partial configuration. We enforce global
constraints on human body configuration, namely relative
scales, positions and colors, to prune away impossible com-
binations. The remaining partial configurations are then ex-
tended to full human figures by searching for the missing
limbs. Full configurations are sorted using a combination
of their individual part scores.

A standard way to make use of low-level information is
applying the Canny edge detector. Figure 3(b,c) shows the
Canny edges of a sample image. In textured regions, sim-
ple edge detectors fire frequently, thus limiting their useful-
ness. In this work we use the boundary finder of Martin et
al. [6] (Figure 3(d)), which combines both brightness and
texture information to reduce clutter. Furthermore, we use
the Normalized Cuts algorithm [5] to group similar pixels
into regions. Figure 3(e) shows a segmentation with40 re-
gions. Many salient parts of the body pop out as single re-
gions, such as the legs and the lower arms. In addition, we
use over-segmentation, as shown in Figure 3(f), consisting
of a large number of small regions or “superpixels” [10],
which has been shown to retain virtually all structures in
real images. These segmentations dramatically reduce the
complexity of later stages of analysis, e.g., from400K pix-
els to200 superpixels. Figure 4 shows the data flow of our
complete algorithm.

We validate our approach in a number of ways. First, we
use hand-labeled images to evaluate the classification per-
formance of our half-limb detector, as well as the individ-
ual cues being used. Second, we evaluate the performance
of our segmentation-based torso detector, again using hand-
labeled joint positions, and compare it to an exemplar-based
detector. We then show how the salient half-limbs help
constrain the torso position. Finally, we present results on
recovering full body configurations from the salient parts.
The final scoring of full body configurations is a challeng-
ing problem of its own and is not dealt with in this work.
Instead, we return a shortlist of candidate body configura-
tions which should be evaluated by a separate procedure.
An added advantage of our segmentation-based approach is
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Figure 4: Data flow of the algorithm. First an image is segmented
into superpixels and relatively large regions or segments. We de-
tect salient upper and lower limbs from these segments. Simulta-
neously we detect potential head and torso positions. Both mod-
ules return a “shortlist” of top ranked candidates. We then com-
bine these parts into partial body configurations and prune away
impossible configurations by enforcing global constraints such as
relative scale and symmetry in clothing. In the final stage we com-
plete partial configurations by combinational search in the space
of superpixels to recover full body configurations.

that we have pixel masks assigned to limbs, which would
likely facilitate more accurate final scoring mechanisms.

4. Finding Body Parts
In this section, we describe our procedure for finding salient
half-limbs and torsos. First, image segmentation is used
to generate candidate segments. A set of low-level cues is
then computed to classify these segments. The procedure is
empirically validated using ground truth data.

4.1. Finding Limbs
As we observed in Figure 3(e), salient “half-limbs” often
pop out as a single segment. Hence we search among these
segments, generated by the Normalized Cuts algorithm with
k = 40, to find half-limbs. We classify these segments with
the set of cues defined below.

4.1.1 Cues for half-limb detection

The set of cues we use for half-limb detection are: contour,
shape, shading, and focus.

Contour Cue: The boundary contour cue measures how
salient the contour of a segment is and how well-separated it
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is from the background. We use the probability of boundary,
pb [6], to measure the goodness of a segment at the low-
level. The contour cue of a segment is the averagepb along
its boundary.

Shape Cue:We use a simplified model, namely a rect-
angle, to capture the basic shape characteristics of half-
limbs. For a segment, we estimate its size and its orientation
and construct a rectangle template with the estimates. The
shape cue is then the area of overlap between the segment
and this reconstructed rectangle. We experimented with
an exemplar-based approach, using Hausdorff distance to
match segments to5 exemplar half-limbs. The performance
is comparable to the simple rectangle model so that is what
was used for our final results.

Shading Cue: Because limbs are roughly cylindrical,
shading is often a salient cue, providing a strong sense of 3D
pop-out (e.g. thighs on Figure 1(a)). As can be seen from
Figure 5, the shading effect is present in many of the limbs,
though in a weak and noisy form, unsuitable for methods
like Shape-from-Shading. Instead, we capture this effect by
learning a coarseshading descriptorfrom the hand-labeled
limbs, and use it to score the potential limb regions. The
shading descriptor is constructed as follows: each segment
is first rotated and scaled into a standard 40x100 template
imageI using the major/minor axis of the best-fitting el-
lipse. FromI, gradient imagesIx andIy are computed and
half-wave rectified into four non-negative channelsI+

x , I−x ,
I+
y , I−y so thatIx = I+

x − I−x andIy = I+
y − I−y . The four

channels are then blurred with a Gaussian and stacked to-
gether into a single vector. To describe the shading pattern
on a prototypical limb, we compute a mean of all shading
descriptors in the training set (Figure 5). This mean shad-
ing descriptor is then compared with each new region using
normalized correlation to yield a shading score.

Focus Cue: The background sometimes lacks texture
or is out of focus. The lack of high-frequency information
(or energy) is usually an indication that the region is not of
interest. For the images of baseball players we work with,
this “focusness” is often a useful cue. We measure the focus
Cfocus by high-frequency energyEhigh normalized by low-
frequency energyElow, in the following form: Cfocus =
Ehigh/((Elow** a) + b). The energyEhigh andElow are
routinely estimated by convolving the image with odd and
even filters and combining their responses. The parameters
a andb are selected by cross-validation, with roughlya =
0.3 andb = 0.

Combining the Cues:The cues we have defined above
are not directly comparable to one another. We use a sig-
moid function to transform each cue into a probability-like
quantity and then combine them linearly. The weights are
learned through logistic regression, from the hand-marked
half-limbs (Figure 5).

4.1.2 Evaluating the Cues

Figure 6 shows the average number of detections for indi-
vidual cues and for the combined classifier. We find that the
contour cue, or the presence of a strong boundary contour,
is likely the most useful. The shading cue by itself is also
good. The shape cue is relatively poor, showing that the
rectangle model is not sufficient to capture the shape vari-
ations of half-limbs, especially the upper-limbs. The focus
cue, being crude and generic, is the worst. Nevertheless, the
four cues together make a good half-limb detector.

Another way to evaluate the performance of our classi-
fier is to look at the percentage of images which have at least
k half-limbs being detected. The results are shown in Fig-
ure 7. In our dataset89% of the images have at leastk = 3
correct half-limbs among the top8 candidates returned by
the trained detector. This motivates us to do a combinatorial
search for a triple of half-limbs to be combined with head
and torso.

4.1.3 Extending to Full Limbs

Given a half-limb we can instantiate a full-limb detector by
attempting to extend it in all possible directions by adding
a second rectangle at a joint of the first. Note that this ex-
tension is only done to all nearby superpixels, thereby re-
ducing the complexity of the search. The process of scoring
the second rectangle is done using a segmentation criterion
similar to that of [10].

S(R) =

∑
i∈R,j∈Rc W ext

ij∑
i∈R,j∈R W int

ij

W ext
ij = e−χ2(Ci,Cj)/σc+B(i,j)/σb

W int
ij = e−χ2(Ci,Cj)/σc

whereB(i, j) is the averagepb along the boundary between
superpixelsi andj. Essentially, this criterion is optimized
when the internal similarity of a region is high, while the
affinity to neighboring superpixels is low.

This extension search can be made more accurate if we
know the body part label (upper or lower leg, arm, etc.),
since we can be provided with constraints on the size and
appearance of the other half of the limb. Section 5 addresses
the constraining of this search.

4.2. Finding Torsos
Dominating in size and relatively rigid, the head/torso com-
bination has a characteristic shape. Connecting the other
parts together, the torso is also the most critical in recover-
ing the body configuration. To find the torsos, we again use
a segmentation-based approach. We test its performance
against an alternative approach based on exemplars. The
metric for success that we use in our quantitative experi-
ments is based on the proximity of the recovered torso joints
(hips and shoulders) to ground truth data.
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Figure 5: Hand-segmented limbs used
for training.
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Figure 6: Evaluating half-limb cues: we fix the num-
ber of top candidates generated for each image and
show the average number of half-limb detections for
individual cues and the linear classifier combining
all the cues. Among the top8 candidates, in average
there are4.08 true positive detections.
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Figure 7: Evaluating half-limb detection:
the percentage of images which have at least
k half-limbs being detected.89% of the
images have at least3 half-limbs being de-
tected among the top8 candidates.

4.2.1 Finding Torsos with Segmentations

We use the same Normalized Cuts segmentations to gen-
erate candidate torsos. Unlike half-limbs, a torso typically
consists of more than one segment. Given a segmentation,
we look for all combinations of segments which meet the
scale constraint, i.e., contained in a bounding box of suit-
able scale. We then classify these candidates with a similar
set of cues: contour, shape, and focus. The contour cue and
the focus cue are exactly the same as in the detection of
half-limbs. We again use a simple rectangle model for torso
shape. The shading cue is dropped in this case, as we do not
expect the torsos to have a characteristic shading pattern.

Putting Head and Torso Together:The segmentation-
based torso detector works well in finding the trunk of seg-
ments comprising the torso. However, we also need the ori-
entation of a torso to determine the shoulder and hip posi-
tions. There are a variety of poses in the baseball player
images, including some players lying parallel to the ground
plane. The orientation is difficult to estimate by torso itself.
For this we need to put head and torso together.

For each candidate torso and each orientation, we find
the best matching head. A candidate head consists of one
or a pair of segments. The same set of cues, contour, shape
and focus, are used to evaluate the score of a candidate head.
The shape model of the head is simply a disk, whose scale is
determined by the candidate torso. One obvious extension
is to add an off-the-shelf frontal face detector as further ev-
idence for the presence of a head. We have not done it here,
however, since it won’t be too useful on our dataset – most
players are either not looking at the camera or their faces
are obscured by their caps.

The torso score, the head score, and another simple score
for their relative positions (a Gaussian model learned from
hand-labeled data) are then multiplied into a score for the

head/torso combination, which specifies an orientation of
the torso and the joint positions of shoulders and hips.

We conducted experiments using 62 images of baseball
players from our set of sports news photographs. Ground
truth positions of the torso joints were marked by hand, a
recovered torso is deemed to be correct if all 4 torso joints
are within 60 pixels of true positions. The results of run-
ning the segmentation-based torso detector are shown on
Figure 8 (solid green line). For reference, the mean head
diameter in the images is about 50 pixels.

Comparing with Exemplar-based Approach: As fur-
ther evaluation of the segmentation-based torso detector, we
compare it with an earlier exemplar-based approach. The
exemplar-based torso detector is based on the work in [8].
We hand-label torso joint positions in a set of training im-
ages to be used as exemplars. Exemplars are represented as
collections of edges, obtained using the texture-suppressing
edge detector in [6]. We use the technique of representative
shape contexts to match test images to stored exemplars.
The shape contexts used in experiments have a rather large
spatial extent, with a radius of approximately1

3 of the height
of a person. Information from the configuration of the entire
body is being used in these descriptors.

For the exemplar-based torso detector, a leave-one-out
testing strategy was employed. For each test image, we
used the other 61 images as the exemplars for matching.
Results for this exemplar-based torso detector are shown on
Figure 8 (black line). It illustrates that with this set of exem-
plars we are unable to cope with the variation in appearance
among the different players.

5. Assembling Body Parts

Using the candidate limbs and torsos from the procedures
described above, we would like to generate a shortlist of
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Figure 8: Evaluating the torso finders: the X-axis is the number of
top candidate torsos (length of “shortlist”), the Y-axis the percent-
age of images of which we find a “correct” torso in these candi-
dates. A torso is “correct” if all the four joint positions of shoul-
ders and hips are within a threshold (1 to 1.5 head size) of the
ground truth. The segmentation-based detector outperforms the
exemplar-based detector, mainly because of the limited amount
of training data. The separately detected limbs provide signifi-
cant constraints for torsos: the combined segmentation-based limb
and torso detector performs the best. For 80% performance, the
exemplar-based method requires 18 torsos, the segmentation based
one 6, the combined limb and segmentation one 5. At 90% the
lengths are 29, 17, and 10.

possible complete body configurations. A simple method of
assembling configurations is to take each torso and indepen-
dently select the best limb to connect to the torso joints (hips
and shoulders) based on the limb detector outputs. This is
akin to the dynamic programming-based approaches used
in previous work.

However, there are dependencies between the limbs of
the body that would not be captured in such an approach.
Instead, we reason about which limb candidates can and can
not be used together, using constraints on relative widths
and lengths of limbs, and symmetry in clothing between
certain limbs.

5.1 Enforcing Global Constraints

From L candidate half-limbs andT candidate torsos, we
generate a set of partial body configurations. A partial
configuration consists of 3 of the candidate half-limbs (L
choose3)1, each fixed as one of the 8 body segments in
our model (8 · 7 · 6), along with one of theT torso candi-
dates. Once we have fixed candidate half-limbs to specific
body parts, we can instantiate the limb detectors described
above. Since each candidate half-limb also needs an as-
sociated “polarity” (e.g. for lower arm, wrist-to-elbow or

1The number 3 is chosen based on Figure 7.

elbow-to-wrist, so23), there are:(
L
3

)
· 8 · 7 · 6 · 23 · T

possible partial configurations. In our experiments,L is be-
tween5 and7, andT is about50, leading to2-3 million
partial configurations.

Of the millions of possible partial configurations enu-
merated above, many are physically impossible due to
their violation of global anthropometric and kinematic con-
straints. We can efficiently prune the set of partial config-
urations using these constraints while assuming scaled or-
thographic projection. The specific constraints we use are:

Relative widths: Projection leads to foreshortening of
the lengths of body segments. However, we are able to es-
timate the widths of the proposed candidate segments. We
use these estimated widths, along with anthropometric data
to prune combinations that have relative widths more than 4
standard deviations away from their estimated means.

Length given torso: We also assume that the torso is
not horribly foreshortened. In our experiments we assume
that the torso forms an angle with the image plane between
−40o and 40o. We estimate the length of the torso in
the image, then use this assumption and our data on rela-
tive lengths of segments in turn to yield conservative upper
bounds on the lengths of the limbs. Again we prune con-
figurations containing a limb 4 standard deviations greater
than its estimated mean length.

Adjacency: If a partial configuration contains an upper
limb, it must be adjacent to its corresponding joint on the
torso. Similarly, if both the upper and lower portions of a
limb are set, they must be adjacent at the elbow/knee. Fur-
thermore, given upper bounds on limb lengths as above,
constraints exist for solitary lower limbs as well. These
simple kinematic constraints are used to prune disconnected
partial configurations.

Symmetry in clothing: The final constraint we use is
that the color histograms (measured in Lab space) of corre-
sponding segments (e.g. left and right lower arms) must not
be wildly dissimilar (χ2 distance< 0.3). This often pre-
vents an arm to be matched to a piece of grass, for example.

Fixing 3 half-limbs to specific body parts activates some
subset of these constraints. For our experiments, we se-
lected a threshold for each of these pruning mechanisms
such that we reduce the original 2-3 million configurations
down to approximately 1000.

5.2 Sorting and Completing Configurations
After the pruning phase we have a set of partial body config-
urations, each consisting of a torso along with 2 or 3 limbs
(assembled from 3 half-limbs). With each of these configu-
rations, there are the outputs of the associated limb detectors
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Figure 9: Examples of top-ranked torsos.

and torso detectors. We assign the final score for a config-
uration to be a linear combination of these limb and torso
scores. The results of using this combined score as a new
torso detector are also shown in Figure 8 and Figure 9.

To go from partial configurations (with missing limbs)
to the full human figures, we search for entire limbs off
of empty torso joints. The resulting full configurations are
shown in Figure 1 and Figure 10. The configurations are
ordered by their combined limb and torso score. Figure 10
shows one selected entry (and its corresponding rank) on the
final shortlist of body configurations for each image. The
problem of automatically evaluating these shortlists of con-
figurations to find the correct one is a challenging problem,
and is not addressed here.

6. Discussion
In this work we have demonstrated how to use low-level
segmentation to drive recognition. Segments and superpix-
els generated by the Normalized Cuts algorithm are used to
propose candidates for limbs and torsos. These candidates
are then verified using a variety of cues. After that, finding
consistent body configurations becomes aConstraint Satis-
faction Problem[11]. While not pursued in this paper, it
would be straightforward to apply techniques from the AI
heuristic search literature (e.g., best-first search andA∗) to
reduce the computational complexity.

The problem of recovering human body configurations
in a general setting is arguably the most difficult recognition
problem in computer vision. By no means do we claim to
have solved it here; much work still remains to be done. An
approach such as ours, based on assembling configurations
from detected salient parts, has the advantage of “composi-
tionality” – there is no need to store templates for all possi-
ble configurations as in an exemplar-based approach. How-
ever, this modularity comes at a definite cost. Detecting and
localizing parts is more reliably done when provided with

the context that an entire exemplar gives. We believe that
combining these two approaches in a sensible manner is an
important topic for future work.
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Figure 10: Selected results from shortlist of final configurations. (a) Input image, (b) Candidate half-limbs, (c) Extracted body config-
urations, (d) Associated segmentation. One body configuration from the shortlist for each image is shown. Shortlist rankings for each
configuration, rows top to bottom: (1st,1st,11th,1st,18th,1st,3rd,3rd,1st)
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