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Abstract

We outline the development of a self-initializing kine-
matic tracker that automatically discovers its part appear-
ance models from a video sequence. Through its unique
combination of an existing global joint estimation tech-
nique and a robust physical deformation based local search
method, the tracker is demonstrated as a novel approach
to recovering 2D human joint locations and limb outlines
from video sequences. Appearance models are discovered
and employed through a novel use of the deformable organ-
isms framework which we have extended to the temporal
domain. Quantitative and qualitative results for a set of five
test videos are provided. The results demonstrate an overall
improvement in tracking performance and that the method
is relatively insensitive to initialization, an important con-
sideration in gradient descent-style search algorithms.

1 Introduction

The problem we address is that of recovering human
joint positions from video sequences. Once extracted, body
configurations and joint positions can be used for a vari-
ety of applications including motion capture, activity recog-
nition, and automatic movement/kinetic analysis of profes-
sional athletes. The interested reader is referred to [2, 12]
for a detailed review of techniques for solving the problem,
as well as the applications of its solution.

Our solution is similar to those based on rectangular part
tree models or cardboard people [6]. However, we employ a
type of active contour (deformable organisms) to latch to the
limb boundaries, thus obtaining more accurate appearance
models than one would with a rectangular approximation,
and enabling the use of a limb shape prior [1].

Deformable organisms, unlike traditional active con-
tour models [7, 17] do not rely on the minimization of

a single energy functional, but rather minimize a vari-
ety of energy functionals at various image locations and
model-fitting stages, based on dynamically-chosen and
anatomically-driven behavioral methods. Previously, how-
ever, deformable organisms have been restricted to static
images [4]. We extend deformable organisms to dynamic
images, and automatically optimize each deformable organ-
ism for the detection of a particular body part influenced by
both its own fit and that of its neighbors. The result is a
robust technique for recovering joint positions and delineat-
ing limb boundaries. The solution takes form as a set of
deformable organisms, with ‘brains’ that control, receive,
and filter image-derived sensory data and execute behav-
ioral routines in order to drive deformations designed to
conform to local body parts in the video sequence.

In addition, we use single frame detections to bootstrap
models of person appearance in video sequences. This strat-
egy is inspired by the work of Ramanan and Forsyth, [15]
who find typical poses to build rectangular limb appear-
ance models. By using deformable boundaries, in contrast
to fixed rectangular models, we are able to model shape,
boundary, and intensity information as opposed to intensity
information only. Sigal et al. [18] also use a related ap-
proach based on bottom-up part detectors. However, their
method is not applied to monocular image data. Similarly,
Zhang et al. [22] localize a piecewise-linear limb bound-
ary model using Sequential Monte Carlo to perform infer-
ence. Though they also perform a form of local search,
they initialize via part-detectors and guide the search in a
bottom-up fashion. In contrast, our method uses a whole-
body (top-down using exemplars) method to initialize a
local search. Furthermore, the local search procedure it-
self, deformable organisms, uses a top-down, knowledge
driven model-fitting strategy to complement traditionally
bottomup, data-driven deformable models.

The main contributions of this paper are: (i) the creation
of a self-initializing kinematic tracker which automatically



discovers part appearance models from a video sequence;
(ii) the unique use of a global (whole body) optimization
approach to the initialization problems that typically plague
deformable models; and (iii) the extension of deformable
organisms to dynamic data. The strengths of our method
are: (i) its relative insensitivity to initialization; (ii) its use
of deformable models for the development of a shape model
of each limb; and (iii) a strong approximation of its internal
intensity and texture distributions.

In this paper we provide a brief review of deformable or-
ganisms (Section 1.1), with an overview of their application
to joint recovery in 1.2. Section 2 provides details of the
method, with details of how pre-process the images, auto-
matically initialize obtain the limb models, and how we use
the limb models to perform tracking. Qualitative and quan-
titative results are provided in section 3. We conclude in
section 4.

1.1 Deformable Organisms

Artificial Life (AL) modeling concepts have been suc-
cessfully applied to the problem of producing life like com-
puter animations of biological organisms [19]. In 1994 ‘Ar-
tificial Fishes’ were introduced as a prime example, under
which each fish is controlled by a brain that utilizes a cog-
nitive decision process. It is capable of making these deci-
sions based on stimulus obtained from its surrounding en-
vironment, and carries out the decision through learned be-
havioral methods.

In 2001 Hamarneh et al applied AL modeling concepts
to the creation of geometrically based deformable organ-
isms (Figure 1) for medical image analysis [4]. They
created ‘self-aware’ organisms capable of searching for
anatomical structures within 2D images by following a
schedule of geometrically constrained deformations. In
later work they replaced the geometrical deformation layer
with that of a physically-based deformation layer [5], and
extended the approach to 3D [11, 10]. These deformable
organisms were capable of rejecting local minima through
the exploration of a localized parameter space, and the use
of anatomical knowledge.

This approach is carried out through a layered design,
where higher layers elicit control over the lower layers. Pro-
gressing from bottom to top: The geometrical layer is re-
sponsible for the shape of the organism; the physical layer
incorporates both internal and external physical forces engi-
neered to manipulate its geometry; the behavioral layer con-
tains the organism’s many possible actions, and issues the
actual commands to the muscle actuator systems; and the
cognitive layer is responsible for making decisions based
upon sensory input, current goals, and a pre-stored schedule
which may involve interaction with other organisms (Fig-
ure 1-b). For example, the deformable organism assigned

to segmenting the bicep, elicits control over the one seg-
menting the forearm, thereby maintaining connectivity and
reducing the parameter search space.

We adopt deformable organisms because they provide
a modular framework for modeling the geometrical con-
struction of shape models, implementing the model de-
formations, scheduling behaviors, obtaining local image
statistics, and making decisions (e.g .what/when to deform,
what/when to sense). Consequently, they enable the direct
implementation of high level intuitive ideas not easily pro-
vided by classical energy-minimizing deformable models or
region growers.

1.2 Deformable Organisms for Joint Posi-
tion Recovery

In this paper we demonstrate physically-based de-
formable organisms for the recovery of human joint posi-
tions and delineation of limb boundaries in video. What
follows is an overview of how deformable organisms are
applied to the joint position recovery problem.

Upon recovery of the joint position estimations (section
1.3), a part model recovery organism is placed in each frame
between successive pairs of joints (bicep, forearm, thigh,
calve) and at each end point (hand, foot). Each of these or-
ganisms optimize their respective search schedules (Section
2.2) in order to obtain limb appearance and shape models
which can be used to drive the search in other frames. We
refer to the combined appearance and shape model as a limb
model (LM). Hence, each person yields 12 LMs (Figure 1-
a). Given the LMs, new part finding organisms are placed
in each frame with the goal of locating the part described
by their respective LM (Section 2.3). Each of these organ-
isms in turn optimizes its schedule, yielding a refined esti-
mate of the joint positions in each frame. During this phase
the search is hierarchical in nature, whereunder the limb or-
ganisms are anatomically (kinematically) connected, and,
as such, moving one moves those connected to it.

In summary, we use the global view of shape contexts
to initialize a natural and hierarchical person model that
uses active contours to build localized shape and appearance
models of each limb (Algorithm 1). Thus addressing the ini-
tialization problems that typically plague deformable mod-
els, and gaining the benefit of limb-specific energy func-
tionals instead of a ‘one size fits all’ approach.

1.3 Initializing the Tracker

The deformable organisms are designed to carry out lo-
calized searches and consequently require another method
(known as a sensor in deformable organism terminology) to
process the image for a likely human position and configu-
ration. A method with a global view is chosen to emphasize
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Figure 1. An example deformable organism for people tracking. (a) A pre-processed novel image, the shape context position
estimates, a set of limb models, and a schedule are input into the cognitive center which then controls the shape deformations, which
in turn search the local space. Muscle actuations elicit deformations, while sensors detect image features to relay to the cognitive
center for future decisions. (b) Schedule used for refining joint position estimates (Adapted from [5]). Along each row are behaviors
with different parameters. In our application LM finding organisms (Section 2.2) are designed to take a different path than limb
finding organisms (Section 2.3). An example schedule operation is shown in (c), which performs a local search by translating the
model and estimating the cost of each location.

Algorithm 1 Human Limb Delineation and Joint Position Re-
covery Using Localized Boundary Models
Require: A sequence of |F | frames.
Ensure: Limb delineation and joint position recovery for all frames.

1: for f = 1 to |F | do
2: Compute joint position estimates E(f) using shape contexts

(See reference [13])
3: end for
4: Obtain the LMs (see algorithm 2)
5: Use the LMs to refine the estimates (see algorithm 3)

finding a structure that is topologically human in the global
body sense. That is to say, one with a likely configuration of
the joints given its shape. The pose estimation technique of
Mori and Malik [13], using exemplar-based matching with
shape contexts, meets these requirements.

Mori and Malik estimate human body configurations
through shape context-based matching of test images into a
database of stored views. Given a single 2D test image, their
method extracts both internal and external contours of the
body shape via canny edge detection and uses shape con-
texts in conjunction with a kinematic chain-based deforma-
tion model to compute similarity between the test input and

the model database. In order to avoid intractability in the
model database a part-based approach is applied wherein
deformation scores are obtained for each limb on the model
instead of only the model itself. A weighted sum of both
Euclidean distance and shape context scores yields the final
matching score for each limb. Finally, the matched model is
used to infer joint locations on the input image. In this paper
we have used their method to initialize our AL models.

2 Methods

In this section we provide details of the image prepro-
cessing steps required to construct the LMs, the deformable
organisms designed to obtain those models, and the de-
formable organisms designed to locate the respective limbs
in new frames.

2.1 Sensors: Color and Texture Classified
Images

In deformable organism frameworks, image features are
captured and processed through sensors [4]. Throughout
their execution cycles our deformable organisms require



Algorithm 2 Obtaining the LMs
Require: A sequence of |F | frames.
Ensure: A set of LMs, one for each limb visible in F .

1: Learn color and texture clusters (Section 2.1)
2: for f = 1 to |F | do
3: Compute gradients (Section 2.2)
4: for Each limb (bicep, forearm, hand, thigh, calve, foot) do
5: Initialize a rectangular, medial-axis based deformable organism at the locations provided by E(f) (Algorithm 1).
6: Search: deform to image gradients while monitoring image statistics within the organism’s boundary
7: Build a LM at the obtained position (color histogram, texture histogram, intensity variance, thickness, length)
8: end for
9: end for

10: for each limb do
11: Compute inter-organism texture histogram distance
12: Sort the organisms by their average distance and average the top 5 to obtain the final LM
13: end for

sensory input in the form of color and texture classified im-
ages in order to construct their respective histogram models.

We first convert images to L*a*b space. Then, to avoid
the sparsity and computational complexity related problems
often associated with 3D color histograms, we use k-means
to perform dimensionality reduction.

Texture classified images are obtained through a similar
method [9]. RGB images are first converted to gray-scale
and then convolved with the MR8 filter bank-a set of 38
L1 normalized filters consisting of 18 odd-symmetric filters,
18 even-symmetric filters, and 2 radially-symmetric filters
[20]. Then α filter response vectors in R38 are passed into
k-means in order to learn a set of texture descriptors, or
‘textons’, where α is the number of sampled filter responses
per image (8500 in all results for this paper).

We equip each deformable organism with sensors de-
signed to monitor the image intensity along with classified
color and texture measurements located within their respec-
tive boundaries. Through these sensors the organism will
estimate the goodness of its fit at each stage of the search
phase. At the end of each behavior (Figure 1-c) it will then
decide the correct location from the set of examined loca-
tions by maximizing equation 4, before proceeding to the
next phase (block) of the search schedule.

2.2 Obtaining the Limb Models

In order to carry out the recovery process a part model,
to be used over the entire video sequence, must be auto-
matically obtained for each part: biceps, forearms, hands,
thighs, calves, and feet. A set of such models are shown
overlayed in figure 2. Each limb has a medial axis with
flexible thickness springs connecting to the boundary nodes,
which are in-turn connected by stiffer boundary springs de-
signed to enforce a level of smoothness (Figure 1-a). Dur-
ing this phase the organisms have no prior-knowledge, and,
consequently, trust heavily in the shape context by using a
restricted search space just large enough to correct for small
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Figure 2. Automatically obtained LMs for one person in
the test set. Each image shows a particular LM overlayed
with red nodes and black springs.

errors in the joint position estimations. The schedule for
these organisms consists of two main steps, the first is a re-
stricted local search using small translation (±15 pixels in
a direction orthogonal to the medial axis) and rotation de-
formations (±15◦ around the medial axis) as defined in [5]
which minimize variance in luminance, and the second is a
gradient based deformation designed to conform to the limb
(Algorithm 2).

In order to carry out the physics-based deformations [5],
an image force must be chosen and applied to the model.
Previously, deformable organisms have been restricted to
scalar images. However, in this work we extend them to
take advantage of color information as follows:

1. RGB input images are first converted to L*a*b color
space.

2. A color gradient is computed as in [8]. Specifically,



Algorithm 3 Using the LMs to refine joint position estimates and segment boundaries
Require: A sequence of |F | frames, and a set of LMs LM .
Ensure: Refined joint positions and limb boundaries.

1: for f = 1 to |F | do
2: Obtain color texture classified images
3: Compute gradient image (Section 2.2)
4: Run shape contexts to obtain joint position estimates (See reference [13])
5: for l = 1 to |LM | do
6: Create a new organism with its thickness, length and appearance model described by LM(l)
7: if f = 1 then
8: Use shape context result E(f) (Algorithm 1)
9: else

10: Use average of shape context result E(f) (Algorithm 1) and refined estimate from f − 1
11: end if
12: Search: deform to image gradients while monitoring image statistics within the organism’s boundary. (Algorithm 4).
13: end for
14: end for

Algorithm 4 The local search algorithm
Require: A frame f , and LM l.
Ensure: Refined joint positions and limb boundaries.

1: While deforming to image gradient
2: Hierarchically translate horizontally, translate vertically, and rotate

(Figure 1-c)
3: for top 5% of results rotate do
4: Rotate lowest two limbs only (e.g. forearm, hand)
5: end for
6: Decide best location
7: Perform final hierarchical rotation
8: for top 5% of results do
9: Rotate lowest two limbs only (e.g. forearm, hand)

10: end for
11: Perform final hierarchical translation
12: for top 5% of results rotate do
13: Rotate lowest two limbs only (e.g. forearm, hand)
14: end for
15: Decide final location and store for use in next frame

each color channel is differentiated with respect to x
and y, then stacked in a matrix D

D =




∂L/∂x ∂L/∂y
∂a/∂x ∂a/∂y
∂b/∂x ∂b/∂y


 DT D =

[
p t
t q

]

λ = 1
2

(
p + q +

√
(p + q)2 − 4(pq − t2)

)

(1)

The magnitude of the gradient M is then taken as λ,
the largest eigenvalue of DDT .

3. We then carry out a type of gradient diffusion pro-
cess to obtain a gradient vector field that directly ap-
proximates the gradient in high magnitude areas and
smoothly declines in lower valued regions using the
method proposed in [21].

Once each limb is roughly segmented across the set of
frames, a decision must be made as to which LM for each

part is optimal. It is important to note here that these LMs
will then be used to segment the entire frame sequence (sec-
tion 2.3). The organism’s decision function minimizes the
intra-class distance for each LM type (calve, forearm, bi-
cep, etc.). First it calculates the texture histograms for each
organism in the class. Then for each limb the intra-class
distances amongst all the organisms of that limb type is cal-
culated using earth movers distance (EMD). Finally, the top
five models’ thickness, length, histogram and intensity vari-
ance are averaged to remove minor fluctuations. We then
build the LMs by calculating probability density functions
(PDF) (normalized histograms) for both classified intensity
and texture. As we will eventually calculate a log probabil-
ity (Equation 4), we add ε = 0.01 to each PDF to ensure
that no zero entries are present. The number of bins in each
histogram is set equal to the total number of classes, and
hence hard binning is used.

2.3 Joint Position Refinement: Using the
Limb Models

With a LM for each part obtained, a new set of de-
formable organisms is employed to find their respective
parts in each new frame. Here the search is conducted using
an average between the last frames recovered joint position
and the current frame’s shape contexts as input. Since these
organisms posses much greater certainties of their targets
then their model-finding counterparts (Section 2.2) larger
translation (±20 pixels in a direction orthogonal to the me-
dial axis) and rotation deformations (±45◦ around the me-
dial axis) are performed to increase the search space. The
amount of each deformation is chosen to reflect the rela-
tively small variation in joint position between frames of
walking people, and the range of error typically incurred by
the shape contexts. The search phase is hierarchical [14],
starting with larger parts (biceps, thighs) and working its
way down to smaller ones (feet, hands).



During this process the organisms monitor distances
between their obtained color, texture histograms and the
model’s histograms. At each step the configuration with the
least distance is chosen. We experimented with both EMD
and χ2 distance, before settling on a probabilistic approach
(motivated by results shown in [16]):

log(P (L|C)) = log(P (C|L)P (L)
P (C) ) ∝ log(

N∏
i=1

P (Ci|L))

∝
N∑

i=1

log P (Ci|L)

(2)
where log P (L|C) is the color cost term with L for a partic-
ular limb and Ci a particular color learned using k-means.
log P (L|T ) would be similarly defined, with Ti for a par-
ticular texton. i ranges from one to N as it sums over all
pixels contained within the boundary of the organism be-
ing evaluated. Here we have taken P (C) as a normalizing
constant, assumed P (L) to be a uniform distribution, and
assumed individual colour/texture distributions to be inde-
pendent given limb position. Essentially at each point dur-
ing the search phase we measure the amount of evidence
demonstrated by the pixels within the deformable organ-
isms’s boundary. Additional cost terms based on inten-
sity variance, and expected start/end point limb position and
shape are given by

v =
∣∣∣∣Ev −

N∑
i=1

(I(xi, yi)− µ)2
∣∣∣∣

s = 1
M

M∑
j=1

|Etj −Otj |
pstart = |Elstart −Ostart|
pend = |Elend −Oend|

(3)

where Ev is the expected intensity variance, I the lumi-
nance image of the current frame and µ its mean within
the boundary of enclosed by the shape model. Etj and
Otj are the expected and measured thickness at medial
nodes 1...M . Elstart, Elend, Ostart, and Oend are the ex-
pected/obtained position of the start/end medial node (e.g.
top/bottom of bicep). In all cases the expected values are
those represented by the LMs, except for Elstart, and Elend

which are equal to the initialized location of the model. Fi-
nally, the fit term we seek to maximize is a sum of all pro-
vided terms.

fit = α log (P (L|C)) + β log (P (L|T )) + γv + λs
+χpstart + ωpend

(4)
where α, β, γ, λ, χ, and ω are weighting constants whose
sum must equal one. For all results in this paper their values
are 0.14, 0.28, 0.105, 0.175, 0.09, and 0.21, reflecting what
we found to be their relative levels of importance/relability

by qualitatively examining the feature images. It is impor-
tant to note that the final fitness is also hierarchical. For
example, the fitness for a bicep is actually its own fitness
plus the fitness of the best forearm it yields, plus the fitness
of the best hand implied by that forearm (Algorithm 3).
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Figure 3. Results of our method on frames from three dif-
ferent videos. Boundary delineation is shown in red, with
green circles indicating recovered joint positions, and yel-
low points for shape context based initialization positions.
The first two images on the third row show a significant
improvement over the shape contexts, while the 4th row
demonstrates the methods ability to handle cases with an
exceptionally unclear boundary between the arm and the
torso.

3 Results

We provide quantitative and qualitative analysis of our
approach through comparison made to the original shape
context method on 5 video sequences each consisting of 30
frames of the CMU MoBo dataset [3]. We set k = 80 for



1 2 4 5 6 9 10 11 12 13 14
04011 25.4± 22 17.4± 14 10.4± 6 10.8± 6 10.8± 5 15.1± 9 12.4± 9 14.4± 12 9.2± 7 10.0± 7 18.1± 14
04011 29.2± 21 17.0± 13 14.0± 7 17.0± 10 24.9± 16 16.8± 7 18.3± 10 18.8± 14 16.3± 8 13.9± 11 13.7± 10

04013 29.1± 27 18.7± 17 14.3± 9 20.2± 11 29.9± 10 20.9± 10 10.9± 8 16.3± 23 15.1± 6 8.1± 4 12.1± 8
04013 33.5± 28 20.0± 17 12.3± 13 19.0± 16 27.3± 21 14.8± 8 14.1± 8 19.2± 22 14.6± 6 11.7± 6 14.8± 21

04068 27.5± 25 19.1± 15 11.9± 5 17.9± 6 16.0± 9 14.5± 8 9.6± 8 11.7± 8 14.7± 7 7.5± 4 9.4± 5
04068 27.7± 24 19.8± 14 13.1± 9 24.1± 12 27.8± 37 15.1± 9 21.8± 29 24.5± 46 15.4± 10 20.1± 31 25.4± 51

04070 44.5± 34 25.7± 14 18.8± 10 15.5± 11 13.7± 13 20.8± 11 17.8± 9 23.5± 10 27.4± 11 33.0± 12 45.3± 13
04070 44.7± 34 23.6± 16 17.6± 11 30.7± 30 42.6± 41 24.4± 14 33.7± 30 45.6± 49 24.8± 12 32.9± 29 47.0± 52

04071 50.9± 39 14.0± 9 13.3± 6 20.1± 17 15.1± 8 23.5± 14 13.1± 6 14.7± 8 22.6± 11 12.1± 7 10.5± 6
04071 29.7± 31 13.4± 12 17.7± 9 21.0± 13 25.8± 24 16.1± 10 21.6± 23 22.4± 37 14.3± 10 18.6± 18 23.8± 39

Table 1. MoBo database sequence numbers versus joint position numbers. Each cell shows error obtained by our proposed method
(top) over the shape contexts (bottom) error. Results are averaged across frames , and standard deviations are provided. Error is
measured as the Euclidean distance in pixels between the estimated joint position and its correct location. Here joint positions are
ordered (from 1 to 14) as: right hand, elbow, and shoulder. Left shoulder, elbow, and hand. Head, and waist. Right hip, knee and
foot. Left hip, knee and foot. As illustrated in Figure 1

color and k = 100 for texture classification using k-means.
We observed that 80 colors were sufficient to capture the
amount of color variation present in our images, and esti-
mated 10 textons per texture and at most 10 textures per
person (skin, shirt, pants, shoes, hair, etc.). As shown in ta-
ble 1 our method obtains significantly improved results over
the initializations provided by shape contexts when mea-
sured against labeled ground truth data. Though it has a
harder time with some of the right-side limbs. Specifically,
the right forearm is troublesome since it is only visible for
a few frames which gives the organism less time to build a
model and fewer opportunities to improve on the shape con-
text results. The right leg, however, despite heavy occlusion
tracks remarkably well (see supplementary videos), as does
the left bicep despite the lack of any strong border when it
occludes the body (Bottom row figure 3). Qualitative re-
sults for a few frames of four of the segmented videos are
shown in figure 3. Our methods robustness to initialization
is demonstrated in figure 3’s third row. The 4th row demon-
strates the methods ability to handle cases with an excep-
tionally unclear boundary between the arm and the torso.
The algorithm takes approximately one to two minutes per
frame in Matlab on a 3.0Ghz machine.

4 Conclusions

We have developed a self-initializing kinematic tracker
which automatically discovers part appearance models from
a video sequence. Application to the recovery of human
joint positions and boundaries in video sequences of walk-
ing people was presented, through the unique combination
of globally optimal (whole body) shape contexts with lo-
cally optimal (per limb) deformable organisms. With the

addition of a scale deformation the method could be read-
ily extended to handle activities where the size of limbs
changes over time. Our use of deformable models enables
the development of a shape model of each limb, and a strong
approximation of its internal intensity distributions. We
have extended deformable organisms to the temporal do-
main, thereby creating dynamic deformable organisms. Fi-
nally we have shown our method is able to refine the ini-
tial joint position estimates obtained with the original shape
context technique, and is relatively insensitive to initializa-
tion, an important consideration in gradient descent-style
search algorithms.
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