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Abstract

Search by object model — 3nding an object inside a target image — is a desirable and yet di4cult mechanism for
querying multi-media data. An added di4culty is that objects can be photographed under di8erent lighting conditions.
While human vision has color constancy, an invariant processing, presumably, here we seek only covariant processing
and look to recover such lighting change. Making use of feature-consistent locales in an image we develop a scene
partition by localization, rather than by image segmentation. A diagonal model for illumination change and a voting
scheme in chromaticity space provide a candidate set of lighting change coe4cients for covariant image transformation.
For each pair of coe4cients, Elastic Correlation, a form of correlation of locale colors, is performed along with a least
squares minimization for pose estimation. Since the rotation, scale and translation parameters are thus estimated, we
can apply an e4cient process of texture support and shape veri3cation. Tests on an image and video database of about
1500 images show an average recall and precision of over 70%. ? 2002 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Content-based image and video retrieval [1–3]
depends on feature extraction, and typically multiple
feature matching results are combined using a linear con-
straint model [4]. Types of visual features searched for
include image color histograms [5], image texture [6–9],
shape [10], motion trajectories in videos [3], and so on.

Illumination change can severely hinder color- and
even texture-based search methods. Drew et al. [11] used
a diagonal model for illumination change. Motivated by
this model, images are illumination normalized by divi-
ding each RGB color channel by the mean over the entire
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image. The normalized images are converted to chro-
maticity space, wavelet 3ltered, and DCT compressed to
a 36-vector. This type of metric is meant to be illumina-
tion color invariant. This makes sense for whole-image
comparisons, but here we wish to seek instances of a
model within an image — a search by object model —
so image normalization is ruled out. Instead, we recog-
nize that pixel values for the object sought may change
drastically and attempt to explicitly recover the light-
ing color change, and the pixel color shift — we desire
an illumination color covariant method rather than an
invariant one.

Healey and Wang [9] represented color texture using
spatial correlation functions within and between sensor
bands. Using the correlation functions, a correlation ma-
trix is de3ned, and it was shown that two correlation
matrices are related by a linear transform. After singular
value decomposition (SVD), a second texture correlation
matrix was projected to compute basis correspondence.
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Jain et al. [12] used deformable templates to retrieve
images. Deformation transformations with associated
distributions were de3ned for prototype templates, and
using Bayesian probability a multi-resolution parameter
search was used to minimize the objective function.
Such search method is object-based since it tries to
identify a particular object description irrespective of its
surroundings. Unfortunately, the database has to either
consist of manually extracted object boundaries, or there
is an exhaustive search for the template in an image;
this is infeasible for an image and video database in
real-time.

In order to achieve reasonable search speed, some
form of object segmentation is required so that object
features can be retrieved during preprocessing (o8-line)
and stored in the database for matching. It is likely that
a perfect image segmentation is impossible to attain
[13,14]. Content-based retrieval can be achieved with
a more relaxed form of image segmentation [14], with
fuzzy similarity measure. The Blob-world system [15]
allows object query by the user selecting an image region
(query-by-example). Image segmentation uses polar-
ity, anisotropy and normalized texture contrast for each
pixel, and color in L∗a∗b∗ space. Pixels are grouped
assuming a mixture of Gaussians model, and the max-
imum likelihood parameters are determined using the
expectation–maximization algorithm for K regions. The
method depends on an intermediate complete image seg-
mentation step. The precision=recall curves reported on
average range from 20–80% precision for recall less than
10%, and drop to 5–20% precision for recall of 20%.
In the VideoQ system [3], the user sketches a query ob-
ject with color, texture, shape and trajectory parameters
(query-by-sketch). For a video, an initial frame is color
quantized in CIE-LUV color space, and color segmented
regions are projected to the next frame using estimated
motion parameters. Color segmentation is accomplished
by joining adjacent regions of close colors. Regions are
searched and matched using the color, the three Tamura
texture parameters, the principle components of the
shape and the motion trails. The algorithm uses temporal
consistency to re3ne the object segmentation. For test
queries, the precision ranges from 20–100% for recall
less than 50%, and is around 25% for higher recall.

In our C-BIRD (content-based image retrieval
from digital libraries) system [16], we employ the
query-by-example regime. Image features are coarsely
localized into locales for the purpose of object-based
retrieval. Localization is not segmentation: locales can
be overlapped and=or non-connected, and the set of all
locales does not have to include all image pixels. Lo-
cales are constructed using pixel blocks called tiles, and
yet they contain pixel-level color, geometry and texture
statistics. Object-based image retrieval is accomplished
via real-time localization of the user-selected object
model, and matching to the image locales stored in the

database. For color covariance, illumination change can
be recovered using a least square error (LSE) mini-
mization for illuminant chromaticity shift under a given
locale assignment [17]. For this approach, it is neces-
sary to enumerate every possible assignment of model
locales to image locales. Evaluating the feasibility of
all the possible assignments takes signi3cant processing
time, and is not adequate for online search engines.

In order to reduce the number of assignments, we 3rst
obtain a set of estimates for chromaticity shift (or chroma
shift for short) from an image illumination to a model
illumination using a voting scheme in the chroma shift
space. We then apply a form of chromaticity correlation
called elastic correlation that evaluates the chroma shift
estimates for generating an assignment. The very few
assignments that pass this strict preselection screen are
passed to a pose estimation screen and search speed is
improved dramatically. Pose estimation is followed by
histogram intersection on the locale texture, and 3nally
a generalized Hough transform (GHT) [18] in the target
image.

In Section 2 we describe the process of feature lo-
calization, and in Section 3 describe our search method.
Section 4 presents a technique to compensate for illumi-
nation change so as to carry out a color covariant search,
and Section 5 shows results of object retrieval from the
C-BIRD database both without and with illumination co-
variant search, and also shows results for recovery of
lighting change.

2. Locale-based object representation

2.1. Feature localization vs. image segmentation

For image segmentation (cf. [19]): If R is a segmented
region,

1. R is usually connected; all pixels in R are connected
(8-connected or 4-connected).

2. Ri ∩ Rj =�; i �= j; regions are disjoint.
3.

⋃n
i=1 Ri = I , where I is the entire image; the segmen-

tation is complete.

Object retrieval algorithms based on image segmen-
tation permit imprecise regions by allowing a toler-
ance on the region matching measure. This accounts
for small imprecision in the segmentation, but not for
over-=under-segmentation, which can be attributed to the
pixel-level approach. This works only for simpli3ed im-
ages where object pixels have statistics that are position
invariant.

We argue that a more e8ective and attainable process
than image segmentation is a coarse localization of image
features based on proximity and compactness.
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Fig. 1. Locales for localization.

De�nition 1. A locale Lf is a local enclosure of fea-
ture f.

A locale Lf uses blocks of pixels called tiles as its
positioning units, and has the following descriptors:

1. Envelope Lf — a set of tiles representing the locality
of Lf.

2. Geometric parameters — massM (Lf)= count of the

pixels having feature f; centroid C(Lf)=
∑M (Lf)

i=1

Pi=M (Lf), and eccentricity E(Lf)=
∑M (Lf)

i=1 ||Pi −
C(Lf)||2=M (Lf).

3. Color, texture, and shape parameters of the locale. For
example, locale chromaticity color and locale texture
histogram.

Initially, an image is subdivided into square tiles (e.g.,
8×8 or 16×16). While pixel is the building unit for image
segmentation, tile is the building unit for feature localiza-
tion. Tiles group pixels with similar features within their
extent, and are said to have feature f if enough pixels in
them have feature f (e.g., 10%). Tiles are necessary for
good estimation of initial object-level statistics and repre-
sentation of multiple features at the same location. How-
ever, locale geometric parameters are measured in pix-
els, not tiles. This preserves feature granularity. Hence,
feature localization is not merely a reduced-resolution
variation on image segmentation.

After a feature localization process the following can
be true:

1. ∃f :Lf is not connected.
2. ∃f∃ g :Lf∩Lg �=�; f �= g; locales are non-disjoint.
3.

⋃
f Lf �= I , non-completeness; not all image pixels

are represented.

Fig. 1 shows a sketch of two locales for color red, and
one locale for color blue. The links represent an associa-
tion with an envelop, which demonstrates that locales do
not have to be connected, disjoint or complete, yet colors
are still localized.

2.2. Dominant color enhancement

To localize on color, we 3rst remove noise and blurring
by restoring colors smoothed out during image acquisi-
tion. First, the image is converted from RGB color space
to a chromaticity-luminance color space. For a pixel with
color (R;G; B), we de3ne

I =R + G + B; r =R=I; g=G=I; (1)

where the luminance I is separated from the chromaticity
(r; g).

Prior to the creation of tiles, image pixels are classi3ed
as having either dominant color or transitional color.
Pixels are classi3ed dominant or transitional by examin-
ing their neighborhood.

De�nition 2. Dominant colors are pixel colors that do
not lie on a slope of color change in their pixel neigh-
borhood. Transitional colors do.

If a pixel does not have su4cient number of neighbors
with similar color values within a threshold, it is consid-
ered noise and also classi3ed as transitional.

Enhancing the uniformity of the dominant colors is
accomplished by smoothing the dominant pixels only,
using a 5× 5 average 3lter, with the exception that only
dominant pixels that have similar color are averaged.

2.3. Tile generation

Tiles have a tile feature list of all the color features
associated with a tile and their geometrical statistics. On
the 3rst pass, dominant pixels are added to the tile feature
list. For each pixel added, if the color is close to a feature
on the list within the luminance-chromaticity thresholds,
then the color and the geometrical statistics for the feature
are updated. Otherwise, a new color feature is added to
the list. This feature list is referred to as the dominant
feature list.

On the second pass, all transitional colors are added to
the dominant feature list without modifying the color, yet
updating the geometrical statistics. To determine which
dominant feature list node the transitional pixel should
merge to,we examine the neighborhood of the transitional
pixel and 3nd the closest color that is well represented in
the neighborhood. If an associated dominant color does
not exist, it is necessary to create a second transitional
feature list and add the transitional color to it.

The dominant color (ri; gi; Ii) that is taken on by a tran-
sitional pixel tp having color (r; g; I) satis3es the follow-
ing minimization:
nc

min
i=1

∥∥∥∥
(

r
g

)
−

(
ri
gi

)∥∥∥∥
/

F(ri; gi; Ii): (2)

The parameter nc is the number of non-similar colors
in the neighborhood of the tp. Similar colors are aver-
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aged to generate the (ri; gi; Ii) colors. F(ri; gi; Ii) is the
frequency of the ith average color, or in other words
it is the number of similar colors averaged to generate
color i. The color that minimizes this equation is the best
compromise for dominant color selection for tp in terms
of color similarity and number of similar colors in the
neighborhood. The neighborhood size was chosen to be
5 × 5 in our implementation.

When all pixels have been added to the tiles, the dom-
inant and transitional color feature lists are merged. If
a transitional list node is close in color to a dominant
list node, the geometrical statistics for the merged node
are updated, but only the color from the dominant list is
preserved. Otherwise, the nodes from both lists are just
concatenated onto the joint list.

2.4. Locale growing

Locales are generated using a dynamic 4 × 4 over-
lapped pyramid linking procedure [20]. On each level
parent nodes compete for inclusion of child nodes in a
fair competition. Image tiles are the bottom-level child
nodes of the pyramid, and locales are generated for the
entire image when the competition propagates to the top
level. The top-level pyramid node has a list of color fea-
tures with associated envelopes (collections of tiles) and
geometrical statistics.

Competition on each level is initialized by using a 2×2
non-overlapped linkage structure where four child nodes
are linked with a single parent node. Merging of child
nodes onto a parent node is accomplished via merging
their color feature lists and updating the statistics if neces-
sary. As each child node cn is merged to the parent node
pn, the color feature list of the child node c is merged to
the color feature list of the parent node p. Node j in c is
merged to node i in p with similar color if the merged
statistics have E(p[i])¡�, where � is a threshold nor-
malized against M (p[i]). Otherwise, a new color feature
node is created on p. The initialization proceeds as in
procedure LocalesInit.

LocalesInit: Pseudo-code for Linkage Initialization
Let c[nx][ny] be the 2D array of child nodes.
Let p[nx=2][ny=2] be the 2D array of parent nodes.
For each child node c[i][j] do

Let cn= c[i][j] and pn=p[i=2][j=2].
For each node cnp in the feature list of cn do

Find node pnq in the feature list of pn that
has similar color.

If the merged eccentricity of cnp and pnq has
E¡� then
Merge cnp and pnq.

If pnq doesn’t exist or E¿= � then
Add cnp to the start of the feature list

of pn.
End Procedure

After the pyramid linkage initialization the competition
begins. Since a 4 × 4 overlapped pyramid structure is
used, there are four parents competing for linkage with
the child, one of which is already linked to it. Node j in
c will merge to node i in p if the colors are similar, the
merged statistics have E(p[i])¡�, and the Euclidean
distance d(i; j)= ||C(p[i]) − C(c[j])|| is the minimum
over all possible nodes from all four parents. Accord-
ing to the spatial continuity principle, the geometrically
closest parent node to the child node is most likely to
be the locale of the child node. However, we still make
sure that the merged locale’s eccentricity can describe a
plausible color localization. All the geometrical statistics
updates are done in parallel, so that at the end of this
competition cycle the parent–child linkage might not be
optimal. Therefore, the competition cycle is iterated un-
til there is no more change in parent–child linkage. This
process is illustrated by the pseudo-code in procedure
EnvelopeGrowing.

EnvelopeGrowing: Procedure for Locale Creation
Let c[nx][ny] be the 2D array of child nodes.
Let p[nx=2][ny=2] be the 2D array of parent nodes.
Repeat until parent--child linkage does not
change anymore

For each child node c[i][j] do
Let cn= c[i][j] and pn∈p[(i ± 1)=2][(j ± 1)=2]
For each node cnp in the feature list of cn do

Find node pnq in the feature lists of pn
that has similar color
and minimizes the distance ||C(cnp)−
C(pnq)||

If the merged eccentricity of cnp and pnq

has E¡� then
Swap the linkage of cnp to its parent

to pnq.
Update the associated geometrical
statistics.

In the parent feature list p remove empty nodes.
Go up a level in the pyramid and repeat the

procedure
End Procedure

After the pyramidal linking is done locales having
small mass are removed since small locales are not accu-
rate enough, and are likely either an insigni3cant part of
an object, or noise. Locales are also sorted according to
decreasing mass size in order to increase the e4ciency
of the search.

The color update equation for parent locale j and child
locale i at iteration k + 1 is

(r(k+1)
j ; g(k+1)

j ; I (k+1)
j )T

=
(r(k)

j ; g(k)
j ; I (k)

j )TM (k)
j + (r(k)

i ; g(k)
i ; I (k)

i )TM (k)
i

M (k)
j + M (k)

i

(3)
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and the update equations for the geometrical statistics are

M (k+1)
j =M (k)

j + M (k)
i ; (4)

C(k+1)
j =

C(k)
j M (k)

j + C(k)
i M (k)

i

M (k+1)
j

; (5)

E(k+1)
j

=
(E(k)

j +C(k)2

x; j +C(k)2

y; j )M (k)
j +(E(k)

i +C(k)2

x; i +C(k)2

y; i )M (k)
i

M (k+1)
j

−C(k+1)2

x; j − C(k+1)2

y; j : (6)

The updates are done using the intermediate sums∑M (k)

i=1 Pi for centroid update and
∑M (k)

i=1 P2
x; i + P2

y; i for
eccentricity update. Note that both removing and adding
nodes are possible using these equations with the same
ease.

The competition criterion of geometric proximity guar-
antees termination of the linking procedure since at every
cycle the overall distance between centroids decreases.
In practice, most images require less than ten competi-
tion cycles to converge at every pyramid level. Though
the competition criterion is geometric proximity, feature
merging is based on eccentricity. This is preferable to
using proximity since we can model the allowable shape
of a feature much better using eccentricity than by using
centroid distances.

2.5. Texture analysis

Every locale is also associated with a locale-based
texture histogram. We construct a 2D texture histogram
based on directionality � and edge separation �. We use
a locale-dependent threshold in generating the edgemap
by examining the histogram of the locale edge magni-
tudes.

Edge separation � is also measured separately for each
locale using the locale-based edgemap. Each edge pixel
i inside a locale measures the distance along its gradient
 i to the nearest pixel j inside the locale envelope having
 j ≈  i within 15

◦
. If such a pixel j does not exist, then

the separation is considered in3nite.
We use a locale-based 2D texture histogram of size

193 pixels×180 degrees, where separation value �=193
is reserved for a separation of in3nity. The texture his-
togram is smoothed using a Gaussian 3lter and subsam-
pled to size 8 × 7, and then normalized.

2.6. Locales in video

Video segmentation proceeds via the algorithm in Ref.
[11], utilizing an illumination invariant image histogram
and a hierarchical procedure with dynamic transition
thresholds for e4ciently and robustly detecting cuts and

some other types of gradual transitions. Keyframes gen-
erated are then handled as any other static images, and
treated in a color covariant fashion.

3. Visual object retrieval

3.1. Model selection and object matching

C-BIRD provides a user interface to the end-user
through the web using a JAVA applet. The applet
provides the functionality necessary to crop a sample
object from an image and submit it as a search query
(query-by-example). A user selects a thumbnail image to
display the full image, and then uses the available selec-
tion tools to crop out a portion of the image as a sample
query object. An image region can be cropped by outlin-
ing it with the primitive shapes rectangle and ellipse, by
Rooding a region using a magic wand tool, by roughly
specifying its boundary using an active contour, and by
drawing on the region itself with a selection brush. The
primitive shapes can be scaled, translated and rotated,
and multiple tools can be combined together using the
Boolean operations union, intersection, or exclusion.
The user can also control parameters such as Rooding
thresholds, brush size and active contour curvature. Fig.
2 shows an example image with a region selected.

The object search method recovers 2D rigid object
translation, scale, and rotation, as well as illumination
change. C-BIRD also allows a combination search where
an object search can be combined with other simpler
search types. In that case, the searches are executed ac-
cording to decreasing speed, and since object search is
the most complex search available, it is executed last and
only on the search results so far by the other search types.

The object image selected by the user is sent to the
server for matching against the locales database. The lo-
calization of the submitted model object is considered

Fig. 2. C-BIRD interface showing object selection using an
ellipse primitive.
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Fig. 3. Block diagram of object matching steps.

the appropriate localization for the object, so that image
locales need to be found that have a one-to-one corre-
spondence with model locales. We call such a correspon-
dence an assignment. A locale assignment has to pass
several screening tests to verify an object match. Screen-
ing tests are applied in order of increasing complexity
and dependence on previous tests. The sequence of steps
during an object matching process is shown in Fig. 3: (a)
user object model selection and model feature localiza-
tion, (b) color-based screening test, (c) pose estimation,
(d) texture support, and (e) shape veri3cation.

The object match measure Q is formulated as follows:

Q= n
m∑
i=1

ciQi; (7)

where n is the number of locales in the assignment, m is
the number of screening tests considered for the measure,
Qi is the 3tness value of the assignment to screening test
i, and ci are weights that correspond to the importance of
the 3tness value of each screening test. The ci’s can be
arbitrary; they do not have to sum up to 1. Care has to
be taken to normalize the Qi values to be in the range of
[0:::1] so that they all have the same numerical meaning.

Locales with higher mass statistically have smaller per-
centage of localization error; the features are better de-
3ned and small errors averaged out, so we have higher
con3dence in locales with large mass. Similarly, assign-
ments with many model locales are preferable to few
model locales, since the cumulative locale mass is larger
and the errors average out. We try to assign as many lo-
cales as possible 3rst, then compute the match measure
and check the error using a tight threshold. We remove
or change locales in the assignment as necessary until
we obtain a match. At that point, it is very probable we
obtained the best match measure possible so there is no
need to try other assignments. In this case, we do not
have to check all possible permutations of locale assign-
ments. In the worst case, when the object model is not

present in the search image, we have to test all assign-
ments to determine there is no match. The image locales
in the database and the object model locales are sorted
according to decreasing mass size.

3.2. Illumination color covariant screening

The 3rst screening test is the color-based locale as-
signment 3ltering (Step (b)). Without any illumination
changes, the color screening process is relatively triv-
ial. Each model locale is allowed to be assigned only to
database image locales that have a similar color, where
color similarity is measured as an L1 distance between
colors, and the maximum allowed distance between the
r; g; I is prede3ned.

Not all images in a digital library, however, are taken
under the same illumination conditions, and the same ob-
ject in di8erent pictures could have substantially di8erent
colors. The color-based screening test would require as-
signments of locales taken under di8erent illuminants. In
this section, we discuss how to recover and compensate
for illumination changes.

3.2.1. Diagonal model for illumination change
Assuming a Lambertian model, the pixel values Rx

j for
RGB channel j and pixel position x are given by

Rx
j =(ax · nx)

∫
E($)Sx($)qj($) d$; j =1; : : : ; 3: (8)

The shading factor (ax · nx) is the inner product of
the light-source vector ax incident at pixel x and the sur-
face normal n at pixel x; E($) is the illuminant energy
distribution, Sx($) is the spectral reRectance response of
the surface, and qj($) is the camera sensitivity in the jth
color channel, with integration over the visible.

The chromaticity equations in Eq. (1) normalize the
light source intensity and remove the color dependence
on the light source direction by canceling the term (ax ·
nx). A simpli3ed working model of illumination change
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is the diagonal model [11]. Given color (R′; G′; B′) un-
der model illumination and color (R;G; B) under image
illumination we have

diag('; (; ))(R;G; B)T = (R′; G′; B′)T: (9)

In chromaticity space (r; g), the equations are no longer
linear. Dividing Eq. (9) by ), we de3ne

'̃=
'
)

=
R′B
RB′ =

r′b
rb′

; (̃=
(
)

=
G′B
GB′ =

g′b
gb′

(10)

so that

r′ = R′

R′ + G′ + B′ =
'R

'R + (G + )B
: (11)

Multiplying and dividing by )(R + G + B) results in

r′ = '̃r

'̃r + (̃g + b
=

'̃r

('̃− 1)r + ((̃ − 1)g + 1
: (12)

and similarly for g′, with numerator (̃g. It follows that
we only need to recover the two chroma shift parameters
'̃ and (̃ in order to derive r′ and g′ from r and g.

In Ref. [17] we used a least squares minimization of
the color di8erences between the assigned model locales
and the corresponding chroma shifted image locales to
3nd the chroma shift parameters '̃ and (̃. This method
requires an assignment of model to target locales in order
to estimate the chroma shift parameters, as does the pose
estimation screening test. Since the color-based screening
test without illumination change was the major constraint
for generating feasible assignments, requiring an assign-
ment before screening will potentially increase the num-
ber of feasible assignments by an exponential amount.
Computationally, the matching is prohibitive for some
images, and too slow for most others to be feasible as
a search method for media databases. Instead, here we
base illumination change recovery on a type of voting
algorithm, akin to a Hough transform.

3.2.2. Chromaticity voting
The purpose of applying chromaticity voting is to ob-

tain a small set of candidate chroma shift parameters.
Every pair of shift parameters will e8ectively induce an
illumination covariant color constraint on locale corre-
spondences, and so will be equivalent in discriminating
power to the color-based screening test without illumi-
nation change considerations.

The 2D voting space is +{'̃; (̃}, where the domain is
de3ned in the range 0.1–10.0.

+= {'̃; (̃ | 0:16 '̃; (̃6 10:0}: (13)

Each image locale is matched with each model locale
to calculate an '̃; (̃ pair using Eq. (10). This is used to

index the target cell in + space to cast a vote. Due to the
division in the calculation of ('̃; (̃) in Eqs. (10) and (12),
a logarithmic scale for the voting space axes is employed.
The logarithmic scale helps keep the granularity of the
votes. Using log10, we de3ne the voting array dimensions
as −1:0 to 1.0, and the voting space is discretized into
50 × 50 bins for creating the voting array.

Complete con3dence cannot be put in the calculated
'̃; (̃ even for two correctly matched locales, due to the
diagonal model approximation as well as noise a8ecting
the locale colors. Therefore, a Gaussian voting is utilized
whereby every '̃; (̃ pair will add its corresponding nor-
malized Gaussian probability to cells in the voting array
in its neighborhood.

For the same reasons, locales with small color values
are numerically less stable for calculating '̃; (̃. Accord-
ingly, the standard deviation , of the 2D Gaussian vot-
ing function is increased in the dimension in which the
color value r′ or g′ is reduced. This makes the Gaussian
function more Rat and so the vote distribution over its
neighborhood is more signi3cant. We choose a Gaussian
mask size of 5× 5 since it is e4cient to apply and it has
adequate smoothing for the voting array granularity. The
variance for the mask is ,2 = 2 for an exact cuto8, hence
we vary the standard deviation , from 1.0 to 5.0 depend-
ing on color values, and normalize the mask so that no
votes are lost. Since the errors in calculating '̃; (̃ using
Eq. (10) can be also caused by small values of R;G; B
which yield large values of r; g, it is not enough to merely
check the size of the chromaticity values, rather we need
to consider the RGB values which are recoverable using
Eq. (1).

It is possible to have several image locales with similar
chromaticity values. During the voting procedure these
image locales will contribute large values when matched
to any model locale by voting for the same cell. Due to
the fact that there may be only few image locales corre-
sponding to model locales but many image locales with
similar chromaticity, it would be error prone to simply
take the peak values. Therefore, the voting array is ac-
tually composed of n 2D voting arrays, where n is the
number of model locales. Each model locale has a cor-
responding 2D voting array. An image locale j matched
to a model locale i would only vote to voting array i.
In each of the voting arrays, votes are not allowed to be
accumulated, but rather the maximum vote is kept. We
chose to only keep the maximum since ideally the cor-
rect match will generate the maximum vote for the cell,
and all other votes to the cell should not contribute as
they are of a wrong match. This assures at most one best
vote for each model locale at each position of the voting
array. Since the votes are the Gaussian distribution val-
ues, they are fractional numbers and not merely ones or
zeros; hence they are not biased. The n voting arrays are
3nally added together to form a global 2D voting array
for all model locales.
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Fig. 4. Elastic correlation in -{r′; g′}.

The coordinates of +{'̃p; (̃p} that have a high score

yield a set of candidate chroma shift values ('̃p; (̃p).

Typically, the highest score corresponds to the best '̃; (̃
estimate for the image chroma shift to the model. In
case there is more than one candidate ('̃p; (̃p), they
will all be forwarded to the next step for further ex-
amination. An ('̃p; (̃p) pair is considered a candidate
if its score is at least 70% of the highest peak score.
The highest peak chroma shift is not always correct
in cases where the number of model locales and their
color values are small, resulting in a lower cumula-
tive vote for the correct chroma shift, while coinci-
dentally other locales with high color value may vote
for an incorrect chroma shift that results in a higher
vote.

3.2.3. Elastic correlation
We can evaluate the feasibility of having an as-

signment of image locales to model locales using the
estimated chroma shift parameters by a type of elastic
correlation. This computes the probability that there
can be a correct assignment, and returns the set of pos-
sible assignments. Having a candidate set of chroma
shift parameters ('̃p; (̃p), each pair is successively uti-
lized for computing the elastic correlation measure.
If the measure is high enough (in our experiments
higher than 80%), then we test the possible assign-
ments returned by the elastic correlation process for
object matching using pose estimation, texture sup-
port and shape veri3cation. Fig. 4 shows the elastic
correlation process applied in the model chromatic-
ity space -{r′; g′}: the model image has three locale
colors located at A′; B′ and C′. All the image lo-
cale colors, A–F, are shifted to the model illuminant
using Eq. (12) and the current ('̃p; (̃p) values. Al-
though the locales (A′;B′;C′) and (A,B,C) are sup-
posed to be matching entities, they do not appear
exactly at the same location. Instead of a rigid tem-
plate matching (or correlation) method, we employ the

elastic correlation technique in which the nodes A–C
are allowed to be located at the vicinity of A′;B′;C′,
respectively.

De3ne a window in the chromaticity space -{r′; g′}
around each model locale chromaticity. Every such win-
dow is assigned a weight equal to the percentage of the
corresponding locale mass out of the total locale mass for
the model. In the pose objective function, we use weights
wi that are simply the L1 norm of mass Mi(L′

f), divided
by the total mass. Here, we use similar weights but here
the L1 normalization is done over all model locales, not
only the ones in the assignment. The weights of all the
windows containing a shifted image locale chromaticity
are added to produce the correlation measure. Also a set
of candidate assignments is realized by allowing model
locales to be assigned only to image locales contained
in their window. Typically, not many candidate assign-
ments exist, and the chroma shift parameters ('̃p; (̃p) that
yield the best correlation measure are the best estimate
for the chromaticity shift from the image to the model
illuminant. The elastic correlation is also insensitive to
partial object occlusions, locales that split or merge, and
noise.

The correlation process used here is made even
more elastic by allowing non-3xed window sizes. As
in chromaticity voting in the +{'̃p; (̃p} space, the
window size in -{r′; g′} is made larger on the di-
mension where r′ or g′ values are small in order to
compensate for the potential error in applying Eq.
(12) to small color values. This of course implies
that the shape of the window is often not square. We
have varied the window size on each dimension from
0.04 to 0.08.

Also, care must be taken not to consider the same
image locale for two overlapping model windows. This
can be achieved by not allowing image locales to be
assigned to more than one window. The di4culty is
in selecting the overlapping window an image locale
should be assigned to. The brute force method is to
test all possible ways, and keep the highest correlation
score. We have used this since our implementation of
the search method lends itself easily to those tests. How-
ever, we are investigating a computational geometry
solution.

In some ways the elastic correlation is similar to a
deformable template matching [12]. In Fig. 4, if we
consider the template to be the triangle A′B′C′ of model
locales, then it is deformed to triangle ABC to match
the image locales. Though, generally a deformable
template has a global model (possibly with local vari-
ation in deformation parameters), the elastic correlation
model locale window sizes are completely independent
from each other. In practice template matching is ap-
plied only on the image space domain, while elastic
correlation is applied in the chromaticity color space
domain.
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3.3. Estimation of image object pose

From matched color locales, we de3ne a mass-ratio
factor mr as follows:

mr = log(M (Lf)=M (L′
f))

= log(M (Lf)) − log(M (L′
f)): (14)

This mr factor is given in terms of the ratio of the mass
of the target locale M (Lf) to the mass of the corre-
sponding model locale M (L′

f). Since for model locales
smaller than target locales M (Lf)=M (L′

f) changes more
signi3cantly over the assignment than for model locales
larger than target locales, it is not possible to set a con-
stant threshold directly on the ratio similarity among as-
signed locales. Taking the logarithm, the division turns
to subtraction, and a constant threshold is now possible
to derive. It is required that the mr factors be similar for
all corresponding locales. This constraint requires that
an mr factor already be known before we can apply it.
However, it still does not need an assignment and there-
fore also helps to reduce the combinatorial nature of this
problem. mr factors are averaged over all the locales al-
ready assigned. Since image locales are sorted in decreas-
ing order, if for a given model locale the mr factor with
a target locale is less than the average mr factor so far
then we can say that model locale cannot be matched (at
least under the current assignment), since all the next tar-
get locales will only generate lower mr factors, and will
never be similar to the average. The mr factors, together
with the sorting, e4ciently, enforce bounds on the as-
signments that can be generated. We call all assignments
that are allowable as feasible assignments.

Our pose estimation method (Step (c)) uses geomet-
rical relationships between locales for establishing pose
parameters. For that reason it has to be performed on a
feasible locale assignment. Locale spatial relationships
are represented by relationships between their centroids.
The number of assigned locales is allowed to be as few
as two, which is enough geometry information to drive
estimation of a rigid body 2D displacement model with
four parameters to recover: x; y translation, rotation R,
and scale s [17].

We obtain both the best pose parameters for an assign-
ment and the minimization objective value, which is an
indication of how well the locales assignment 3t using
our displacement model. If the error is within a small
threshold, then the pose estimate is accepted.

Now, we also verify that the scale and the mass ratio
factors are related according to

mr ≈ log(s2): (15)

Clearly, if the model mass uniformly grows by a factor
of s2, then all distances within it grow by a factor of s.

3.4. Texture support

The locale texture histogram is not invariant to ob-
ject transformation; therefore, texture matching has to be
done after the pose parameters are estimated. However,
since we assume an angle-preserving 2D displacement
model, it is easy to register the model texture histogram
to the image texture histogram. Let sRH′

i denote the
model texture histogram H′

i adjusted by scale s and rota-
tion R. The directionality axis coordinate in the texture
histogram depends only on edge orientation, so we must
add the estimated rotation angle to the model direction-
ality coordinates. The indexed angle is adjusted to lie in
the range 0–180

◦
. Similarly, the texture separation axis

coordinate depends only on the object scale, so we mul-
tiply the model separation coordinates by the estimated
scale s. If the indexed separation is larger than 192 then
it is considered in3nity. The texture counts in histogram
cells are normalized, so that the scale of the object does
not have to be considered to compensate for more edge
pixels in larger objects.

Texture matching is carried out via a fast texture his-
togram intersection approach similar to color histogram
intersection [5]. For every locale correspondence in the
assignment, their texture histograms are used for tex-
ture support if they contain su4cient texture information.
Having corresponding texture histograms for both model
and database image locales, the texture histogram inter-
section measure 0 is obtained by taking the sum of the
minimum corresponding cells

0=
56∑
i=1

min{Hi ; sRH′
i}: (16)

If 0 is greater than a threshold for all assigned locales,
then the locale textures were matched successfully.

3.5. Shape veri:cation

The 3nal match veri3cation process (Step (e)) is shape
veri3cation by the method of GHT [18]. The GHT is ro-
bust with respect to noise and occlusion [21]. Perform-
ing a full GHT search for all possible rotation, scale and
translation parameters are computationally very expen-
sive and inaccurate. Such a search is not feasible for large
databases. However, after performing pose estimation we
already know the pose parameters, and we can apply
them to the model reference point to 3nd the estimated
reference point in the database image. Hence, the GHT
search reduces to a mere con3rmation that the number of
votes in a small neighborhood around the reference point
is indicative of a match. This GHT matching approach
takes only few seconds for a typical search. The reference
point we choose is the model center since it minimizes
voting error for errors in edge gradient measurements.
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Fig. 5. (a): Sample model image. (b): Sample database image
containing the model book.

Fig. 6. Smoothing using dominant colors. (a) Original image
not smoothed. (b) Smoothed image with transitional colors
shown in light gray. (c) Smoothed image with transitional
colors shown in the replacement dominant colors (if possible).

Once we have shape veri3cation, the image is reported
as a match, and its match measureQ returned, ifQ is large
enough. After obtaining match measuresQi for all images
in the database, the Qi measures are sorted according to
decreasing value. The number of matches can further be
restricted to the top k if necessary.

4. Experimental results

Our C-BIRD database contains about 1500 images and
several video clips. The following results were obtained
using a Pentium III 500 MHz with 256 MB of memory
and an ATA33 hard-drive.

4.1. Localization results

Both feature localization and object search details are
illustrated using a sample object model image, Fig. 5(a),
and a sample database image containing the model object
under di8erent illumination and pose, Fig. 5(b). The 3rst
step in the extraction of locales is image smoothing us-
ing dominant colors and color rede3nition of transitional
pixels during the tile creation process. Fig. 6 presents the
original image and two stages of the color enhancement

Fig. 7. (a) Color locales for the model image. (b) Color locales
for a database image.

process. In Fig. 6(a) the original image is shown. Fig.
6(b) shows the smoothed image using dominant colors
only, and the transitional pixels in gray. Almost all pixels
in a gradient color region have been classi3ed as transi-
tional. In Fig. 6(c) transitional colors have taken on dom-
inant color values that will be used in the tile creation
process. Of particular interest is the fact that most tran-
sitional pixels have in fact correctly assumed the purple
color of the letters in the title, rather than the whiteish
color of the background, despite the overwhelming num-
ber of white pixels in the neighborhood in comparison
with purple ones. This is a testament to the fact that Eq.
(2) is powerful enough for such a discrimination. Tiles
are generated using the dominant color list and a transi-
tional color list for pixels that have not assumed a dom-
inant color.

After creating tiles, locales are extracted. Fig. 7 de-
picts the color localization. Locales are shown by their
envelope in the locale color. At the end of the localiza-
tion process the pyramid’s top node contains the locales
list. Although locales can overlap, localized features re-
spect object separation and represent the multiple con-
ceptual features humans attribute to an image area. Lo-
cales do not have to be connected, but as demonstrated in
Fig. 7(b), even nearby locales with similar colors, such
as the white locale of the book and the white locale of
the lamp (photographed under bluish Ruorescent light),
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Fig. 8. (a) Locale chromaticities for the model image.
(b) Locale chromaticities for the database image.

will not normally merge when they belong to di8erent
feature positions. The hierarchical approach enables the
eccentricity to be calculated with respect to the feature
centroid regardless of the seed position of feature merg-
ing. This is because on lower levels of the pyramid, tiles
have to merge to geometrically closer parents.

Localization time depends on scene complexity. Our
object model image 5 has size about 320×240, and its lo-
calization takes 1:9 s. The test image 5 has size 640×480
and its localization takes 6:1 s. Typical times for local-
ization of user selected objects are around 1:5 s. Half of
the processing time is taken for separation-map genera-
tion and about a 3fth each is spent on the edge-map gen-
eration and dominant color smoothing. Performing the
feature merging for all hierarchy levels takes less than
10 ms. It has also recently been attempted to reduce lo-
calization time through various optimizations, with about
3ve-fold speed improvement. We would be able to in-
crease localization speed signi3cantly more through use
of hardware acceleration.

4.2. Analysis of object matching results

We illustrate illumination covariant object search us-
ing the model image in Fig. 5(a) that is taken under tung-
sten illumination, and the database image in Fig. 5(b)
that is taken under Ruorescent illumination.

The 3rst task of the object search method is the es-
timation of the chroma shift parameters in order to en-
force color covariance constraints on a locale assignment.
In Fig. 8, the chromaticity axis origin is at the top left,
and values go from 0 to 1. Arrows represent chromatic-
ity shift for corresponding locales. When using the LSE
method for chroma shift estimation, the correct assign-
ment of locales is eventually generated since previous
assignments do not generate an object match, and the
estimated chroma shift is (2:41; 1:67) with the objective
value being 0.0035. This objective value indicates that
the chroma shift values are a good estimate under this
locale assignment.

Alternatively, using the chromaticity voting scheme,
all image locales are paired with all model locales to vote

Fig. 9. Voting result in + space. Peaks are denoted by bright
intensity values.

for ('̃; (̃) positions in the voting array +. The voting ar-
ray is presented in Fig. 9. The highest peak in the voting
array is located at the coordinate (34; 30) which corre-
sponds to ('̃; (̃) values of (2:33; 1:75). In comparison,
the average ('̃; (̃) values when the locales are assigned
manually is (2:39; 1:68). This average is not the true illu-
mination change, which is unknown in this experiment,
yet it is a strong indication that the chroma shift param-
eters are correct. The chroma shift values are also very
similar to those estimated using the LSE method.

Next, the elastic correlation process con3rms that the
chroma shift parameters discovered by the highest peak
do correspond to a feasible assignment. The correlation
value of 1 is also higher than the correlation values of
any other peaks in the voting array. The assignment of
image locales to model locales indicated by the elastic
correlation is the same as shown in Fig. 7. Notice that in
this locale correspondence, locales are assigned in sorted
order of both model and image locales. This is typically
the case and it speeds up the computation signi3cantly.
For a similar image to Fig. 5(b) that was photographed
under tungsten illumination, the localization and assign-
ment generated using a strict non-covariant color match-
ing approach is identical, and so are most of the follow-
ing results.

The pose estimation yields a rotation of 80:94
◦
, a scale

of 0.82 and a translation of (230.96, 212.01) pixels. These
values are consistent with our manual image measure-
ments. The overall error as returned by the pose objective
function is 4:59 pixels squared. This is the weighted sum
of the displacement errors of all the model centroids to
the image centroids.

The pose error is good enough to allow the assign-
ment to be checked for texture support. Since the texture
histograms are very coarse, we cannot expect a high
match measure for object rotations and scales that are not
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Fig. 10. (a): GHT accumulator array image. (b): Drawing of
the GHT template using the estimated pose.

integral multiples of texture histogram bin ranges. The
minimum texture histogram intersection value obtained
from all the locale correspondences in the assignment is
0.65. Our threshold for texture matching is lower than
this, so the only screen test left to pass is match veri3ca-
tion using GHT for shape matching.

Using the GHT table obtained for the model at the be-
ginning of the search, voting is performed on a reduced
resolution Hough transform accumulator array accord-
ing to the discussion in Section 3.5. The voting array is
shown is Fig. 10(a) and shows a clear peak. The correct
reference point for the peak is (189, 141) and the posi-
tion where the peak was actually detected is (190, 137).
The GHT match measure QGHT returned accounts for
most model edge pixels, and thus is good enough to de-
clare this locale assignment a match. To further illustrate
the match parameters correspondence to the database
image, we make the search engine generate a recon-
structed drawing of the template at the peak position
using the GHT table only, in Fig. 10(b). Fig. 10 shows
the reconstructed template using the estimated pose
parameters.

Table 1
Retrieval and timing results for object-based searches, no illumination change

Model object Recall Precision Timing results (s)

A CM % FM % Total Matching DB access

Blue book Pose 5 5 100 4 56 16.378 0.031 15.984
Pose + texture 5 5 100 3 63 16.056 0.038 15.632
Pose + texture + shape 5 5 100 1 83 20.156 4.285 15.693

Pink book Pose 13 8 62 4 67 16.286 0.038 15.898
Pose + texture 13 8 62 1 89 16.339 0.055 15.924
Pose + texture + shape 13 8 62 0 100 38.290 22.336 15.657

Green book Pose 7 2 29 8 20 16.364 0.038 15.934
Pose + texture 7 2 29 5 29 16.474 0.039 16.109
Pose + texture + shape 7 2 29 2 50 27.775 11.580 15.878

2The demo site for C-BIRD, containing a Java applet, can be found at “http:==jupiter.cs.sfu.ca=cbird”.

4.3. Database search results

We performed a search of the full database (1500 im-
ages) with three model objects which we know exist in
the database under di8erent illuminations. To demon-
strate the necessity and e8ectiveness of the illumination
covariant search, we 3rst present the search results using
strict color distance restrictions, and then the results us-
ing our covariant color comparisons. Fig. 11 shows the
search results for the pink book model in Fig. 5(a) with-
out illumination change considerations. Fig. 11(a): be-
fore applying texture support; (b): with texture support
but without shape veri3cation; and (c): after shape veri3-
cation. The precision is improved from 67% in phase (a)
to 100% in phase (c). The recall is 62% and the texture
and shape screens do not reduce it.

Table 1 summarizes the search results. Recall and pre-
cision are de3ned by

recall =
CM
A

; precision =
CM

CM + FM
;

where CM is the number of correct matches, FM the
number of false matches, and A the number of available
(matchable) objects in the database. Color-based search
alone can produce many false matches, but the subse-
quent stages of texture checking and shape veri3cation by
GHT reduce the number of false matches without com-
promising recall much. The images containing the pink
book are under a variety of illuminations; also, some are
gamma corrected and some are not. The green book im-
ages are also photographed under di8erent illuminants,
and only two match the model. This underlines the im-
portance of a color covariant method. All the blue books
have the same illumination, so they are matched easily.

Typical running times are less than 20 s without shape
veri3cation.2 Database access time is fairly constant since
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Fig. 11. Search results for the pink book model image. (a)
Shows search results using pose estimation only. (b) Shows
search results using pose estimation and texture support. (c)
Shows search results using the GHT shape veri3cation.

the texture histograms are loaded for all locales, and im-
age edgemaps are loaded only when necessary. Most time
is spent accessing the large amount of data in the texture
histograms. When search using shape veri3cation is per-
formed, note that the expense of the voting and peak al-
location procedures of the GHT depends on the number
of images returned in previous stages, and is performed
more frequently for false matches where the number of
assignments tested is larger.

We performed the same searches of the C-BIRD
database again, only this time using chromaticity vot-
ing and elastic correlation. We expect to have similar
precision and running time, yet higher recall, since the
images under di8erent illuminants will be retrieved as
well.

Fig. 12. Search result for the pink book model with illumina-
tion change support. (a) Shows search results using pose es-
timation only. (b) Shows search results using pose estimation
and texture support. (c) Shows search results using the GHT
shape veri3cation.

Fig. 12 shows search results for the model book object
in Fig. 5(a). The retrieval results are very similar to those
using the LSE criterion for chromaticity estimation. Fig.
12(a) illustrates the search results using the chromaticity
voting and elastic correlation for generating assignments
for pose estimation, (b) illustrates the results with added
texture support but without shape veri3cation, and (c)
illustrates the search results after shape veri3cation.

Table 2 summarizes the results for the three object
searches used in Section 3. A search for those objects
using the LSE method for chromaticity shift takes over
an hour for all images. The results using chromaticity
voting and elastic correlations have timing results in-
creased by only one second over a search with no sup-
port for illumination change.
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Table 2
Retrieval and timing results for object-based searches under illumination change

Model object Recall Precision Timing results (s)

A CM % FM % Total Matching DB access

Blue book Pose 5 5 100 5 50 17.380 1.184 15.885
Pose + texture 5 5 100 1 83 17.096 1.162 15.674
Pose + texture + shape 5 5 100 0 100 19.905 3.942 15.700

Pink book Pose 13 10 77 11 48 17.605 1.194 16.024
Pose + texture 13 9 69 4 69 17.297 1.220 15.817
Pose + texture + shape 13 8 62 2 80 48.481 32.159 15.957

Green book Pose 7 5 71 4 56 17.568 1.321 15.890
Pose + texture 7 5 71 3 63 17.808 1.350 15.848
Pose + texture + shape 7 5 71 1 83 34.586 18.439 15.813

The recall and precision measures are relatively high
for all the objects tested. For the pink book images, we
see from Fig. 12 that some pink books under di8erent illu-
minations were retrieved, while they were not in Fig. 11.
Yet, the search with illumination change estimation had
problems with the gamma corrected books. This explains
the mixed results. The green book had retrieved most
of the books under di8erent illuminations. This helped
improve recall and precision signi3cantly. These results
show that illumination change recovery is important for
image retrieval. For images with no illumination change,
such as the blue book images, both approaches perform
equally well.

4.4. Recovery of lighting change

To verify chroma shift and pose estimation procedures
using data in which we have high con3dence, we used
beach ball images from Ref. [22] to test lighting change
recovery using chromaticity voting and elastic correla-
tion methods. The ball is captured under 3ve di8erent
illuminations which were carefully calibrated. Compar-
ing each of the images against the four other remaining
images, we can explicitly calculate, '̃, (̃ using the esti-
mated scene illumination values. Those '̃, (̃ values are
considered correct for comparison purposes. The illumi-
nants and their chromaticities are given in Table 3.

Table 3
Illuminant chromaticity values

Light name r g b

Macbeth 5000 K+ 0.08 0.18 0.74
3202 Filter (Mb + f)

Macbeth 5000 K (Mb) 0.182 0.266 0.552
Sylvania Cool White (Syl) 0.266 0.26 0.474
Philips Ultralume (Ulm) 0.327 0.33 0.343
Halogen (Hal) 0.398 0.31 0.292

Fig. 13 shows pseudo-color images (c) and (e) of the
chroma shift parameters '̃, (̃ for the illumination change
from a sample model ball in (a) to the sample balls on
the left. A red color in the pseudo-images on the right
corresponds to '̃ value, and a green color corresponds to
(̃ value. In particular, if an image were matched to itself,
the pseudo-color would be yellow (equal contributions
of r and g for every pixel) everywhere as is the case for
image (c). Some pixels have a black pseudo-color if the
chromaticity or shift parameters are uncertain (or unde-
3ned) for them. The psuedo-color image in (e) shows
that chroma shift values on the same patch are fairly con-
stant despite heavy shading, yet pseudo-colors between
patches di8er, though not by much. This is typical of
most images, while the chroma shift estimation variance
between patches depends on the illuminants mapped to
each other.

We have also created 3ve new images by randomly
selecting target images from the C-BIRD database, and
placing one of the beach balls into the target image,
forming a composite image. The balls are placed into
a random image with a known rotation (e.g., 33

◦
),

scaling (e.g., 0.58) and translation (e.g., 121, 81). The
ten beach-ball images are inserted into the C-BIRD
database. Each time we use one of the original 3ve
beach ball images as a model image to test whether we
can 3nd the correct match with the right lighting change
('̃; (̃), rotation, and scale. Fig. 14 shows one of the
search results in which all ten beach-ball images are re-
trieved together with two false targets from the C-BIRD
database.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 13. Sample beach-ball images and their associated chroma
shift pseudo-colors. (a) Beach ball image under Syl. light; (b)
Beach ball image under Syl. light; (c) Psuedo-color image for
(a) and (b); (d) Beach ball image under Ulm. light; (e) Pseudo
color image for (a) and (d).
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Fig. 14. Search using a beach ball under Sylvania Cool White
illuminant as a model.

Fig. 15. Correct and recovered '̃s and (̃s.

Fig. 15 graphs the chromaticity shift estimate curves in
relation to the correct illuminant curves. It is apparent that
when '̃, (̃ are close to one (that is when the chromatic-
ity change of the illuminants is moderate), the estimation
errors are smaller than 10%. However, when the illumi-
nant chromaticities are di8erent, chroma shift computa-
tion errors increase and the diagonal model approxima-
tion degrades. Nevertheless, since the shift is non-linear,
the potentially larger error for shift estimation does not
translate to a much larger error in the shifted chromatic-
ity values themselves. This further supports the logarith-
mic scale of the chromaticity voting space, and is also
compatible with the elastic correlation that is performed
in the chromaticity space.

Table 4 summarizes the 3ve beach-ball searches per-
formed in which each ball under a particular light is used
as a model. The searches are performed on the entire
database, and precision and recall values are shown. W2
is the error in angles of the rotation estimation and Ws
the error of scaling factors estimation. Both error values
are computed as an average of the error values of all cor-
rect matches. The table shows a fairly high recall and
precision with rotation estimate error of less than 1

◦
, and

Table 4
Quality of the 3ve beach-ball searches

Light for model image Precision Recall W2 Ws

Sylvania Cool White 73% 80% 0.50 0.021
Macbeth 5000 K 83% 100% 0.40 0.019
Macbeth 5000 K + 3202 62% 80% 0.83 0.017
Philips Ultralume 78% 70% 0.30 0.018
Halogen 64% 70% 0.65 0.035

scale error of less than 0.05. Obviously, these are very
good estimates, and are much better than the matching
thresholds.

Some of the models have very high or very low
chroma shift values when matched to some images.
For example, when a Halogen illuminated ball is
used as a model, and it is matched to a ball illumi-
nated in a Macbeth 5000 K + 3202 Filter light booth,
the chroma shift values are (12.608, 4.365), which
is even higher than our voting space +{'̃; (̃} dimen-
sions. In this case, the images still matched since the
estimated '̃ was actually about 9 which is within the
voting space dimensions, and the shifted chromatici-
ties were accurate enough. This is an evidence to the
appropriateness of the logarithmic scale for the chro-
maticity voting space. In general, though corresponding
locales with larger chromaticity shift have a higher
possibility of error, the object can still be matched.

5. Conclusion

This paper presents a color covariant search method
by object model using multiple features (color, texture,
shape, etc.). Database images and video sequences are
preprocessed o8-line for locale extraction. Locales are
generated using a feature localization technique that uses
compactness as a merging determiner and geometric
proximity as a competition criterion.

The object search method starts with an attempt to limit
the number of locale assignments by using locale colors
as a constraint. Under illumination change, we use the
techniques of chromaticity voting and elastic correlation.
It is demonstrated that those techniques are equivalent
in speed to using simple color similarity restrictions, and
superior in retrieval recall without sacri3cing precision.
In recovering lighting change, we also yield a partial so-
lution for the problem of color constancy. Subsequently,
we employ a series of fast checks that perform pose es-
timation, texture support and shape veri3cation, which
lead to high reliability of the retrieved images.

One limitation of the current approach is that it relies
on the diagonal model for illumination change. The di-
agonal model is only approximate, and seems to be more
accurate when the illumination change is smaller. An
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added di4culty is that some images have a linear-gamma
while some are gamma-corrected. Although images with
gamma correction can still match objects with a linear
gamma, this is less accurate.

Also, localization is not always perfect, locales can
be inaccurate or missing. The locale color is an average
of all pixel colors in the locale, which might also be in-
accurate and a8ect the color matching during the object
search.
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