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Review and Preview: Disocclusion by Inpainting for
Image-based Rendering

Zinovi Tauber, Ze-Nian Li, Mark S.Drew

Abstract—Image-based rendering takes as input multiple
images of an object and generates photorealistic images from
novel viewpoints. This approach avoids explicitly modeling
scenes by replacing the modeling phase with an object re-
construction phase. Reconstruction is achieved in two pos-
sible ways: recovering 3D point locations using multiview
stereo techniques, or reasoning about consistency of each
voxel in a discretized object volume space.

The most challenging problem for image-based recon-
struction is the presence of occlusions. Occlusions make
reconstruction ambiguous for object parts not visible in any
input image. These parts must be reconstructed in a visu-
ally acceptable way. This review presents our insights for
image inpainting to provide both attractive reconstruction
and a framework increasing the accuracy of depth recov-
ery. Digital image inpainting refers to any methods that
fill-in holes of arbitrary topology in images so that they
seem to be part of the original image. Available meth-
ods are broadly classified as structural inpainting or tex-
tural inpainting. Structural inpainting reconstructs using
prior assumptions and boundary conditions, while textural
inpainting only considers available data from texture exem-
plars or other templates. Of particular interest is research
of structural inpainting applied to 3D models, impressing
its effectiveness for disocclusion.

Index Terms—Disocclusion, Image Inpainting, Image-
based Rendering, Depth from Stereo, Volumetric Recon-
struction, View-Dependent Rendering.

I. Introduction

A. Motivation

One of the main objectives of computer graphics is to
produce realistic imagery. When scene realism is the main
concern, the easiest way to achieve it is by photograph-
ing or filming the desired scene, using it on a computer.
Objects in recorded scenes, special effects and computer
imagery can be composited together easily using chroma-
keying/blue-matting techniques. It is often desired to in-
corporate objects that would be difficult to acquire on film,
either due to physical limitations or practical limitations
such as positioning of cameras. These objects can be mod-
eled on a computer by an artist, but this process is very
laborious and rarely achieves realistic imagery. Illumina-
tion, complex shapes, materials and interaction dynamics
are all very hard to model in a realistic way. The term
photorealistic rendering refers to a computer process that
generates images indistinguishable from photographs. It is
difficult to re-image acquired scene into a new virtual cam-
era in space. The two main problems are that the depths
of the visible scene points are unknown, and worse, that
nothing is known of the invisible points. These two prob-
lems are interrelated with object reconstruction in 3D, as

Z. Tauber is with the Department of Computing Science in Simon
Fraser University, British Columbia, Canada.

we shall show. Disocclusion refers to the process of recov-
ering scene information obstructed by visible points.

Realistic computer models can instead be obtained us-
ing 3D acquisition methods on existing objects or models
(maquettes). Acquisition using images is versatile and re-
sults in more detail than other 3D acquisition methods.
Unfortunately, image correspondences for multiview stereo
matching are hard to accomplish reliably. Most stereo re-
construction approaches initially recover at least camera
pose parameters, so that epipolar geometry can be estab-
lished between the reference view and any additional views.
The epipolar constraint for a pixel in the reference view
indicates that its line of sight (LOS) ray projects to the
epipolar line in another view image. Reviews of stereo cor-
respondence and rectification formulation can be found in
the books [66][67]. For dense matching, a disparity map is
calculated for all pixels in the reference view by matching
them to the pixels on the corresponding epipolar lines of
the other views. There are many issues that complicate
calculating a good match, the worst of which are occlu-
sions. In the presence of occlusions some pixels will not
have other corresponding pixels at all, and pixels on depth
discontinuity boundary have mixed colors [1].

Image-based rendering techniques combine both vision
and graphics processes in various interesting ways to re-
construct an object from multiple images, and reproject
it to a novel view. The ability of these methods to han-
dle occlusions, despite many innovations, is insufficient and
could benefit greatly from integration with principles from
digital inpainting.

For any number of cameras, reconstruction algorithms
might face a family of shapes to choose from [2], all pro-
jecting identically to all camera images due to occlusions.
In order to estimate the occluded object sections we need
prior knowledge or assumptions about the model. Dis-
occlusion algorithms have been studied in computer vision
for purposes such as segmentation or stereo matching [3][4].
Recently, such techniques have taken a new role, that of
restoration of images with occluded and damaged regions,
called holes, where the location of these regions is known.
Bertalmio et al. [5] have formulated the problem in terms
of a diffusion of image structure elements from the hole
boundary into the hole. This process was called digital
image inpainting, a term that is borrowed from the arts
used to describe a restoration process for damaged paint-
ings. Research in the image inpainting field focuses on im-
proving assumptions for connectivity of object structures
in the hole, as well as perform inpainting of texture, and
even inpainting based on statistical/template data. Image
inpainting has also been performed in a rudimentary fash-
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ion on surfaces in 3D that had holes due to occlusions. We
argue that inpainting methodology, extended to 3D in a
framework where an object surface is the structure com-
ponent on which applies a 3D displacement map as the
texture component, will enable rendering object sections
that otherwise cannot be reconstructed. Here, 3D Texture
is defined as a 3D displacement map. Moreover, this frame-
work can be used to remove noise and improve disparity
matching in 3D reconstruction.

B. Overview of Surveyed Literature

Reconstruction tasks such as image restoration, object
disocclusion, texture segmentation and synthesis, and sur-
face extraction share some similar underlying principles.
These problems admit a probabilistic model in which each
possible state of each element is assigned some probabil-
ity drawn from a random field, most commonly a Markov
Random Field (MRF) [6][7]. Then, reconstructing an im-
age is accomplished by finding the Maximum A-Posteriori
(MAP) hypothesis. Gibbs fields can calculate the equiva-
lent MRF probability and explicitly depend on an energy
functional, which can be more easily minimized than the
probability itself in order to find the MAP hypothesis. New
energy functionals can be constructed that are driven by
some envisioned process, rather than by explicitly model-
ing the likelihood of states.

Some early work on disocclusion has been done by
Nitzberg, Mumford and Shiota [4]. In their work they at-
tempted to generate outlines of objects for image segmen-
tation and depth extraction, so T-junctions were detected
in an edge map, and corresponding T-junctions were con-
nected using an energy functional minimizing edge length
and curvature. Masnou and Morel [8] had extended the
idea to level-sets of images. In this way, all the gray-
levels of the occluded object can be overpainted. Bertalmio
et al. [5] in an inspiring paper have proposed digital im-
age inpainting. Having a manually selected inpainting
region Ω in an image, the objective of inpainting is to
complete the image inside the hole in a reasonable way.
Their initial technique was to propagate the gray levels at
the hole boundary ∂Ω into the hole along isophotes (level
lines), by formulating the inpainting as a variational prob-
lem and solving by diffusion. This diffusion coupled with
anisotropic filtering was shown to have an interpretation
as fluid transportation using Navier-Stokes equations for
fluid dynamics [9], which helps with stability and speed of
convergence.

Inpainting methods that involve more complicated en-
ergy functionals assume the Bounded Variation (BV) im-
age model [8][10][11][12]. This model states that image
level-lines cannot oscillate infinitely, and immediately sug-
gests a simple Total Variation (TV) inpainting technique,
which tries to minimize the curve length. However, it is
commonly accepted that for reasonable reconstruction the
inpainting must consider the curvature as well. Ballester
and Bertalmio et al. [10] have re-cast the inpainting process
to consider curvature in a form similar to the Euler elas-
tica, whereas Chan and Shen [12] have defined a new in-

painting called Curvature Driven Diffusion (CDD), and in
a later paper remarkably showed how the Euler elastica
encapsulates both the CCD inpainting and transportation
inpainting [11].

There are many additional types of inpaintings that
were proposed subsequently, including textural inpaint-
ing [13][14][15][16] which rely on texture matching and
replication, or global image statistics [17], or templates
matching functionals [18]. Finally, there is also research
done on inpainting in 3D, by explicitly reconstructing sur-
faces [19] or by applying the inpainting suggested in [5] to
generate a surface in a volume grid [20].

The earliest research on image-based rendering used im-
age warping techniques to generate new views of a realistic
or a computer generated scene to speed up rendering time,
between two existing close views. Chen and Williams [21]
have extended the idea to 3D by calculating a linear warp
field between corresponding 3D points of two scenes, and
interpolate for views in between. Their research tries to
deal with both holes and visibility ordering. The Light-
field [22] and Lumigraph [23] provide a more accurate and
complete capability of viewing from any point in the sam-
pled space. The space is sampled regularly, and a 4D lat-
tice of images is created. Any single view direction corre-
sponds to a 2D slice in the space, and interpolated from
nearest neighbors as necessary. Acquisition, data storage,
and access are main concerns here. In Plenoptic Modelling,
McMillan and Bishop [24] described a complete framework
for generating new views from arbitrary viewpoints. First,
cylindrical image samples are generated, and then a form
of stereo matching is performed on the cylinders for dense
correspondence. A new visibility ordering approach was
introduced called McMillan’s Depth Ordering. This ap-
proach is widely used for reprojecting 3D points to a new
view without depth sorting.

Image-based rendering methods can be divided into
two types of approaches: those that are based on multi-
view stereo correspondences and generate a single depth
map [24][25][26][1][27][28][29], and those that store mul-
tiple depth per pixel, such as volumetric reconstructions,
and reason about voxel visibilities using consistency checks
with input images [30][2][31][32]. Inpainting techniques
share are more beneficial for global correspondence tech-
niques of multiview stereo, but are valuable for all image-
based rendering approaches.

Some methods make improvements in quality and real-
ism by using view dependent optimizations. View depen-
dent texture mapping is performed by most methods that
texture map image information [27][25][33]. These meth-
ods emphasize the effectiveness of 2D texture when some
3D shape is known, and lead us to suggest inpainting of
3D structure and texture as a more complete and photo-
realistic solution.

In Section II we present the evolution of image restora-
tion and inpainting towards a more unified variational
problem. Other forms of inpainting methods are presented
as well. Section III shortly presents some representative
techniques in image-based rendering and argues for the
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necessity of the inpainting methodology. Section IV sum-
marizes the current state of research and suggest future
direction of research. Additional detail for most of the
research covered in this article is available in [34].

II. Disocclusion and Digital Inpainting

A. Disocclusion and Image Restoration

The problems of disocclusion and boundary continua-
tion can be viewed as a particular area of image restora-
tion. Most work in image restoration focuses on de-noising,
enhancing colors, and recovering isolated missing pixels.
Yet approaches that disocclude objects have also been at-
tempted. For example, a hierarchical two-level Gibbs Ran-
dom Field (GRF) model can be applied as follows: The
higher-level Gibbs process restores regions’ boundaries in
the image using some smoothness prior, while the lower-
level MRF distribution will fill each region with a syn-
thesized texture estimated in the texture segmentation
stage [6]. Still, traditional formulation for filling-in holes
is limited in scope to regions where some information is
known in a close proximity, and so could not handle most
disocclusion problems.

Bilinear and bicubic interpolation can be used to inter-
polate holes, and more advanced interpolations are possi-
ble as well. Adaptive anisotropic filters can have an edge
preserving property (e.g. [35]). Single pass filtering does
not produce visibly convincing disocclusion, however most
inpainting schemes are applied by repeated application of
boundary preserving filters.

Modeling the image properly can help restoring its data
reliably. There are many ways to model the image, three
of which presented in [36] are: I. Random Fields, most
prominently MRFs, capture the statistical properties of
some function u, such as the image function over the dis-
crete image domain S. II. Physical Processes in a steady
state, like fluid flow, can approximate image continuity.
III. Function Spaces assume characteristics about image
energy function E(u). One of the most adapted function
spaces in image inpainting is the Bounded Variations (BV )
image space. A function u is in BV (S) if its total varia-
tion Radon measure E(u) =

∫
S |Du| is bounded, where the

measure Du = ∇u when the gradient exists [37].
MRFs are a useful modeling tool for many applica-

tions in computer vision, from image restoration to stereo
matching. According to the Hammersley-Clifford theorem
an MRF of a set of random variables U is a Gibbs Random
Field (GRF) on S when the GRF takes the form:

p(u) =
1
Z

e−
1
T E(u), Z =

∑

u∈U

e−
1
T E(u). (1)

where T is the temperature, and is responsible for the vari-
ability in the distribution. Z is called the partition func-
tion and normalizes the quantity p(u) to lie in [0, 1]. It is
quite hard to compute Z since the number of computed
terms is combinatorial in the size of S. A number of ap-
proximations have been developed to solve the problem,

although for most applications trying to find the MAP es-
timate (those having Z constant) it is enough to minimize
the energy function E(u). More information about mod-
elling with MRFs/GRFs is given in [6][7]. We can combine
MRFs with MAP estimations according to Bayes theorem
to obtain the MAP-MRF hypothesis; the value u∗ that
maximizes the posterior probability p(u|u0) is:

u∗ = arg max
u

p(u|u0) = arg min
u

E(u0|u) + E(u). (2)

where u is the ideal function we wish to recover and u0 is
the observed function.

As an example of MRFs in image reconstruction, we will
consider the problem of interpolating the function u(x, y)
on the image domain S, generally a finite Lipschitz domain
in IR2, from sparse data. This problem is equivalent to
restoration of a depth surface obtained from sparse noisy
data in stereo matching. We will assume the observation
model E(u0|u) is given by Eq. 3, which assumes a white
(gaussian) noise u0 = K ∗ u + nG, where u is the ideal
noise free image function, u0 is the observed noisy image
function, K is a smoothing kernel, and nG is a random
value drawn from a Gaussian distribution with standard
deviation σ (∗ denotes convolution operation).

E(u0,K, σ) =
1

2σ2|S|
∫

S
(u0 −K ∗ u)2dxdy. (3)

Note that the Gaussian noise has a specific Gibbs distri-
bution pattern, and so can be used here directly. We design
the prior model E(u) to maintain the continuity principle.
We could choose to penalize larger first order derivatives
of u, but a better smoothness assumption will require the
second order derivative to be small as well. Additionally,
we would like to model piecewise discontinuity. We can
do so by defining a function g, and a penalty term γ for
discontinuity such that

lim
η→∞

|g′(η)| = γ < ∞. (4)

It is also desirable for the function g to be symmetric,
nondecreasing and differentiable. A possible choice can be
the truncated quadratic (used in line process model MRF
for edge detection):

g(η) = min{η2, γ}. (5)

Thus, we can write our prior model as

E(u(x, y)) =
∫

S
[g(uxx(x, y))+2g(uxy(x, y))+g(uyy(x, y))]dxdy.

(6)
The subscripts denote partial derivatives with respect to
the variables. This model is called the weak plate. Without
g in the formulation above an image edge discontinuity
would incur a very large penalty, and the minimization
would prefer to connect adjacent patches.

The minimization of the posterior E(u|u0) can be done
by a gradient decent search. However, such a function
is not strictly convex, and a gradient decent method could
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get stuck in a local minimum. More advanced optimization
techniques are possible, whether deterministic or stochas-
tic. The interested reader is referred to variational calculus
resources such as the book by Gelfand and Fomin [38].

B. Structural Inpainting

Digital image inpainting is a computer process inspired
by the strokes artists use to cover up defects in paint-
ings (e.g. [39][40]), guided by four observations reported
by Bertalmio and Sapiro et al. [5]: (1) The global picture
determines how to fill in the hole. (2) The contours arriv-
ing at the boundary of the hole are continued inside it. (3)
The different regions inside the hole are assigned similar
colors to their colors at the boundary. (4) The small de-
tails are painted in. In the inpainting problems the hole is
assumed given.

Formally, we can define Ω ∈ S to be an open bounded
subset of S with Lipschitz continuous boundary, where S
is a square in IR2. Ω is called the hole in the image S that
terminates at a border ∂Ω. We also define Ω̄ as the closure
of Ω and Ω̃ as another open region in S such that Ω̄ ⊂ Ω̃.
The boundary is defined as the band B = Ω̃ \ Ω̄, which
includes the pixels surrounding the hole region from which
we are going to diffuse information into the hole region.

Inpainting approaches use either isotropic diffusion or
more complex anisotropic diffusion (few algorithmic ap-
proaches do not [41][42]). Isotropic diffusion blends all
information in Ω and cannot preserve image structures,
so it requires a much smaller inpainting domain. In [43],
Oliveira et al. proposed a diffusion process involving re-
peated convolution of Ω̃ with small isotropic smoothing
kernels of size 3 × 3. The main advantage of such an ap-
proach over anisotropic diffusion is the high speed of cal-
culations. Another common diffusion method based on
Euler’s energy functional is

E(u) =
∫

x∈Ω

|∇u|2dx. (7)

As we have seen in the discussion about MRFs, this is just
a prior on surface smoothness, although discontinuities are
not modeled here. The solution to minimizing such cost
functions is given by the gradient descent search:

u0|Ω = Some initial value; random or simple interpolation

un+1 = un + λ
∂un

∂t
(8)

where λ is an acceleration (or velocity) parameter to speed
up convergence of the algorithm. Superscripts indicate the
time step. In the discrete case we can approximate the
energy by the equation E(u) =

∑
x∈Ω(u(x + 1) − u(x))2

which will have the following set of partial derivatives:

∂

∂t
u(x) =

∂

∂u(x)
E(u) = −2(u(x− 1)− 2u(x) + u(x + 1))

(9)
which is the discretized version of the Laplacian as ex-
pected [44]. Initialization to some reasonable values in the

hole might speed up the convergence. While in general
isotropic diffusion is noticeably imperfect for image inten-
sities, it makes more sense for orientation diffusion, because
the human visual system is sensitive to contrast and sharp-
ness changes, but less so to curvature changes, which are
also much less frequent. A more complex inpainting based
on the Euler energy is found in [45], the energy defined
on a curve is presented in [46], and in [47] it is adapted
for highlights removal. We can similarly attempt to apply
orientation diffusion, but we cannot apply it naively due
to the modularity in measuring the angels. Perona has re-
ported thoroughly on how to apply orientation diffusion in
images [44]. He defines a new energy function motivated
from various physical forces, which can deal with the am-
biguity resulting from angle subtraction. Jiang et al. [48]
proposed to extend the idea of orientation diffusion to in-
painting, especially for missing DCT blocks during image
transmission. Contrast changes inside the hole cannot be
approximated in this way. It is also possible to learn dif-
fusion filters as is done in [49] within an MRF framework.

Masnou and Morel [8] presented disocclusion using level
lines of larger objects in images using variational formula-
tions and level sets, yet still solved the problem using tra-
ditional vision techniques. The original variational contin-
uation formulation was done earlier by Nitzberg, Mumford
and Shiota[4], however it was done for image segmentation,
and was based on T-junctions in the edge map which are
generally few and unreliable in a natural image. Masnou
and Morel had extended the idea to level lines which bound
upper level sets defined at each gray level λ by

Xλu = {x | x ∈ S, u(x) ≥ λ} (10)

Thus the insight here is to continue each level curve into
the hole left by the occluding object, rejoining the same
level curve outside the hole.

Let us define more precisely the BV image model as-
sumption that is commonly adapted. Once again define S
as the image domain, and u ∈ L1(S) as a function over
the domain. If u’s partial derivatives at each site are mea-
sured with finite total variation in S, then u is a function of
bounded variations. The class of bounded variation func-
tions on the domain S is denoted by BV (S) [37][50][10].
We can define the total variation (TV) Radon seminorm
as the energy equation

ETV (u) =
∫

S
|Du|dx (11)

= sup{
∫

S
u∇ · ϕdx | ϕ ∈ C∞0 (S), |ϕ| ≤ 1}

The energy ETV is minimized in the TV inpainting
scheme [51][52]. A set X ⊂ S has a finite perimeter if
its characteristic function χX ∈ BV (S) (χX = 1 when
x ∈ X and χX = 0 otherwise). Furthermore, the bound-
ary length of the set X when it is Lipschitz continuous is
given by Perim(X) = ETV (χX). The TV inpainting is
restated using level sets in the Coarea formula [36][50]

ETV (u) =
∫ ∞

−∞
Perim(Xλu)dλ, (12)
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which shows that the total variation inpainting is equiva-
lent to minimizing the length of the level lines, and results
in piecewise straight level lines in the inpainting domain.

Masnou and Morel propose to minimize level lines using
the functional

E(u) =
∫

S
|Du|

(
1 +∇ · Du

|Du|
)

dx, (13)

where as usual u|S\Ω = u0|S\Ω the observed function out-
side the hole. Note that the divergence ∇ · Du

|Du| is the cur-
vature κ of u. This energy can be interpreted as driving
the minimization of the length of the level lines (Du), and
the angle total variation. Adding 1 is necessary not to
discount the length despite little change in the orientation
of the line. This is a particular form of the Euler elas-
tica discussed later on. In order to minimize this equation,
the T-junctions of each level line with the boundary set Ω
are first detected. A dynamic programming approach can
pair up all T-junctions in a way that minimizes the cost
function in Eq. 13.

Bertalmio and Sapiro et al. have proposed inpainting
using the mechanism of PDEs and diffusion [5]. The in-
painting smoothly propagates the image information along
the level lines direction (isophotes) from outside to inside
the hole. The isophote direction is normal to the gradient
∇u, and is denoted by ∇⊥u. It is the direction of least
change in gray values. The image information propagated
is an image smoothness measure given by the Laplacian

L(u) = uxx + uyy. (14)

While the energy equation is not explicitly given in this
work, the propagation of the change in image smoothness
along level lines is given by the PDE

∂u

∂t
= ∇L(u) · ∇⊥u. (15)

This evolution only applies to u(x) when x ∈ Ω, with the
boundary conditions given by B. We can easily see that
at a steady state when ∂u

∂t = 0 the direction of largest
information change is perpendicular to the isophotes as
required. The implementation requires numerical stability
considerations as discussed in [53].

It is important to notice from Eq.15 that the image
smoothness will continue along isophote directions in a
straight line until a conflict occurs. Therefore, it is pro-
posed that after every few iterations of inpainting, there
are a few iterations of an anisotropic diffusion that is sup-
posed to preserve sharpness. Figure 1 shows an artificial
example of two objects and an inpainting domain, and it is
shown that this method can inpaint preserving shape, and
(nearly so) sharpness. However, it is possible to see loss
of sharpness at the inpainting regions. Additionally, these
structure diffusion techniques have a general fault with in-
painting textured objects, which have been addressed with
limited success by textural inpainting. It follows that 3D
textural inpainting is required for 3D objects as well, al-
though both structure and texture definitions in 3D involve
recovering point locations which is not necessary in 2D.

Fig. 1. Synthetic image, where Ω is the white region, and the in-
painting result.

In their follow-up paper [9], Bertalmio, Bertozzi and
Sapiro had restated the inpainting proposed in Eq. 15 us-
ing an analogy to fluid dynamics. The inpainting diffusion
can be considered as a transport equation that convects
the image intensity along level curves of the smoothness.
If we define the velocity field v = ∇⊥u, then u is convected
by the velocity field v. The image model is now formulated
as Navier-Stokes governed incompressible fluid flow, where
we can find a stream function Ψ such that ∇⊥Ψ = v. Ad-
ditionally, the vorticity is given by ω = ∇ × v which in
2D is a scalar equal to the Laplacian of the stream L(Ψ).
At the steady state we can describe the vorticity in the
absence of viscosity as

∇⊥Ψ · ∇L(Ψ) = 0. (16)

The equivalence to the image diffusion process is immedi-
ately seen. The stream function Ψ is equivalent to the im-
age function u, the fluid velocity v = ∇⊥Ψ is the isophote
direction ∇⊥u and the vorticity ω = L(Ψ) is the same
as the image smoothness L(u). The viscosity ν is the
anisotropic diffusion factor. We obtain a vorticity trans-
port equation for the image

ωt + v · ∇ω = ν∇ · (g(|∇ω|)∇ω), (17)

The inpainting proceeds in a similar manner to the previ-
ous method. The results are also similar to ones previously
reported, yet the running time is significantly reduced due
to faster convergence and better optimization using estab-
lished methods in fluid dynamics. In [54][55] a similar style
inpainting is suggested, generalized to a common vector-
valued diffusion functional based on the trace of product
of image Hessian and anisotropic tensor, which could take
the form of an oriented Laplacian.

More extensive formulations have been developed us-
ing higher order PDEs and the Bounded Variations image
model. Let the boundary data u0 ∈ L∞(∂Ω) and if θ is
the gradient direction vector field. A variational problem
can be formulated requiring the gradient field to be in the
direction of θ after separate diffusions of both u and θ [10].
A relaxation of this condition can be expressed as

θ · ∇u = |∇u|, |θ| ≤ 1. (18)

Ideally θ = ∇u
|∇u| , yet at points where the gradient is zero

θ is null as well. We can define a functional that will help
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Fig. 2. Progress frames in the process of inpainting red text.

enforce such a constraint as

F (u) =
∫

Ω

|∇u| −
∫

Ω

θ · ∇u, (19)

After some manipulation we get the equivalent minimiza-
tion of the energy function

E(u) =
∫

Ω

|∇u|+
∫

Ω

(∇ · θ) · u (20)

with the admissible class of functions A(u) = {u ∈
BV (Ω) | |u(x)| ≤ ‖u0‖∞, u|B = u0|B}. The existence
of a function u for such a minimization is provable.

The minimization of the energy in Eq.20 can be done
in a gradient descent search by solving the Euler-Lagrange
equation for u, giving rise to the PDE

∂u

∂t
= ∇ ·

( ∇u

|∇u|
)
−∇ · θ (21)

This solution can reconstruct the structure inside the hole.
However, discontinuities in gray levels are not modeled,
and worse, the vector field θ is unknown. Therefore, we
have to additionally impose a prior on the propagation of
gray levels inside Ω.

The Euler elastica curve is the equilibrium curve of the
elasticity energy given by

ε(C) =
∫

C

(a + bκ2)ds (22)

where C is the curve of integration, ds is the arc length
element, and κ(s) is the Eucledean curvature [11]. The
Euler elastica model imposes regularity on the smoothness
of the curves allowed. The energy minimization of such a
curve is the ML estimation of a geometrical walk where
the rotation each step is dependent on the step size, which
are exponential i.i.d. random variables.

Instead of connecting level curves individually the elas-
tica is reformulated on the domain Ω similarly to the
Coarea formula. For a level curve u = λ we have dλ

dθ =
|∇u|. Then the integral

∫ 1

0

∫

C(u=λ)

(a + bκ2)dsdλ = (23)

∫ 1

0

∫

C(u=λ)

(a + bκ2)ds|∇u|dθ =
∫

S

(a + bκ2)|∇u|dx,

since ds is orthogonal to dθ. This translation can inpaint
the entire domain. Relaxing the definition of the elastica as

formulated above we can write a functional of the following
form

E(u) =
∫

Ω̃

|∇u|(a + b|∇ · θ|p), (24)

where p ≥ 1 gives weight to the curvature, and describes
a more general p-elastica model. As in the Masnou and
Morel approach, this model attempts to minimize the
length plus angular variation of level sets. If we wanted
to connect curves farther away using the curvature, then
b/a would be large. If, however, a = 0 then the recon-
struction might be ambiguous when the curvature is zero.
When b = 0 this is the TV inpainting. Chan and Shen [11]
provide further analysis on Euler elastica. They suggest
that for p-elastica optimization if p ≥ 3 then the model
blows up (i.e. E(u) →∞) if the function u has stationary
points in Ω. They also encourage p > 1 to restrict sharp
curvatures.

Chan and Shen further allow a relaxation of the bound-
ary constraint by including it in the functional as follows1

E(u, c) =
∫

Ω̃

(a + bκ2)|∇u|dx +
c

2

∫

S
(u− u0)2dx. (25)

The first term is the prior model in the Bayesian view,
and the second is the the data model based on the ob-
served image values. From the Euler-Lagrange derivation
it is seen that two orthogonal processes form this inpaint-
ing. One encapsulates the transport diffusion of Eq. 15,
while the other is an application of Curvature Driven Dif-
fusion (CDD) [12]. Hence the Euler elastica model re-
markably contains both transport and diffusion inpaintings
suggested, and can be thought of as a more general model
superceding previous inpaintings.

Results using this type of inpainting are shown here for
a portion of the Lena image in Figure 3. Fig. 3b. shows
the inpainting done on the gray levels, while 3c., 3d. and
3e., show a particular level set with inpainting of p = 1 in
3d. and p = 2 in 3e. It can be seen that for p = 2 the
curvature is not penalized highly enough so that it seems
smoother when p = 1.

C. Textural Inpainting

The inpainting models presented thus far have only used
boundary data and prior assumptions about the smooth-
ness of structures in the hole. For textured images,
smoothness priors alone may not reconstruct the object
faithfully, and a statistical or template knowledge of the

1 In the following the curvature is replaced by a diffused curvature
κ, called the weak-curvature, that the authors proved some equiva-
lence conditions on.
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Fig. 3. Inpainting of a hole. (a) Original Lena image with hole. (b) Inpainting of the hole with p = 1. (c) The hole on one level set. (d)
Inpainting with p = 1. (e) Inpainting with p = 2.

pattern inside the hole is needed as well. We know from
MRFs that modelling the statistics of the energy function
is a common practice. Likewise, there are methods that
utilize global information about the image to further as-
sist in inpainting the hole.

Levin et al. [17] suggest that global statistics about the
image be estimated from outside the hole area, and the hole
be inpainted with probability maximizing strokes. The
approach taken by the paper is to extract some relevant
statistics about the image and form a table for their prob-
abilities and then combine them in an MRF framework.
A max-product belief propagation algorithm, which is a
message passing algorithm, is used for the optimization.
Since there are loops in the MRF formulation, the belief
propagation gives only a local maximum in a large neigh-
borhood [56].

A substantially different approach assumes that we have
the object to be inpainted in another image. Kang and
Chan et al. describe such a template based inpainting ap-
proach [18]. The method has three stages: (1) finding and
matching landmark points. (2) calculating the warp be-
tween the template and the current object. (3) inpainting
the object.

Landmarks are any feature points p that can be ex-
tracted from the images. Given the set of feature points of
the original image pi and the template image qi, each pi is
assigned a point qi that minimizes some distance measure.
Since the inpainting region Ω covers the object of interest,
some feature points cannot be detected. The matching
needs most features to be detected, so it is preferable to
extract less features in the first place.

After finding the corresponding landmarks, the inter-
polation proceeds according to a thin-plate spline which
minimizes the bending energy of u: E =

∫
S
[u2

xx + u2
xy +

u2
yy]dxdy. Solving the minimization is equivalent to inter-

polating with bi-harmonic radial basis functions such as
K(r) = r2 log |r ∗ r|. Then, the warp U(x) from the given
image to the template is given by

U(x) = Ax + t +
n∑

i=1

wiK(|x− pi|), (26)

where n is the number of corresponding landmarks.
Finally, to minimize intensity discontinuities, an inpaint-

ing approach is used to derive an optimal image u from the
image given with the inpainting domain u0 and the tem-
plate u1. The energy functional for the TV inpainting is

formulated as follows

a1

∫

S
|∇u|+a2

∫

S\Ω
|u−u0|+a3

∫

Ω

|u−u1(−U(x))|. (27)

The first term is the TV inpainting on the entire image
domain, the second is the data term which tries to enforce
boundary conditions, and the third is trying to make a
smooth thin-plate spline interpolation. A unique insight is
to try and optimize the copy of the template for the image
instead of naively copying it.

One result of running this algorithm is shown in Figure 4,
which shows the recovered landmarks for the girl in the
middle in two different photographs, and a correction of
the first photograph to make the girl smile using the whole
face as an inpainting domain.

Fig. 4. Two pictures with same people in (a) and (b). (c) The face
of the middle girl in (a) was inpainted with the template image (b).
(d) Landmarks for the middle girl in image (a). (e) Landmarks for
the middle girl in image (b).

A larger number of global information-based techniques
concern textural inpainting and many more texture repli-
cation. A texture can be generated copied from examples
or procedurally from statistics, though procedural meth-
ods are hard to apply for inpainting applications. The
most popular texture synthesis approach for inpainting is
exemplar-based synthesis.

Criminisi et al. [14] have proposed a patch exemplar-
based inpainting where the inpainting order depends on the
structure in the image. Exemplar-based texture synthesis
takes windows Ψ(i) centered at a pixel i, and computes
the Sum of Squared Differences (SSD) match d with all
available sample texels, and the best matching patch is
copied [57].

Their insight is that the ”inpainting front” should prop-
agate along linear isophotes first, and secondary for all the
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other pixels in the hole, thus making the inpainting rea-
sonable regardless of the boundary shape of the inpainting
region. In contrast, a concentric filling-in of texture exem-
plars is sensitive to hole boundary. Initially, pixels in B
are assigned the confidence value C = 1 and pixels in Ω
are assigned C = 0. The confidence C(i) and data D(i)
terms are defined as follows

C(i) =

∑
j∈Ψ(i)∩Ω C(j)

Area(Ψ)
, D(i) =

|∇⊥u(i) · ∇∂Ω(i)|
γ

.

(28)
The area of Ψ is known from the patch size and γ is a
normalizing factor for intensities. The confidence term
states that the more pixels that are already inpainted in the
patch, and the higher confidence they each have, the higher
is the confidence in the matching of the patch. The data
term models the strength of the isophotes hitting the front
∂Ω, and the stronger this flow is, the higher priority should
be given to this patch to be duplicated first. Finally, the
priority is defined for all pixels i in ∂Ω as P (i) = C(i)D(i).
The boundary pixels are then sorted according to the pri-
ority, and the highest priority pixel is processed first. After
a matching patch has been copied, the confidence value of
the patch is applied to all copied pixels, and the front ∂Ω
is recalculated along with priorities for affected pixels on
it.

Figure 5 shows an image inpainted first along stronger
edges, and then in smoother regions. This approach has
very convincing visual concealment if discontinuities can be
avoided. Similar formulation has been used for inpainting
in videos as well [16].

D. Structural and Textural Inpainting

Criminisi et al. [14] tried to incorporate structure into
textural inpainting using a very insightful principle, where
texture is inpainted in isophote direction according to its
strength, which however was limited to linear structures
often resulting in discontinuities where textures meet. We
notice structural inpainting tries to enforce a smoothness
prior yet preserve edges or isophotes. Then we can define
the texture image from the decomposition u = us + ut,
where us is the structure component and ut is the tex-
ture component [58][13][15]. This is a redefinition of the
texture in the previous subsection, which is actual pixel
colors. See Figure 6 top row for sample results from such
a decomposition. The top right image is referred to as a
texture image.

Bertalmio et al. have extended their inpainting to tex-
ture and structure [13] according to the decomposition
above. In order to get the texture outside the hole they
try to minimize the following functional:

E(us) =
∫

S

|∇us|+ ν‖u− us‖, (29)

The first term in the energy restricts the function us to be
in BV (S), and tries to get the TV ML function us, while
the second term tries to minimize the residual that is the
texture image ut. The balance is delicate and depends on

Fig. 5. Progressive stages in the texture inpainting of the image in
(a).

the constant ν. It is shown that if ν is small then the de-
coupling of texture and structure is presentable. The norm
of the texture term can be defined in a new space of oscil-
latory functions, which in some sense can be considered as
the dual of the BV space.

The benefit of separating texture from structure is in the
ability to inpaint each sub-image separately. For textural
inpainting, an exemplar-based method is used for copying
pixels rather than patches; Inpainting proceeds from the
hole boundary to the center of the hole Ω with pixel val-
ues assigned only once [59]. For each hole pixel i ∈ ut,
compute the distance measure d from the neighborhood
of i, to each possible boundary neighborhood. The dis-
tance measure is the SSD normalized to the number of
available pixels in the neighborhood of i. The color of i
is inpainted with any boundary pixel with d less than a
threshold. Note that such a texture construction will not
produce a unique solution, and textures may not reproduce
the sample characteristics faithfully. One solution to avoid
neighborhood dependency cycles as suggested by Wei et
al [60] is to reference lower resolutions and previous iter-
ations of the synthesis. Unfortunately, it is hard to see
how it can be utilized for inpainting. Another approach
that can alleviate the problem is to replicate patches in-
stead of single pixels. This however, can introduce texture
discontinuities as noted previously.

For the subimage us, inpainting proceeds as in [5] given
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in Eq. 15, although any other structural inpainting is ap-
plicable too.

The results given show promising improvements over
non-textural inpainting. Shown here are two results: Fig-
ure 6 shows a section of a textured image and the decompo-
sition into texture and structure, the inpaintings of both us

and ut, and the recomposition of u. The approach does a
good job in continuing simple structures, yet over-smooths
a bit at the elbow. The second result in Fig. 7 shows a
comparison of the proposed method with the results of
non-textural inpainting or texture synthesis alone. It is
evident that this approach has a more realistic reconstruc-
tion. Also, the over-smoothing in this mixed inpainting is
still easily detectable, and can suggest an inadequate sep-
aration of structure from texture. This seems to indicate
that the problem of separating structure from texture is
ill-posed, since arbitrary thresholds separate texture from
structure edges.

Fig. 6. Top left: original image. Top center and right: structure
and texture decomposition. Bottom left: inpainting recomposition.
Bottom center and right: inpainting of structure and texture images.

Fig. 7. From left to right: The original image with the hole, in-
painting using texture and structure, using texture alone, and using
non-texture inpainting.

Grossauer [15] had suggested a more extensive structural
and textural inapainting framework, where first the image
is filtered using a curvature minimizing diffusion to gener-
ate us. Then us is inpainted using a complex Ginzburg-
Landau equation which has a diffuse-reaction form, where
reaction is inversely proportional to edge width, and post-
processed to clean the edges. Then the structure image is
segmented using a scalar Ginzburg-Landau equation. The
diffusion is constructed to have an effect like region grow-
ing that depends on image gradient, thus edges separate

regions. The texture is then inpainted using the tree-based
exemplar replication algorithm by Wei and Levoy as in [60].
The exemplars must be taken from the same region as the
pixel to be inpainted. This way, the segmentation helps to
avoid replicating mixed texture blocks. Also, segmentation
of a structure image is easier than segmentation of a nat-
ural image. This algorithm improves upon structural and
textural inpainting, but the same problems of separating
texture and structure still prevail.

In another segmentation approach, Jia et at [61] have
proposed texture inpainting where the image is first texture
segmented, and then region boundary curves (considered
here as structure) are continued into the hole using tensor
voting and B-Splines. Then the texture is inpainted in
each region using ND tensor voting, for a neighborhood
of size N , with adaptive scaling. Texture tensor voting
turns out to be a very attractive method for maintaining
curvature, unfortunately the method does not perform well
on complex structures. Segmentation is also quite hard
to achieve correctly. However, the need for segmentation
and continuation of regions generalizes into 3D as the need
to continue surface separate from texture/3D detail, and
thereafter the inpainting of the 3D detail and color.

E. Surface Inpainting

Inpainting is potentially a very important disocclusion
step for image-based rendering if we can do so in 3D. It
is important to realize that for photorealistic rendering we
are not interested in volume visualization, only in render-
ing the visible surface. In 3D we can represent the data
as a volume and use similar inpainting as in 2-space for
structural inpainting. While it is possible to generalize
the inpainting from 2D to 3D by inpainting on another di-
mension, that allows diffusion of the surface with empty
space, and involves higher computational complexity than
inpainting only the surface of an object.

There are numerous methods for shape reconstruction
from 3D points (variational and otherwise), based on im-
plicit surfaces (e.g. [62][63]) or explicit surfaces (e.g. [64]),
which implicitly fill in holes as well. These methods do not
attempt to reconstruct the real surface shape in the hole
so instead the reconstruction is in the shape of the initial
bounding surface. There are also methods which attempt
to explicitly recover missing surfaces by fitting parameter-
ized curves [19] to boundary date. Since explicit surfaces
are fairly constrained, variational approaches are more at-
tractive.

Verdera et al. [20] have extended their image inpainting
model to 3D using the diffusion equation Eq. 15. They
redefine the 3D inpainting domain for surface reconstruc-
tion as follows: Let A ⊂ R3 be a set representative of the
volume spanned by the surface. Then the observed func-
tion u0 is defined outside the hole as u0 = χA. Let us
define a box Q around the inpainting region. This box
contains both the inpainting region and enough of u0 to
inpaint from. We can define the boundary B = Q \ Ω̄ (re-
call that Ω̄ is the closure of the hole Ω). If we construct the
smallest ball possible containing the inpainting region (the



10

gap), then we can add part of the ball’s surface to cover
the gap in the surface u0 in Q. This is the initial value in
the inpainting region. From here on the equivalence to 2D
is established and the inpainting can proceed in a similar
manner. Notice that the equivalence is between gray-scale
in 2D and pixel locations in 3D. We argue that this equiva-
lence should extend to texture as well, where 3D texture is
defined properly as pixel displacements. The 2D problem
is harder since texture shading and color are combined in
a single pixel.

A few results of this method trying to inpaint parts of
a laser scan of Michaelangelo’s David which have been oc-
cluded are demonstrated in Figure 8. The reconstruction
seems to be quite successful. However, it should be noted
that the regions are fairly small, and as partially evident
in the images here, in 3D the problem is confounded when
the surfaces have much larger curvature. This result should
demonstrate how effective it could be to have inpainting for
depth recovery and novel view generation in image-based
rendering, in particular when more advanced inpainting
approaches geared for such a task are available.

Another interesting instance of inpainting in combina-
tion with surface reconstruction is given in [65]. In their
research, they attempt to reconstruct the 3D surface of
all objects in the scene, given a single 2D image. The
reconstruction is based on a Bayesian framework that in-
volves prior knowledge of the type of objects and other
statistical principles like similarity of angles for polyhedra
objects and mirror symmetry. The algorithm starts with a
segmentation and primal sketch of the scene, after which
it attempts to reconstruct the 3D structure of objects so
that their projection to the image is preserved. The objects
are reconstructed so that they maximize their probability
given all the statistical principles guiding possible config-
urations. Thus, the reconstruction might need to add ver-
tices, faces or paths to define the 3D shape that is most
probable. This approach is limited in its application do-
main, and it cannot produce highly realistic images, yet it
does provide many principles that inpainting could follow,
and in fact seems to indicate what textural inpainting can
do in 3D.

III. Inpainting in Image-based Rendering

Image-based rendering is a class of various rendering
approaches in which the geometrical modeling phase of
traditional rendering is replaced by an image acquisition
process, and as a result the rendering phase might vary
significantly from established rendering approaches. Ini-
tially, image-based rendering was primarily used to speed
up rendering by tweening rendered frames. Today, a more
important use is to acquire realistic objects that are very
complex to model on a computer. This section presents a
very short survey of image-based rendering, emphasizing
the necessity of incorporating inpainting methodology.

A. View Interpolation

The earliest techniques in image-based rendering were
based on warping and morphing principles. View inter-

polation techniques take images as input, and use them
to create novel views directly by warping without recon-
struction first [21][22][23]. In contrast, newer techniques
involve 3D reasoning, with a depth ordered warping fre-
quently used for reprojection.

One of the earliest 3D view interpolations was suggested
by Chen and Williams [21]. In their approach it is assumed
that all images have associated range data, and the cam-
era location in scene coordinates is known. For each pair
of adjacent viewpoints, an image morph map is established
in scene coordinates by taking the displacement vectors of
the points in the first view transformed into the second
view coordinate system. Then to render a novel view from
a viewpoint on the line between the two viewpoints, the
first view pixels are linearly interpolated along the morph
map. This warping produces the correct parallax only in
two specific cases: where the camera moves in parallel with
the image plane, or when the camera moves in a perpen-
dicular direction to the image plane, in which case more
work needs to be done. Special considerations for visibil-
ity ordering are needed. Image pixels are sorted according
to their depth and projected in a back-to-front order to
the novel view. The visibility problems that emerge are
many pixels contracting into one, and pixels expanding
leaving gaps. To solve for ambiguity in pixel contraction,
the pixels may need to be resorted only when the view
change is larger than π/2 degrees. When pixels expand
however, this is a disocclusion problem. The filling-in al-
gorithm suggested was to interpolate the four corners of
the pixels and then interpolate their color in the rendered
image. A different method is actually used which is faster
but less accurate. It involves painting the image with a re-
served color, and over-painting it with the warped image.
Gaps are detected by checking for reserved colors in the
image, and are interpolated using their neighboring pixels
in the image. This disocclusion problem happens in many
other image-based rendering techniques as well, including
some that are based on volumetric reconstruction. These
are normally solved in the way described above. Applying
trivially an inpainting algorithm to the images generated
with holes will already result in much improved rendering.

B. Multi-view Stereo Models

Stereo matching-based techniques attempt to discover
the 3D structure of the scene using point correspondence
from multiple views of the scene. These techniques are ex-
tended and adapted for the usage of image-based render-
ing. The basic approach of stereo matching is to calculate
epipolar geometry using sparse point correspondences, and
then use it to restrict the search space to a line for recov-
ering a depth image by dense matching [66].

A similar disocclusion problem due to pixel expansion
arises in Plenoptic modeling [24], which generates novel
views using warp flow-fields. Using a form of multiview
stereo-matching, Plenoptic samples are projected onto
cylindrical manifolds. Then cylindrical epipolar geometry
and dense correspondence are established between any two
neighboring sample cylinders in space. Here, the McMil-
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Fig. 8. The original mesh model is converted to a volume, inpainted, and then triangulated again and shaded. Shown are the mesh before
and after inpainting.

lan depth ordering algorithm is first presented for warping
a source cylinder to the novel viewpoint in occlusion com-
patible order without depth sorting. This technique can be
proven to apply to any shape of projection manifold, and
is commonly used for image-based renderings that involve
reprojections. This warping produces the same occlusion
tears in space, and inpainting is again necessary.

We can think of multiview stereo matching as a construc-
tion of a generalized disparity space in common coordinate
frame that all other views are transformed into [26]. Find-
ing the depth for a pixel consists of finding the best dispar-
ity value given the neighborhood and all images available
(taking disparity to mean inverse depth). Generally, dense
matching has the following steps: (1) For each disparity
value a pixel can take, calculate its support from all avail-
able images using some matching cost like SSD or variance.
(2) Aggregate support from neighbors in disparity space,
e.g. by diffusion. (3) Find the best score disparity value
at each pixel. Steps (1) and (2) are often combined for a
window-based stereo matching approach. Window match-
ing tends to smooth pixels at depth discontinuities. Steps
(2) and (3) can be combined if we use a global optimiza-
tion that tries to model the surface as well2. We have seen
how to use an MRF of a robust prior model for piecewise
continuous surfaces in Eq. 6 (recall the duality between re-
constructing surfaces and holes). Additionally, we’ve seen
that inpainting can reconstruct structures and holes bet-
ter by using intuitive anisotropic functionals. Therefore,
a straight forward application of inpainting to steps (2)
and (3) above for surface extraction would already be a
significant contribution to reconstructing 3D objects, the
visible and occluded parts, which is not yet done. More
over, steps (1) and (2) can be made better by inpainting
if occluded pixels are aggregated as well over images and
locations in space.

Occlusions are a two-fold problem for multiview stereo.
First, they make feature detection problematic, since oc-
clusions can look like structure features (e.g. lines and
corners). Reliable features that have correspondence in
multiple views are necessary for camera calibration, or pro-
jection matrix recovery, and without it the entire match-
ing process would be inaccurate. Second, occluded pixels

2 Note that gradient descent optimization does not require knowing
all the probabilities, which eliminates the need to calculate support
for every disparity value for all pixels.

might not be matched even if they are visible in some im-
ages, or they might not be visible at all. Efforts to combat
these effects are specialized and do not tackle the systemic
problem of occlusions. Favaro et al. have suggested a way
to detect different types of T-junctions [68], which should
help make a more accurate detection of corner features
(and incidently would also help inpainting by detecting
occluded lines to be continued). Kang et al. have sug-
gested a few techniques to help matching [69]: For area-
based matching, they use spatially shiftable, temporally se-
lectable windows; Normally, disparity support aggregation
is computed over a window in image space centered at the
pixel of interest p in a scheme such as SSSD (Sum of Sum
of Squared Differences) where support is summed over all
images. However, for pixels near a depth discontinuity the
neighborhood changes in different images, causing a bad
match measure. Spatially shiftable windows allow moving
the window from being centered at p (near a depth dis-
continuity) to a location where it does not cross the depth
discontinuity, such as a corner of the window. Likewise,
for pixels that are occluded in some images but not in the
others, temporal selection of windows attempts to heuristi-
cally select only windows in images where p is not occluded.
Local aggregation techniques also exhibit more difficulties
matching textureless regions, so they suggest regressively
enlarging window sizes using a criterion of variance on the
SSSD measure.

Kang et al. [69] also discussed a global energy minimiza-
tion for surface reconstruction. Visibility reasoning is used
in a similar way to volume reconstruction techniques. The
error function is modified by multiplying it by a binary
visibility factor that indicates whether a pixel is occluded
at some depth:

ESSSD(i) =
∑

k 6=i

∑

(x,y)∈S

v(x, y, z, k)g
(
ui(x, y)−Hk

i (z)uk(x, y)
)
,

(30)
where i is the reference image we are computing a depth
map for, u is the observed image function, S is the domain
of u, z = z(x, y) is the depth associated with pixel (x, y), v
is the visibility of a depth pixel in image k, and Hk

i (z) is the
homography from the plane of depth z in image k to the
image plane of image i. This process proceeds iteratively
by computing the pixel depths using graph cuts, and com-
mitting a percentage of the best matching depths in the
next iterations to assure convergence. Graph cuts have
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been shown to be usable for a class of energy functions up
to three parameter clique potentials [70]. A less restrictive
symmetric visibility constraint is assumed in [71].

If the surfaces in the image have parametric descrip-
tions, and we try to model them, then our depth matching
is made more accurate due to added constraints. Layered
images are suggested in [31], where every image is com-
posed of several layers with transparency. The subclass of
planar layers is discussed since it allows easier view trans-
formations via Homographies. Since scenes are hardly ever
exactly planar, each pixel on a layer has also an associated
offset depth from the layer. If we take this ideology fur-
ther, every surface should have its own parametric descrip-
tion with 3D texture. Inpainting does not directly provide
parametric surfaces, however it produces surfaces that are
reasonable visually, and so likely provides an even stronger
constraint.

Szeliski suggested a way to increase matching accuracy,
in a similar way to temporal selection [26]. In order to
represent pixels that are occluded in the reference view
but are visible in some images, he suggested key-frame
views, where each key-frame has it is own depth map con-
sistent with the others. Finding the key-frames is problem-
dependent and can be, for example, some collection of char-
acteristic views. The brightness compatibility term is de-
fined as the SSSD energy given in Eq. 30, with the summa-
tion going over all key-frames and over the support neigh-
borhood for the key-frames (all the views that are required
to match the specific key-frame view). Also, the equation
is modified to include a weight wik that represents the
influence of view k on the key-frame view i. Two addi-
tional terms used to enforce constraints among the multiple
depth maps are: a depth compatibility constraint that re-
quires mutual consistency between depths of neighboring
key-frames, and a depth smoothness constraint that en-
courages depth maps to be piecewise smooth. Rendering
is accomplished by warping key-frames to the new view-
point. Combining multiple depth maps can be done by
fusion techniques such as the Curless and Levoy volumet-
ric integration technique. This fusion technique is mathe-
matically sound, but might not reconstruct typical object
curves as well as an inpainting approach would do, which
would also naturally enforce the depth smoothness con-
straint. Inpainting though, can be applied to achieve equal
results3 without the costly multiple depth maps, by using
an algorithm with visibility determination.

After getting the depth for all the pixels in the reference
frames, we can render them by converting them to vox-
els and applying volume visualization techniques [72], or
by tessellating them and rendering using raster conversion
techniques [73][74]. The latter is predicated by the real-
ization that only surfaces are extracted by image-based
methods, and in-fact are all that is necessary 4. Exist-
ing multi-view reconstruction techniques, including multi-
baseline stereo described here, produce noisy and some-

3 Ignoring view direction dependent illumination effects.
4 Transparency and mixed color pixels at discontinuities are gen-

erally not handled, since they are too complicated.

times oversmooth results. By applying surface inpainting
in the disparity space, we can perform better depth re-
covery with smooth surfaces and sharp edges, and recover
occlusions, which in itself can help produce better matches.
Naturally, not all objects are composed of smooth surfaces;
3D textural inpainting should be handled as well.

Increasing the number of depth maps to the number of
source images, Virtualized Reality was proposed in [25]. A
real event is virtualized in a 3D Dome by recording in real-
time the images from all cameras positioned in the Dome
at regular intervals. A Visible Surface Model (VSM) is con-
structed for each camera viewpoint using a multi-baseline
stereo algorithm, using at most six neighboring views. The
depth data is tessellated and triangles with large depth dif-
ferences are considered as a discontinuity and marked as
hole triangles. Finally, the mesh is decimated not to ex-
ceed a number of error conditions. Most importantly, the
mesh is required to stay more refined near depth discon-
tinuities, since it is assumed novel views will not be far
away and humans are more sensitive to depth errors near
object boundaries. A VSM is rendered via standard graph-
ics techniques such as Z-Buffering.

As the virtual camera moves in space, pixels that were
occluded in any one VSM can now be visible. Thus, it
is necessary to combine multiple VSMs to render an im-
age without holes. A reference VSM and two support
VSMs are chosen such that they define a bounding trian-
gle for the virtual camera’s ray. First the reference VSM is
rendered, with its hole triangles rendered into a separate
buffer. Then, the two supporting VSMs are rendered only
for pixels that are painted in the hole buffer. Finally, holes
that are still not covered are rudimentarily inpainted using
interpolation.

Figure 9 shows the results of a virtual camera moving
around a scene of a person swinging a baseball bat. The
shading errors around the person are where a support VSM
had to paint over the occlusion holes, and apparently there
are shading and geometry differences between two neigh-
boring VSMs. Here it does worse than the multiple depth
map method suggested by Szeliski [26] described above,
since there are no depth compatibility constraints between
neighboring VSMs. A second visual inconsistency that oc-
curs when animating the sequence is a jerky motion when
the reference VSM changes. This is again due to inconsis-
tencies in 3D geometry.

A Complete Surface Model (CSM) is suggested to resolve
these inconsistencies and enable interaction by generating
a consistent 3D surface model. The Curless and Levoy sur-
face volume integration technique is used to join all VSMs
with a marching cubes tessellation [73]. Aside from the vol-
ume accumulation method, there is no effort for detecting
occlusions, which results in poorer models. Volume space
projective reconstruction techniques address these prob-
lems. If inpainting methodology were used here it would
have enforced surface and texture consistency, and perhaps
even helped avoid the need for decimation.

Jin et al. [62] proposed a multiview stereo approach that
can accommodate higher order illumination models. The
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Fig. 9. The virtual camera drops down into a dynamic scene.

approach is similar to volumetric methods in that it re-
quires projections of the object into the images to be faith-
ful. A radiance matrix is established around each point on
the current surface based on the values of the projection
to the point’s neighborhood too all cameras views. Then
a PDE evolution is suggested for the particular case of
diffuse and specular reflectance according to Ward’s ellip-
tical Gaussian model, such that the rank of the radiance
matrix gets closer to 2. The evolution is supposed to con-
verge when the current shape estimates the radiance of the
true shape best. New views are created from projection of
the shape and interpolation of the radiance function. This
method is much less sensitive to differences in matching
pixel values due to shading, and it does not have holes, but
it’s reconstruction precision is not very high, and the sur-
face at hole points is in the shape of the original bounding
box rather than a reasonably reconstructed shape (like-
wise, in [75] a surface evolution is performed such that
it maintains visibility constraints). If the PDEs were ad-
justed to include some inpainting formulation it would be
able to handle holes and reconstruct a more visually plau-
sible surfaces.

C. Volumetric Reconstruction Methods

Volumetric reconstruction methods reconstruct the
scene in discretized scene space. This, apparently, is a
simpler approach for supporting visibility reasoning, and
so can provide superior matching quality than the depth
map methods.

The volumetric stereo reconstruction algorithm given by
Szeliski [26] initially performs the same steps of matching,
and aggregation as in stereo matching. To start with, vox-
els are filled at locations where the disparity match value is
large enough. The volume is then reprojected to each cam-
era’s view plane. Reprojection is accomplished by warping
volume depth layers using Homography in a back-to-front
order into the desired view. After reprojection, the pixels
in each image that are of the same color as the projected

volume are marked as visible. This helps to determine oc-
cluded voxels in the next iteration of matching and voxel
filling. He forms an optimization problem that tries to
adjust voxel colors and transparencies. This work has an
advantage over other volume reconstruction techniques in
that it enforces a smoothness constraint instead of a spe-
cific regularization criterion that real objects do not pos-
sess.

Seitz and Dyer were among the first to suggested a vol-
umetric reconstruction method. In their landmark paper
talking about voxel coloring they suggested a provably con-
sistent photorealistic reconstruction [30]. Photo integrity is
defined as a reconstruction that when reprojected onto the
reference images’ view planes reproduces them accurately,
preserving color, texture and resolution. The voxel color-
ing method tries to project the volume in a front-to-back
order onto all the images and color only the voxels that
are consistent across the images. They use a simplistic
approach requiring the convex hull of all camera centers
to be devoid of scene points in order to maintain proper
visibility ordering. There can be many consistent scenes
with a given set of images. A voxel V is considered color
invariant with respect to a set of images if for every two
consistent scenes S1, S2 it is in, its color in both scenes is
the same. A voxel coloring of a set of m images is therefore
the set of all color invariant voxels with respect to the im-
ages. The downside of it is that this reconstruction builds
perturbations volume (cusps) towards the cameras.

The construction of the voxel coloring can be formu-
lated inductively by adding one color consistent voxel to
a consistent set at a time. For each projected voxel it is
decided if the pixels in the images it projects onto match
in color. If so, then all the pixels it projects to are marked
as recovered, and they are not considered again for color
matching.

Kutulakos and Seitz [2] have extended the voxel color-
ing idea to that of the popular space carving theory and
approach. Space carving attempts to compute a photo-
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consistent shape from images of N perspective cameras lo-
cated anywhere in space outside the surface itself, as long
as the scene radiance is locally computable. Here they
use a plane-sweeping approach to reason about the photo
consistency (same as photo integrity) of each voxel, carving
out each inconsistent voxel from the volume. The complete
reconstruction, called the photo hull, subsumes all photo
consistent scenes, not just visible voxels as in Voxel Col-
oring, but has the same protrusions towards the cameras.
They claim that after getting such an ”equivalence class”
of all consistent shapes it is possible and even advantageous
to apply other a-priori constraints such as smoothness on
it. Inpainting can provide better constraints and will also
be useful in modelling occlusion. In addition to recovering
holes and hidden faces, inpainting provides continuation
principles that are structure and texture preserving, and
thus are significantly better for reconstruction than simple
smoothness assumptions. However, finding an appropriate
error function for retrieving the true shape from a photo-
hall might be quite complicated.

Space carving utilizes a plane sweep approach as in voxel
coloring by noticing that for cameras that lie in front of the
plane P , any voxel on the plane P cannot be occluded by
voxels behind the plane P , regardless of camera orienta-
tion. Hence, during the front-to-back plane sweep, surface
voxels are projected to each camera view in front of the
sweep plane, and their consistency is checked. In order
to consider consistency among all images – not just those
visible in front of the sweep plane – a multi-sweep space
carving algorithm repeats the plane sweep carving on each
principle axis x, y, and z, in a positive and negative di-
rection. Voxels that had consistency check performed on
them by at least two sweep planes also undergo a global
consistency check for all cameras they are visible in.

For photorealism, the number of voxels required is very
large, and the number of images required could be rela-
tively large as well (from a dozen to over a hundred). The
camera calibration has to be very exact too, here calibrated
with sub-pixel precision. The Gargoyle statue rendered in
Fig. 10 shows some results of this approach. In the Gar-
goyle renderings we can see that the surface is not accu-
rate and there are holes. The inaccuracies are from the
bulging effects and insufficient voxel resolution, and the
holes were carved since there were some inaccuracies due
to illumination effects or other noise. Applying continua-
tion principles here as in stereo matching is necessary but
not sufficient. We need an inpainting formulation to ac-
count for holes as well. It could additionally reduce the
number of images required to acquire.

One interesting way to represent volumes so that im-
age based rendering is facilitated fast is given by Layered
Depth Images (LDI) [31]. A layered depth image is the
projective space volume of a single virtual camera, with
few points on each ray added as necessary. The LDI can
be created using modified ray tracers or from real images
using an adaptation of voxel coloring. Thus, the LDI takes
slightly more space than an image with depth, but can
handle occlusion. The rendering of the LDI from a novel

viewpoint is decomposed into incremental warping com-
putations (using a scan line approach). Proper visibility
ordering is maintained using McMillan’s depth ordering
algorithm extended to the LDI. For each reprojected LDI
ray, the depth information is rendered in a back-to-front
manner, blending the previous output pixel values. The
rendering itself is accomplished using splatting with quan-
tized alpha values to facilitate Gaussian type kernels. The
LDI provides a fast parallax preserving rendering, but is
limited by construction to only close-by views of the scene.
An interesting observation is that if we partition surface
and 3D texture, then some of the multiple depths per ray
are actually texture representation. If we change the pro-
jection manifold to the surface shape, the points along each
ray will represent texture alone, and the entire process can
be made more photorealistic, especially when coupled with
inpainting.

Layered depth images were used for the purpose of rep-
resenting the entire 3D structure of objects in Image-Based
Objects (IBOs) [76]. IBO are represented using six LDIs
from an object centric point, the IBO COP. Multiple IBOs
can be placed in the same scene and rendered efficiently.

D. View Dependent Hybrid Methods

Some improvements in reprojection quality can be ac-
complished by using view dependent reconstruction for the
novel view point. That is due to preservation of source
image resolution and view dependent shading effects. We
have seen it used in Virtualized Reality [25] in the selection
of VSMs nearest to the new view.

A visual hull is another reconstruction result similar to
space carving, but without regard to lighting. The fore-
ground in the reference images is called the silhouette, and
shooting rays from an image COP through all its fore-
ground pixels creates a cone-like volume with the silhou-
ette cross-section. All the volumes of all the images are
combined using Constructive Solid Geometry (CSG) in-
tersection operation. When the number of images from
different view angles approaches infinity then the inter-
section is called the visual hull of the object. The visual
hull cannot reconstruct concave surfaces. Typically the re-
construction is done in volume space, as with space carv-
ing, which has similar granularity limitations, although im-
provements have been suggested using Delaunay triangu-
lations [77], they still do not provide image resolution. An
Image-Based Visual Hull (IBVH) construction is suggested
in [33] in order to avoid using volume space. For each pixel
in the desired view image, its viewing ray is projected onto
all reference images, then intersected with the silhouettes
obtaining a list of intervals, and then raised back to the 3D
viewing ray, for intersection of all such intervals to produce
the visual hall section for that ray. Coherence between the
rays is given by the epipolar constraint, which indicates
that the rays form a fan shape in the reference images.
Therefore, a scanline algorithm can be used, as long as the
silhouette edges are sorted angularly. The shading of the
visual hull is performed by selecting the color for the visi-
ble visual hull point from the reference image with closest
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Fig. 10. Gargoyle statue source image and renderings.

angle to the desired ray in the new view. This selection
is done for every ray, and it approximates view dependent
shading effects. To implement visibility checks efficiently,
3D visibility checks are reduced to 2D by using epipolar
planes.

The method results in a low detail volume with sharp
edges (for few cameras), yet it is smoother for surfaces
than a volumetric approach. The authors argue that using
the visual hull as a surface for texturing, the reconstruc-
tion is made to look more realistic than common methods.
This argument too suggests 3D surface extraction through
structural inpainting with textural inpainting displacement
is beneficial, and since inpainting both enforces more com-
plex smoothing and tries to keep detail it should be much
more effective.

One of the earlier and powerful image-based modelling
endeavors is the modelling and rendering of architectures
from photographs by Debevec et al. [27]. Initially, the
user has to roughly model the scene, which is thereafter
matched to the input images and adjusted to proper mea-
surements. A view-dependent texture mapping is applied
on the model. It is beneficial to mix texture maps of
more than one photograph using a blending function that
provides a smooth transition between multiple textures in
cases where the model is not fully visible from any desired
photograph. Any pixels missing after the texture mapping
are rudimentarily inpainted.

Buildings are likely to have more complicated 3D struc-
ture than the user had modelled with simple geometric
primitives, and the 2D texture mapping illusion of depth
does not extend well for angles off the original view. There-
fore, it is suggested to use stereo matching to extend the 3D
structure. Just as in stereo matching, where homographies
are used to transform each input image into the reference
image plane coordinates, photographs are warped onto the
model and projected into the reference plane. Thus points
on the model will have no disparity. Surfaces that do not
agree with the model will have a disparity in the warped
image caused by the projective distance from the corre-
sponding model point. The epipolar geometry is preserved
as well. Occlusions can be handled approximately too,
since we know the modelled geometry. The results of this

method are stunningly realistic, and show that not only
texture mapping over an established geometry improves
realism but also the geometry assists with further 3D re-
construction. To generalize the process and make it less
cumbersome, we need to automatically extract the shape
of the desired object, and then texture map it. We had
suggested in this section that inpainting can provide the
framework and mechanics for accomplishing both, and ad-
ditionally recover occluded surfaces not visible in any im-
ages, thereby providing realism not yet available for pho-
torealistic rendering.

IV. Conclusions and Future Work

This paper provides a review of digital image inpainting,
and tries to make the case for the necessity of its integra-
tion with image-based rendering.

Digital image inpainting has progressed from attempts
to disocclude a grey scale object in 2D using straight lines
to filling-in of arbitrary holes with texture and shape, and
inpainting surfaces in 3D. The current convergence of re-
search in structural inpainting seems to suggest that a
Euler p-elastica matches the perceived shape best (impres-
sively, it is also the mathematical culmination of previ-
ous inpainting methods), and textural inpainting is accom-
plished with texture exemplars.

Inpainting, however, still has long ways to go before it
can be as useful for image-based rendering as envisioned
in this review. While it seems obvious that an inpainting
functional is tailored for depth surface extraction, there are
no current methods that can inpaint large holes in 3D since
detail would be lost. Textural inpainting also proceeds ei-
ther in a statistical fashion or along linear isophotes alone,
and cannot restore more complex surfaces, where restoring
surfaces that are not limited to planes is essential for 3D
texture (defined by color and position). Learning global
statistics might help, but it is a daunting task. Exploiting
statistical principles, we can require symmetry and con-
tinuation principles to be upheld. Then the suggested 3D
inpainting would separate the smooth 3D surface from the
3D texture, and inpaint both properly with the assistance
of statistical heuristics.
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