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Abstract. In this paper, we present a novel successive relaxation linear program-
ming scheme for solving the important class of consistent labeling problems for
which an L1 metric is involved. The unique feature of the proposed scheme is
that we use a much smaller set of basis labels to represent the label space. In
a coarse to fine manner, the approximation improves during iteration. The pro-
posed scheme behaves very differently from other methods in which the label
space is kept constant in the solution process, and is well suited for very large
label set matching problems. Based on the proposed matching scheme, we de-
velop a robust multi-template tracking method. We also increase the efficiency of
the template searching by a Markov model. The proposed tracking method uses
a small number of graph templates and is able to deal with cases in which objects
change appearance drastically due to change of aspect or object deformation.

1 Introduction

Matching is one of the most important tasks in computer vision, and is key for stereo,
motion estimation, 3D object reconstruction, tracking, and object recognition. Match-
ing can be mathematically formulated as a consistent labeling problem, in which we
need to assign labels to sites such that a predefined energy function is minimized. For
consistent matching problems, labels are usually defined in a metric space and there-
fore the distances of labels can be measured. Although simple in concept, consistent
labeling is NP-hard in general. For some special cases, for instance, when sites have
linear or tree order, dynamic programming can be applied to solve labeling problem in
polynomial time. Another special case is when labels for each site have linear order, and
the metric defined in the label space is convex. In this case, polynomial-time max-flow
schemes [1] can be applied. Other searching schemes, e.g. branch and bound schemes
[2], whose worst and average complexities are exponential, have also been applied to
medium sized matching problems. For the general case in image matching, approxi-
mation algorithms are preferred. Relaxation labeling (RL) [3] was one of the earliest
methods for solving labeling problems, and has had a great deal of influence on later
matching schemes. RL uses local search, and therefore relies on a good initialization.
ICM — Iterative Conditional Modes [4] — another widely applied method for solving
labeling problems, is greedy and has been found to be easily trapped in a local mini-
mum. In recent years, graph cut (GC) [5] and belief propagation (BP) [6][7][8] have
become standard methods for solving consistent labeling problems. Graph cut based
methods have been successfully applied in matching problems such as stereo [9] and
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motion [10]. Loopy belief propagation has also been widely applied in stereo [11] and
object matching [12]. GC and BP are more robust than traditional labeling schemes and
are also found to be faster than stochastic annealing based methods. But GC and BP are
still very complex for large scale problems that involve a large number of labels. Besides
GC and BP, many other schemes have been presented, such as spectrum graph theory
based methods [13]. Although intensively studied, the large scale matching problem is
still an unsolved problem. In this paper, we present methods based on linear program-
ming to solve the class of consistent labeling problems with L1 regularity terms. For
this class of problems, an efficient LP method can be formulated, which is found to be
faster and more robust in solving large label set problems than the standard methods
such as BP and GC.

The work most related to the proposed scheme is the mathematical programming
schemes, which have received much interest in formulating and solving labeling prob-
lems. The early RL schemes belong to this class. One of the major challenges of a
labeling algorithm is to overcome the problem of local minima in the optimization pro-
cess. Different schemes have been proposed. Deterministic annealing schemes [14][15]
have been successfully applied for matching point sets and graphs. Quadratic program-
ming schemes [16] and most recently semidefinite programming schemes [17] have
been proposed for matching problems. Up to now, these schemes could only be applied
to small scale problems. On the contrary, because of its efficiency, Linear Programming
has been applied in many vision problems, such as estimating motion of rigid scenes
[18]. A linear programming formulation [19] has been presented for uniform labeling
problems and for approximating general problems by tree metrics. Another general LP
scheme, studied in [20], is quite similar to the linear relaxation labeling formulation [3].
This LP formulation is found to be only applicable to small problems because of the
large number of constraints and variables involved.

We present a linear programming relaxation scheme for L1-regularity consistent la-
beling problems, and we study an efficient successive relaxation scheme to solve the
optimization problem. Different from other methods, the proposed scheme uses a much
smaller number of basis labels to represent the matching space. This is one key compo-
nent of the method to speed up the algorithm. In our scheme, basis labels correspond to
the coordinates of the 3D lower convex hull of the matching cost function for each site.
We propose a successive relaxation scheme to increase the accuracy of the approxima-
tion iteratively. During the iteration, we shrink the trust region for each site and locate
the new trust region based on the solution of the previous relaxation solution, but re-
convexify the matching cost based on the original cost function. This process continues
until the trust region becomes small. Since the convexification process eliminates many
false local minima in the earlier stages of the solution process, the proposed scheme is
able to find a good approximated solution quickly. Iteratively, the successive relaxation
process refines the labeling result.

Based on the proposed matching scheme, we propose a robust template tracking
scheme. In object tracking, handling drastic shape and appearance changes of objects,
due to severe viewpoint and aspect changes and object shape deformation, is a diffi-
cult problem. Two classes of methods have been used to try to solve the problem. The
first class uses features resistant to object aspect and deformation, such as the color
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histogram. The mean-shift based method [21] belongs to this class. Methods relying on
invariant features cannot handle large appearance changes and usually do not produce
an accurate correspondence in tracking. The second class of method is most correlated
with the method studied in this paper, which is appearance-based and requires a set of
key templates representing an object’s appearance. Black and Jepson [22] propose a
PCA based approach to select and represent templates. Researchers also study methods
to learn the templates on-line [23]. In this paper, we present a scheme which does not
rely on a complex training process. The system requires a very small number of ex-
emplars. Graph templates are then generated and used in tracking. Apart from tracking
objects of fixed appearance, the proposed scheme is also able to track an object that
changes appearance dramatically by selecting the best template in matching. To further
increase efficiency, the templates are organized into a digraph, so that one template can
only be replaced by its scaled or rotated version or its neighbors with the same scale
and rotation settings. The tracking process is then equivalent to finding a node transition
sequence in the given digraph. Experiments show very promising results for tracking
objects in cluttered backgrounds.

2 Matching by Linear Programming

The matching problem can be stated generally as the following consistent labeling
problem,

min
f

∑

s∈S

c(s, fs) +
∑

{p,q}∈N
λp,qd(fp, fq)

where c(s, fs) is the cost of assigning label fs to site s; d(fp, fq) is the distance be-
tween the labels assigned to neighboring sites p and q; S is a finite set of sites; N is the
set of non-ordered neighboring site pairs; λp,q are smoothing coefficients. For computer
vision problems, labels can be discrete or continuous. When the labels are discrete, we
denote a problem as a discrete labeling problem, and otherwise as a continuous labeling
problem. For a discrete labeling problem, we can interpolate the cost c(s, fs) for each
site piecewise-linearly such that c(s, fs) becomes a surface, and allow fs to take values
in the convex hull supported by the discrete labels: we thus obtain the continuous ex-
tension of a discrete problem. Continuous labeling problems such as motion estimation
can be well approximated by such a continuous extension of a discrete system. In the
following discussions, without loss of generality we assume both the set S and the label
set Ls to be discrete. In this paper, we focus on that subset of consistent labeling prob-
lems such that d(fp, fq) = ||fp − fq||; || · || is the L1 norm and f are vectors defined
in the L1 metric space. When f degenerate into scalars, a maximum-flow scheme can
be used to solve the problem. For problems with label dimensionality greater than 1,
the problem becomes much more complex. We rewrite the formulation as follows, with
boldface symbols for site s and label f to emphasize that they are vectors:

min
f

∑

s∈S

c(s, fs) +
∑

{p,q}∈N

λp,q||fp − fq||
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In the following, we assume the f vectors are 2D. The methods proposed below can be
easily extended to cases where the labels have higher dimensionality. To simplify nota-
tion, c(s, fs) is also used to represent the continuous extension matching cost surfaces.

2.1 Approximation by Linear Programming

The above energy optimization problem is nonlinear and usually non-convex, which
makes it difficult to solve in this original form without a good initialization process. We
now show how to approximate the problem by a linear programming formulation via
linear approximation and variable relaxation, as outlined in [24, 25] by Jiang et al. To
linearize the first term, the following scheme is applied. A basis Bs is selected for the
labels for each site s. Then the label fs can be represented as a linear combination of
the label basis as fs =

∑
j∈Bs

ξs,j · j, where ξs,j are real-valued weighting coefficients.
The labeling cost of fs can then be approximated by the linear combination of the cost
of the basis labeling costs c(s,

∑
j∈Bs

ξs,j · j) �
∑

j∈Bs
ξs,j · c(s, j). We also further

set constraints ξs,j ≥ 0 and
∑

j∈Bs
ξs,j = 1 for each site s, so as to constrain the space

spanned by the basis to the convex hull of the basis labels. Clearly, if ξs,j are constrained
to be 1 or 0, and the basis contains all the labels, i.e. Bs = Ls, the above representation
becomes exact. Note that fs are not constrained to the basis labels, but can be any
convex combination. To linearize the regularity terms in the nonlinear formulation we
can represent a free variable by the difference of two nonnegative auxiliary variables
and introduce the summation of the auxiliary variables into the objective function. If
the problem is properly formulated, when the linear programming problem is optimized
the summation will approach the absolute value of the free variable.

Based on this linearization process, a linear programming approximation of the
problem can be stated as

min
∑

s∈S

∑

j∈Bs

c(s, j) · ξs,j +
∑

{p,q}∈N
λp,q

2∑

m=1

(f+
p,q,m + f−

p,q,m)

s.t.
∑

j∈Bs

ξs,j = 1, ∀s ∈ S

∑

j∈Bs

ξs,j · φm(j) = fs,m, ∀s ∈ S, m = 1, 2

fp,m − fq,m = f+
p,q,m − f−

p,q,m, ∀ {p,q} ∈ N , m = 1, 2

ξs,j, f+
p,q,m, f−

p,q,m ≥ 0

where fs = (fs,1, fs,2) and function φm returns the mth component of its argument.
It is not difficult to show that the linear programming formulation is equivalent to the
general nonlinear formulation if the linearization assumptions hold. In general situa-
tions, the linear programming formulation is an approximation of the original nonlinear
optimization problem.

Property 1: If Bs = Ls, and the cost function of its continuous extension c(s, j) is
convex, ∀s ∈ S , the LP exactly solves the continuous extension of the discrete labeling
problem. Ls is the label set of s.
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Proof: We just need to show that when LP is optimized, the configuration {f∗s =∑
j∈Bs

ξ∗s,j · j} also solves the continuous extension of the nonlinear problem. Since
c(s, j) is convex,

∑
j∈Ls

c(s, j)ξ∗s,j ≥ c(s, f∗s ). And, when the LP is minimized we have
∑

{p,q}∈N λp,q
∑2

m=1(f
+
p,q,m + f−

p,q,m) =
∑

{p,q}∈N λp,q||f∗p − f∗q ||. Therefore

min
∑

s∈S,j∈Ls

c(s, j)ξs,j +
∑

{p,q}∈N
λp,q

2∑

m=1

(f+
p,q,m + f−

p,q,m)

≥
∑

s∈S

c(s, f∗
s ) +

∑

{p,q}∈N
λp,q||f∗p − f∗q ||

According to the definition of continuous extension, f∗s are feasible solutions of the
continuous extension of the non-linear problem. Therefore the optimum of the linear
programming problem is not less than the optimum of the continuous extension of the
nonlinear problem. On the other hand, it is easy to construct a feasible solution of LP
that achieves the minimum of the continuous extension of the nonlinear problem. The
property follows.

In practice, the cost function c(s, j) is usually highly non-convex for each site s. In
this situation, the proposed linear programming model approximates the original non-
convex problem by a convex programming problem.

Property 2: For general cost function c(s, j), and if Bs = Ls, ∀s ∈ S, the linear
programming formulation solves the continuous extension of the reformulated discrete
labeling problem, with c(s, j) replaced by its lower convex hull for each site s.

The proof is similar to that of Property 1, by replacing c(s, j) in the non-linear func-
tion with its lower convex hull. An example for lower convex hull and the coordinates
of the lower convex hull vertices are illustrated in Fig. 1. Fig. 2(a) shows the convexifi-
cation effect introduced by LP relaxation.

Property 3: For general cost function c(s, j), the most compact basis set Bs contains
the vertex coordinates of the lower convex hull of c(s, j), ∀s ∈ S.

By Property 3, there is no need to include all the labeling assignment costs in the
optimization: we only need to include those corresponding to the basis labels. This is
one of the key steps to speed up the algorithm.

Property 4: If the convex hull of the cost function c(s, j) is strictly convex, nonzero
weighting basis labels must be “adjacent”.

Proof: Here “adjacent” means the convex hull of the nonzero weighting basis labels
cannot contain other basis labels. Assume this does not hold for a site s, and the nonzero
weighting basis labels are j

k
, k = 1..K . Then, there is a basis label jr located inside the

convex hull of jk , k = 1..K . Thus, ∃αk such that jr =
∑K

k=1 αkjk and
∑K

k=1 αk=1,
αk ≥ 0. According to Karush-Kuhn-Tucker Condition (KKTC), there exists λ1, λ2, λ3
and µj such that

c(s, j) + λ1 + λ2φ1(j) + λ3φ2(j) − µj = 0 and ξs,jµj = 0, µj ≥ 0, ∀j ∈Bs
Therefore we have,
c(s, jk) + λ1 + λ2φ1(jk) + λ3φ2(jk) = 0, k = 1..K
c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr) ≥ 0
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Fig. 1. Lower convex hull. Left: The surface; Middle: Lower convex hull facets; Right: Coordi-
nates of the lower convex hull vertices.

On the other hand,

c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr)
= c(s,

∑K
k=1 αkjk) + λ1 + λ2φ1(

∑K
k=1 αkjk) + λ3φ2(

∑K
k=1 αkjk)

<
∑K

k=1 αkc(s, jk) + λ1 + λ2
∑K

k=1 αkφ1(jk) + λ3
∑K

k=1 αkφ2(jk) = 0

which contradicts the KKTC. The property follows.
It is not difficult to show that any basic feasible solution of the linear program has at

most 3 basic variables from ξ of each site. Therefore, when using the simplex method,
there will be at most 3 nonzero-weight basis labels for each site. After convexification,
the original non-convex optimization problem turns into a convex problem and an ef-
ficient linear programming method can be used to yield a global optimal solution for
the approximation problem. Note that, although this is a convex problem, standard local
optimization schemes are found to work poorly because of quantization noise and large
flat areas in the convexified objective function.

Approximating the matching cost by its lower convex hull is intuitively attractive
since in the ideal case, the true matching will have the lowest matching cost and thus the
optimization becomes exact in this case. In real applications, several target points may
have equal matching cost and, even worse, some incorrect matching may have lower
cost. In this case, because of the convexification process, in a one-step relaxation, the
resulting fractional (continuous) labeling could be far from the true solution, as shown

c(0,j)

c(|S|-1,j)

j

:Basis Labels

Convexification

j
j

c(i,j)

: Lower Convex Hull Vertices

j

… …

(a)

Template Target Image Nonzero -
weight
Basis Label

True Solution

Fractional 
Solution

(b)

Fig. 2. (a): The convexification process introduced by LP relaxation. (b): An example when a
single LP relaxation produces a fractional labeling.
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in the Fig 2(b). In this simple example, there are 2 sites in the source image and we
construct a simple 2-node graph template. There are 5 target points in the target im-
age. The labels are displacement vectors. We assume that a white square will match a
white square with zero cost. And the circles will match with zero cost. Matching be-
tween different shape points have large matching cost. The light gray square is in fact
the true target for the white one in the source image, but the match cost is a very small
positive number because of noisy measurement. By solving the LP relaxation problem,
we get a fractional solution, as illustrated in Fig 2(b), that has zero cost for the LP’s
objective function but is not the true solution. Adjusting the smoothing parameter will
not help because we already achieve the minimal (zero) cost. A traditional rounding
scheme will try to round ξ into 0 and 1. Unfortunately, the rounding will drive the solu-
tion even farther from the true solution, in which the square template node will match
one of the white squares in the target image. Intuitively, we can shrink the searching
region for each site based on the current LP solution, and do a further search by solv-
ing a new LP problem in the smaller trust region. Clearly, if the trust region shrinks
slowly, we will find the true optimal solution. In the following section, we expand this
idea and propose a successive convexification scheme to improve the approximation
iteratively.

3 Successive Relaxation Method

Here we propose a successive convexification linear programming method to solve the
non-linear optimization problem, in which we construct linear programming problems
recursively based on the previous searching result and gradually shrink the matching
trust region systematically.

Assume Bn
s is the basis label set for site s at stage n linear programming. The

trust region Un
s of site s is determined by the previous relaxation solution fn−1

s =
(fn−1

s,1 , fn−1
s,2 ) and a trust region diameter dn. We define Qn

s = Ls ∩Un
s . Bn

s is specified
by Bn

s = {the vertex coordinates of the lower convex hull of {c(s, j),∀j ∈ Qn
s }}, where

c(s, j) is the cost of assigning label j to site s.

Algorithm 1. Successive Convexification Linear Programming
1. Set n = 0; Set initial diameter = d0;
2. FOREACH(s ∈ S)
3. { Calculate the cost function {c(s, j), ∀j ∈ Q0

s};
4. Convexify {c(s, j)} and find basis B0

s ; }
5. Construct and solve LP0;
6. WHILE (dn ≥ 1)
7. { n ←n+1;
8. dn = dn−1 − δn;
9. FOREACH(s ∈ S)
10. { IF (Qn

s is empty) Qn
s = Qn−1

s ; Un
s = Un−1

s ;
11. ELSE update Un

s , Qn
s ;

12. Reconvexify {c(s, j)} and relocate basis Bn
s ; }

13. Construct and solve LPn; }
14. Output f∗s , ∀s ∈ S;
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It is not difficult to verify that the necessary condition for successive LP converging
to the global minimum is that LPn ≤ E∗, where E∗ is the global minimum of the non-
linear problem. Since the global minimum of the function is unknown, we estimate an
upper bound E+of E∗ in the iterative process. The configuration of targets that achieves
the upper bound E+ is composed of anchors — an anchor is defined as the control point
of the trust region for one site in the next iteration. A simple scheme is to select anchors
as the solution of the previous LP, rs = f (n−1)

s . Unfortunately, in the worse case, this
simple scheme has solutions whose objective function is arbitrarily far from the opti-
mum. In fact, the fractional solution could be far away from the discrete label site. To
solve this problem, we use a deterministic rounding process: we check the discrete la-
bels and select the anchor that minimizes the non-linear objective function, given the
configuration of fractional matching labels defined by the solution of the current stage.
This step is similar to a single iteration of an ICM algorithm. In this step, we project a
fractional solution into the discrete space. We call this new rounding selection scheme
a consistent rounding process. Let rs be the anchor; ms be the global optimal solution;
and fs be the fractional labeling solution of LP.

Proposition 1: The energy with consistent rounding is bounded above by 3εopt +∑
{p,q}∈N λp,q(||mp−fp|| + ||mq−fq||), where εopt is the optimal energy.
Except for LP1, we further require that new anchors have energy not greater than

the previous estimation: the anchors are updated only if new ones have smaller energy.
The anchors are kept inside the new trust region for each site. The objective function
for LPn must be less than or equal to E+. This iterative procedure guarantees that the
objective function of the proposed multi-step scheme is at least as good as a single
relaxation scheme. In the following example, we use a simple scalar labeling problem
to illustrate the solution procedure.

Example 1 (A scalar labeling problem): Assume there are two sites {1, 2} and for
each site the label set is {1..7}. The objective function is min{f1,f2} c1,f1 + c2,f2 +
λ|f1 − f2|. In this example we assume that {c1,j} = {2, 6, 1.7, 4, 5, 2, 2}; {c2,j} =
{5, 1, 3, 4, 1, 2, 5}, and λ = 0.5.

Based on the proposed scheme, the problem is solved by the sequential LPs: LP0,
LP1 and LP2. In LP0 the trust regions for sites 1 and 2 both start as the whole label
space [1, 7]. Constructing LP0 based on the proposed scheme corresponds to solving
an approximated problem in which c for site 1 and 2 are replaced by their lower convex
hulls respectively (see Fig. 3). Step LP0 uses convex hull basis labels {1, 3, 7} for site
1 and {1, 2, 5, 6, 7} for site 2. LP0 finds a solution with nonzero weights ξ1,3 = 1,
f1 = 3; and ξ2,2 = 2/3, ξ2,5 = 1/3, and resulting continuous label LP solution f2 =
(2/3 ∗ 2 + 1/3 ∗ 5) = 3. Based on the proposed rules for anchor selection, we fix site
1 at label 3 and search for the best anchor label for site 2 in [1, 7] using the nonlinear
objective function. This label is 2, which is selected as the anchor for site 2. Similarly,
the anchor for site 1 is 3. At this stage E+ = c(1, 3) + c(2, 2) + 0.5 ∗ |3 − 2| = 3.2.
Further, the trust region for LP1 is shrunk to [2, 6]×[2, 6] by reducing the previous trust
region diameter by a factor of 2. The solution of LP1 is f1 = 3 and f2 = 3. The anchor
site is 3 for site 1 and 2 for site 2, with E+ = 3.2. Based on LP1, LP2 has new trust
region [3, 5]× [2, 4] and its solution is f1 = 3 and f2 = 2. Since 3 and 2 are the anchors
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Fig. 3. Successive convexification LP in 1D. Labels in circles are LP fractional solutions.

for site 1 and 2 respectively and in the next iteration the diameter shrinks to unity, the
iteration terminates. It is not difficult to verify that the configuration f1 = 3, f2 = 2
achieves the global minimum. Fig. 3 illustrates the proposed successive convexification
process for this example.

Interestingly, for the above example, ICM or even the graph cut scheme only finds
a local minimum, if initial values are not correctly set. For ICM, if f2 is set to 5 and
the updating is from f1, the iteration will fall into a local minimum corresponding to
f1 = 6 and f2 = 5. The GC scheme based on α-expansion will have the same problem
if the initial values of f1 and f2 are set to 6 and 5 respectively.

A revised simplex method is used to solve the LP problem. Therefore, an estimate
of the average complexity of successive convexification linear programming is O(|S| ·
|Q|1/2 · (log |Q|+ log |S|)), where Q is the label set. Experiments also confirm that the
average complexity of the proposed optimization scheme increases more slowly with
the size of label set than previous methods such as the graph cut scheme, whose average
complexity is linear with respect to |Q|.

4 Object Tracking with Multiple Templates

Based on the above matching framework, we present a robust multiple template track-
ing method that can be used to track objects with changing appearance. One assumption
we use in the tracking process is that the template’s scale and rotation remain continu-
ous even if the template changes. This assumption is valid for appearance changes for
most real-world objects, from simple rigid objects to complex articulated ones. We use
a set of templates to represent possible object appearance in the tracking process. These
templates can be further formulated as a digraph to represent the possible transitions
from one appearance model to another. Models that can be reached in one step from the
current model include the model itself and its neighbors. Other parameters in the track-



212 H. Jiang, M.S. Drew, and Z.-N. Li

ing include the scale and rotation changes of the template. Based on this formulation,
tracking becomes the process of locating the object with the best templates constrained
by the model transition graph.

The deformable template defined includes feature nodes and neighbor relations. In
this paper, the features are image blocks in the template images and target images cen-
tered on the edges. We use a very low edge detection threshold so as not to lose weak
features. Usually we can downsample the feature points in the template and target im-
ages to reduce the complexity. To make the scheme resistant to changing illumination,
we use chromaticity color space, in which the three color channels are normalized by
their arithmetic mean. The L1 norm is also used in calculating the cost of matching an
image block with a target block. We also use non-square blocks at the boundary of the
template, since values outside of the boundary are not defined. Therefore, each feature
node also contains a feature mask in calculating the matching cost. We use baseline De-
launay triangulation to obtain the neighbor relations of the feature nodes. To simplify
the matching problem, we decompose the geometrical transformation of the template
into two cascaded transformations: a global transformation G and a local deformation
D. The global transformation is shared by all the sites in the template while the lo-
cal deformation can be different for all sites. And, we assume that matching cost c is
only influenced by global transformation but not local deformation. Intuitively, c is a
function of the source pixel (site), the target pixel (label), and the global transformation
(such as scaling and rotation). The energy minimization problem becomes:

min
G,D

E :
∑

s∈S

cG(s, D ◦ G(s)) +
∑

{p,q}∈N
λp,q||D ◦ G(p)−D ◦ G(q)−G(p)+G(q)||

In the tracking process, the global transformation G is specified as the previous rotation
and scale estimation and is updated after each matching process. With G fixed, the
problem is reduced to the consistent labeling problem discussed in the last section and
we can apply the proposed LP scheme to solve for D by the successive convexification
LP scheme.

After finding the matches of the feature points in the template with corresponding
points in the target image based on the proposed method, we need to further decide how
similar these two constellations of matched points are and whether the matching result
corresponds to the same event as in the exemplar. We use the following quantities to
measure the difference between the template and the matching object. The first measure
is P , defined as the average of pairwise length changes from the template to the target.
To compensate for the global deformation, a global affine transform A is first estimated
based on the matching and then applied to the template points before calculating P . P is
further normalized with respect to the average edge length of the template. The second
measure is the average warped template matching cost M , which is defined as the aver-
age absolute difference of the target image and the warped reference image in the region
of interest. The warping is based on a cubic spline. The total matching cost is simply
defined as M +αP , where α has a typical value from 0.1 to 0.5. Experiments show that
only about 100 randomly selected feature points are needed in calculating P and M .

Because of the constraints of the physical dynamics, we can safely consider only the
neighboring templates equaling the current rotation and scale. The current template and
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its neighbors are used in the template selection process. The template with the lowest
matching cost is chosen, its matching result is recorded, and the rotation θ and scale γ
are updated based on the following smoothing model, in which α is typically 0.9:

(θ, γ) = α(θestimate, γestimate) + (1 − α)(θlast, γlast)

The proposed scheme is resistant to drifting because we do not track the object se-
quentially based on the features in the previous frame, and thus avoid template errors
accumulated during the tracking process. But we do use parameters such as the rotation
angle and scale estimated from previous frames to reduce the searching complexity. A
model selection error may still possibly spread to future frames and make the tracker
fail. In our scheme, tracking failure can be detected by comparing the minimum match-
ing error with a threshold. When the matching error is too large, we infer a tracking
failure and apply a restart process. In this process, all the templates in a rotation and
scale range are used to match the target image and the best template is chosen.

5 Experimental Results

We start by comparing the proposed successive convexification LP scheme with the
GC, BP, and ICM methods for local deformation estimation. We use the same energy
formulation for all methods. GC uses the α-expansion scheme for symbol updating and
a fixed order symbol sequence in the iteration. BP is the baseline belief propagation al-
gorithm. BP was not conducted for all the images because of its high complexity. Fig. 4
shows comparison results for matching synthetic grayscale images with ground truth
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Fig. 4. (a, b): Reference and target image; (c, d): Ground truth horizontal and vertical displace-
ment; (e): Lowest MAE is achieved for the different methods by adjusting the smoothing factors
so that they each perform optimally
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Fig. 5. (a, b): Two synthetic images. (c, d) Ground-truth x-motion and y-motion for images (a)
and (b); (e): Mean absolute errors of LP, ICM and Graph 3Cut.



214 H. Jiang, M.S. Drew, and Z.-N. Li

(a) (b) (c) (d) (e)

Fig. 6. (a): Template model showing distance transform; (b): Matching result of proposed scheme;
(c): Matching result by GC; (d): Matching result by ICM. (e): Matching result by BP.

(a) (b) (c) (d) (e) (f)

Fig. 7. Color template matching. (a): Template; (b): Matching result of successive relaxation LP
with range the whole target image; (c): Matching result for GC with range [−50, 50] × [50, 50];
(d): Matching result for GC with range the whole target image; (e, f): Matching results for ICM
and direct sweeping search.

Fig. 8. Tracking result for video tape sequence. Selected from 600 frames.

displacement. The search window is [-20,20]×[-20,20]. The proposed method achieves
substantially better results. Fig. 5 shows another experiment result based on synthetic
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images. Two images and their warped versions based on a known displacement field are
used in the experiment. Then, the proposed LP scheme, ICM, and GC are used to solve
the L1 norm consistent labeling problem. The target labels are all the pixels in the tar-
get image. The mean absolute error of the estimated matching for each method is then
calculated based on the ground truth matching. The smoothing factor for each method
is then adjusted such that a minimum matching error is obtained. These match errors
for different methods are listed in Fig. 5. The proposed scheme achieves the minimum
matching error. Fig. 6 shows another matching result for synthetic images. In this ex-
periment, the pixel block size is 5 by 5 and the smoothing factor equals 1.5. The search
range is the whole target image. The sites are selected on the zero-value pixels and the
matching candidates for each site are all the zero-value pixels in the target image. The
proposed scheme again performs the best among different schemes compared. Fig. 7
shows a template matching experiment for a color image of a wire-metal sculpture. The
direct search scheme uses a fixed template shape and sweeps a search window over the
target image. As shown in the figure, only our proposed scheme finds the correct target
when the search range increases to the whole image. The matching energy for LP is
6.12e3, lowest compared to GC 7.45e3, ICM 11.5e3, and direct search 12.73e3.

Fig. 8 shows an experiment result for tracking a planar object under indoor lighting
conditions. The glossy surface makes robust tracking a challenging task. In this experi-
ment we use the first frame as the template image and the region of interest is indicated
and a graph template is generated automatically based on random selected edge pixels
and Delaunay triangulation. The scale and the rotation status of the template are adap-
tively updated based on the matching result. In the experiment, the smoothing factor α

Fig. 9. Tracking result for car sequence. Selected from 1000 frames.



216 H. Jiang, M.S. Drew, and Z.-N. Li

Fig. 10. Tracking result for hand sequence. Selected from 500 frames.

for scale and rotation update is set to 0.9. The proposed scheme successfully tracks the
object over a long video sequence. Fig. 9 is another tracking result based on a single
template, this time for a cluttered outdoor scene. The proposed scheme robustly and
accurately follows the moving car in a video sequence with 1000 frames.

Fig. 10 shows a tracking result in which two exemplars are used. The hand under-
goes dramatic shapes changes between the two gestures. There are also large scale and
rotation changes of the hand involved in this sequence. The proposed scheme success-
fully tracks the movement of the hand in a poor, low-contrast video. Fig. 11 shows a
result for tracking a walking person, using three exemplars. The posture of the person
walking in the scene is accurately recovered. The template follows the object success-
fully in this very complex-background setting.

6 Conclusions

In this paper, we present a robust multiple-template object tracking scheme based on a
robust linear programming based matching scheme — successive convexification linear
programming. The proposed optimization method can be used for solving consistent
labeling problems with L1 regularity term, and is found to be able to converge to the
global optimal solution with high probability. The successive convexification idea can
also be generalized to other convex smoothing term problems. The proposed scheme is
shown to be more efficient than the graph cut and belief propagation schemes for object
matching problems. Based on the proposed optimization scheme, we study an object
tracking framework in which multiple templates can be defined. Templates are updated
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Fig. 11. Tracking result for walking sequence. Selected from 150 frames.

based on the estimation of the global transform resulting from mean square estimation
of the matching patterns of the previous stage, and template matching is solved by the
proposed LP based scheme. We further present measures to quantify the similarities
of the template with target objects. By choosing the best template to its corresponding
matching patterns, the proposed scheme can be used to robustly track objects changing
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appearance dramatically, using only a few templates. Since no training, but only several
exemplars are needed, the proposed scheme is easier to deploy than appearance-model
based schemes. Experiments show robust tracking results in cluttered environments.
The proposed matching scheme can also be applied to other applications such as large
scale motion estimation, wide baseline matching and 3D object reconstruction.

7 Appendix

Proposition 1: The energy with consistent rounding is bounded above by 3εopt +∑
{p,q}∈N λp,q(||mp−fp|| + ||mq−fq||), where εopt is the optimal energy.

Proof: The proof is simple but lengthy:
∑

s c(s, rs) +
∑

{p,q}∈N λp,q||rp−rq||
≤

∑
s c(s, rs) +

∑
{p,q}∈N λp,q(||rp−fq|| + ||rq − fp|| + ||fp − fq||)

=
∑

s c(s, rs) +
∑

s
∑

p∈N (s) λs,p||rs−fp|| +
∑

{p,q}∈N λp,q||fp − fq||
Recalling the anchor selection rule,

c(s, rs) +
∑

p∈N (s) λs,p||rs−fp||≤ c(s,ms) +
∑

p∈N (s) λs,p||ms−fp||
Therefore

∑
s c(s, rs) +

∑
{p,q}∈N λp,q||rp−rq||

≤
∑

s c(s,ms) +
∑

s

∑
p∈N (s) λs,p||ms−fp|| +

∑
{p,q}∈N λp,q||fp − fq||

=
∑

s c(s,ms)+
∑

{p,q}∈N λp,q(||mp−fq||+||mq−fp||)+
∑

{p,q}∈N λp,q||fp−fq||
≤

∑
s c(s,ms) +

∑
{p,q}∈N λp,q(||mp − mq|| + ||fq − mq||

+||mq − mp|| + ||mp − fp||) +
∑

{p,q}∈N λp,q||fp − fq||
≤

∑
s c(s,ms) + 2

∑
{p,q}∈N λp,q||mp − mq|| +

∑
{p,q}∈N λp,q||fp − fq||

+
∑

{p,q}∈N λp,q(||fq − mq|| + ||mp − fp||)
Noticing that

∑
{p,q}∈N λp,q||fp − fq|| ≤ εopt, the proof is complete.
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