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Abstract 

We present an abstract communication model. The model is quite general 
even though it was developed in the process of specifying a particular 
network architecture, namely the Universal Plug and Play (UPnP) 
architecture. The generality of the model has been confirmed by its reuse for 
different architectures.  The model is based on distributed abstract state 
machines and implemented in the specification language AsmL.   
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1 Introduction 

The group on Foundations of Software Engineering at Microsoft Research 
 [16] has developed a high-level executable specification language AsmL  [2] 
based on the concept of abstract state machine or ASM  [21]. AsmL is 
integrated with Microsoft’s software development, documentation and 
runtime environments. AsmL supports specification and rapid prototyping of 
object oriented and component oriented software. It is a successful practical 
instrument for systems design (and reverse engineering).  

ASMs are able to simulate arbitrary algorithms in the step-for-step manner. 
There is a substantial experimental confirmation  [1] [16] as well as theoretical 
confirmation  [6] [22] of that ASM thesis. ASMs have been used to specify 
various architectures, protocols and numerous languages, in particular C  [20], 
Java  [30], SDL  [15] and VHDL  [8]. The International Telecommunication 
Union adopted a comprehensive ASM-based formal definition of SDL as an 
integral part of the current SDL standard  [28]. AsmL specifications look like 
pseudo code over abstract data structures. As such, they are easy to read and 
understand by system engineers and program developers. Practical 
experiences with industrial applications helped to establish a pragmatic 
understanding of how to model complex system behavior with a degree of 
detail and precision as needed  [7] [8].  

Some features of high-level rigorous specifications are well recognized in the 
academic community as advantageous. While informal documentation is 
often ambiguous, incomplete and even inconsistent, properly constructed 
formal specifications are consistent, avoid unintended ambiguity and are 
complete in the appropriate sense that allows for intended ambiguity 
(nondeterminism). Let us emphasize though that in practice formal 
specifications build on given informal descriptions. You fix loose ends, 
resolve unintended ambiguities and inconsistencies, separate concerns, etc. 
Gradually the given informal description gives rise to a mathematical model 
or to a hierarchy of such models.   

Some other features of high-level rigorous specifications are more 
controversial. We advocate AsmL specifications that are executable and 
written in the style of literate programming so that they are easy to 
comprehend; see examples at  [2]. AsmL is used to explore and test the 
design, to validate the specification itself, and to test the conformance of the 
implementation to the specification. In particular, executable specifications 
are used for test-case generation  [25] and runtime verification  [3].  
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And there are features of high-level rigorous specifications, at least of ASM 
specifications, that have not been given sufficient attention. An ASM model 
is a closed world with well delineated interfaces to the outside world. The 
need to make that world closed provokes one to fill various gaps in a given 
informal spec. That is what happened when we worked on the Universal Plug 
and Play (UPnP) architecture  [17]. While the informal documentation 
described UPnP devices and the UPnP protocol, it did not provide a 
conceptual model of the network. We had to construct such a model. It turned 
out to be general and was reused on several occasions. The communication 
model partitions the whole system into a collection of communicating 
subsystems. The particular subsystems change from one project to another 
but the communication structure is the same. In particular, the 
communication model was reused in our work on XLANG  [36] where the 
documentation given to us was partially formal but did not address the 
communication model.  

In this paper, we present our communication model and illustrate it on the 
examples of UPnP and XLANG. As far as domain specific languages  [14] 
are concerned, our work fits in well, the specific domain being Software 
Architecture Description.  

We try to make this paper self-contained. In Section  2, we recall some basic 
definitions on abstract state machines (ASMs) and in particular distributed 
abstract state machines (DASMs). In Section  3, we describe a portion of 
AsmL sufficient for our purposes in this paper. The abstract communication 
model is described in Section  4. The abstract communication model is reused 
in both Section  5, where we describe the UPnP model, and in Section  6, 
where we describe the XLANG model. In Section  7 we discuss the 
classification of AsmL as a software architecture description language.   

2 Abstract State Machines 

Our method rests on the ASM theory. Here we give a quick description of 
ASMs sufficient for our purposes in this paper. The interested reader may 
want to consult  [6] [22] [23].  

2.1 Basic ASMs 

A basic ASM consists of a basic ASM program together with a collection of 
states (the legal states of the ASM) and subcollection of initial states. First we 
describe basic ASM states and then define basic ASM programs. 
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Basic ASMs are sequential algorithms. Intuitively sequential algorithms are 
non-distributed algorithms with uniformly bounded parallelism. The latter 
means that the number of actions performed in parallel is bounded 
independently of the state or the input. The notion of sequential algorithms is 
formalized in  [23] where it is proved that, for every sequential algorithm, 
there is a basic ASM that simulates the algorithm step for step. 

2.1.1 States 

The notion of ASM state is a variation of the notion of (first-order) structure 
in mathematical logic.  

A vocabulary is a collection of function symbols and relation symbols (or 
predicates); each symbol has a fixed arity (the number of arguments).  
Symbols split into dynamic and static.  Every vocabulary contains (static) 
logic symbols true, false, undef, the equality symbol, and the standard 
propositional connectives.  

A state A of a given vocabulary is a nonempty set X (the base set of A), 
together with interpretations of the function symbols (the basic functions of 
A) and the predicates (the basic relations of A). A function (respectively 
relation) symbol of arity j is interpreted as a j-ary operation (respectively 
relation) over X. A nullary function symbol is interpreted as an element of X. 
The logic symbols are interpreted in the obvious way.  

The value undef is the default value for basic functions. Formally a basic 
function f is total but intuitively it is partial. The intended domain of f 

consists of all tuples a with f(a) � undef. Every state includes an infinite 
"naked" set called the reserve. The role of reserve will become apparent later.  

The default value for relations is false. We think of a j-ary relation R as a set 
of j-tuples of elements. 

Remark. Traditionally, in logic, true and false do not belong to the base set, 
and so there is a principal difference between basic functions (taking values 
inside the structure) and basic relations (taking values outside). In our 
framework, basic relations are seen as special basic functions whose only 
possible values are true and false and whose default value is false rather than 
undef.  

This simple definition of state is very general. Any kind of static 
mathematical reality can be described as a first-order structure. Second-order 
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and higher-order structures of logic are special first-order structures. Many-
sorted first-order structures (with several base sets called sorts) are special 
one-sorted structures; the roles of sorts are played by designated unary 
relations which are called universes in the ASM literature. Notice that ASM 
universes may be dynamic. 

Example 1. The vocabulary consists of one static unary predicate Scandinavia and 
one dynamic binary predicate Flight. (In addition, it contains the logic symbols but it 
is customary to ignore the logic symbols, their interpretation and the reserve in the 
descriptions of states.)  The base set of our state consists of three airports ARN, CPH 
and SEA. The unary relation Scandinavia contains ARN and CPH but not SEA. The 
relation Flight is this 

 {(ARN,CPH),(CPH,ARN),(CPH,SEA),(SEA,CPH)} 

The intended meaning is that there are direct flights (of some fixed airline) from 
ARN to CPH, from CPH to ARN, etc., but there are no direct flights between ARN 
and SEA.      

2.1.2 Updates 

We view a state as a kind of memory. Dynamic functions are those that can 
change during computation. A location of a state A is a pair l = (f, (x1,…, xj)) 
where f is a j-ary dynamic function (or relation) symbol in the vocabulary of 
A and (x1,…, xj) is a j-tuple of elements of A.  The element y = f(x1,…,xj) is 
the content of that location. 

An update of state A is a pair (l, y'), where l is a location (f, (x1,…, xj)) of A 
and y' is an element of A; of course y' is true or false if f is a predicate.  To 
fire the update (l, y'), replace the old value y = f(x1,…, xj) at location l with 
the new value y' so that f(x1,…, xj) = y' in the new state. Intuitively, one may 
view dynamic functions as being represented by function tables that can be 
updated dynamically at run time. The effect of the update instruction above is 
illustrated in Figure 1; the new content y' is replaced by the old content y of 
location l. 

…

f

yxnx1 y’

Function table

 

Figure 1. Function update 
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A set S = {(l1, y'1), ..., (ln, y'n)} of updates is consistent if the locations are 
distinct.  In other words, S is inconsistent if there are i, j such that li = lj but y'i 
is distinct from y'j. To fire a consistent set of updates, fire all the updates at 
once; to fire an inconsistent update set, do nothing. 

2.1.3 Rules and Programs 

Expressions are defined inductively. If f is a j-ary function symbol and e1,..., 
ej are expressions then f(e1,..., ej) is an expression. (The base of induction is 
obtained when j = 0.) If f is a predicate then the expression is Boolean. 

An update rule R has the form 

f(e1,...,ej) := e0 

where f is a j-ary dynamic function symbol and each ei is an expression. (If f 
is a predicate then e0 should be a Boolean expression.) To execute R, fire the 
update (l, a0) where l = (f, (a1,..., aj)) and each ai is the value of ei. 

A conditional rule R has the form:  

if e then R1 else R2  

where e is a Boolean expression and R1, R2 are rules.  To execute R, evaluate 
the guard e.  If e is true, then execute R1; otherwise execute R2.    

A do-in-parallel rule R has the form 

do in-parallel 
     R1 
     R2 

where R1, R2 are rules.  To execute R, execute rules R1, R2 simultaneously.   

An import rule R has the form 

import  x 
     R1(x) 

To execute R, fish out any element x of the reserve and execute the rule R1(x). 

A program (that is a basic ASM program) is just a rule. An ASM is given by 
a program, a collection of legal states and a subcollection of initial states. 
Note that the program described just one step of the ASM. It is supposed to 
be executed until – if ever – the state does not change. 
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Example 1 (continuation). The following rule reflects that direct flights have 
been established between ARN and SEA.  

do in-parallel 
     Flight(ARN,SEA) := true 
     Flight(SEA,ARN) := true    

2.2 Parallel ASMs 

We generalize the definition of basic ASMs in a two directions. 

First, we enrich the notion of expression.  

{t(x) | x � s where φ(x)} 

is an expression (a comprehension expression) denoting the set of all values 
t(x) where x ranges over those elements of set s that satisfy φ(x). This 
presumes that s is a set expression and φ(x) is Boolean. We require that every 
state A is closed under tuples and (finite) sets: if a1,..., an are elements of A 
then the tuple (a1,..., an) and the set {a1,..., an} are elements of A. We require 
also that A contains the standard operations over tuples and sets, e.g. the set 
pairing operation {e1, e2}.  

Remark. We often require also that the states are closed under finite partial 
maps but the set background is sufficient for theoretical purposes  [6].  

Second, we enrich the notion of rules. A do-forall rule R has the form 

forall x � s 
     R1(x) 

where R1(x) is a rule and x does not occur freely in the expression r. To 
execute R, execute all subrules R(x) with x in s at once. 

Parallel ASMs are parallel algorithms. The appropriate notion of parallel 
algorithms is formalized in  [6] where it is proved that, for every parallel 
algorithm, there is a parallel ASM that simulates the given algorithm step for 
step. 

2.3 Nondeterministic ASMs 

Basic and parallel ASMs can be made nondeterministic by the use of external 
basic functions. For example, an ASM can employ a function Input operated 
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by the user. It is convenient though to have explicit nondeterminism. To this 
end, we enrich parallel ASMs with choose rules. 

A choose rule R has the form 

choose x ∈  s 
     R1(x) 

where R1(x) is a rule and x does not occur freely in the set expression s. To 
execute R, choose any element x of s and execute the subrule R1(x).  

Example 1 (continuation). Imagine that, for some reason, you want to remove all 
direct flights between SEA and one of the Scandinavian airports. The following rule 
accomplishes that. 

choose x ∈  {ARN,CPH} 
     Flight(SEA, x) := false 
     Flight(x, SEA) := false 

2.4 Distributed ASMs 

Until now, we dealt with one-agent ASMs. A distributed ASM (DASM) 
involves a collection of agents. Mathematical abstraction allows us to speak 
about global states of a DASM even though different agents may live on 
different computers. In a global state, the agents interact by reading from and 
writing into "shared" locations of the global state; potential read-write and 
write-write conflicts are resolved according to the definition of partially 
ordered runs below. 

Agents are represented in global states as well. They are elements of a 
dynamically universe Agent that may grow and shrink. With each agent we 
associate a program defining its behavior. A static universe Program 
abstractly represents the set of all agent programs collectively forming the 
distributed program of A. Agents may perform their computation steps 
concurrently. A single computation step of an individual agent is called a 
move of this agent. 

Formally, a run ρ of a distributed ASM A is given by a triple (M, λ, σ) 
satisfying the following four conditions: 

1. M is a partially ordered set of moves where each move has only 
finitely many predecessors. 

2. λ is a function on M associating agents with moves such that the 
moves of any single agent of A are linearly ordered. 
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3. σ assigns a state of A to each initial segment Y of M, where σ(Y) is the 
result of performing all moves in Y; σ(Y) is an initial state if Y is 
empty. 

4. The coherence condition: If x is a maximal element in a finite initial 
segment X of M and Y = X – {x} then λ(x) is an agent in σ(Y) and σ(X) 
is obtained from σ(Y) by firing λ(x) at σ(Y). 

Intuitively, a run can be seen as the common part of histories of the same 
computation recorded by various observers. See  [22] for further details. 

Example 2. We illustrate the coherence condition in a simple situation. Suppose 
that we have only two propositional variables (dynamic nullary relation symbols) 
door and window. Intuitively door = true means that "the door is open" and window 
= true means that "the window is open". Imagine now two distinct agents: a door-
manager (agent d) and a window-manager (agent w). The program of the door-
manager is to open the door if the window is closed (move x). The program of the 
window-manager is to open the window if the door is closed (move y). 

Programd = if ¬window then door   := true 

Programw = if ¬door   then window := true 

Assume that initially (in state S0) both the door and the window are closed. Then 
there are only two possible runs, and in each run only one of the agents makes a 
move. Indeed, we cannot have x < y because w is disabled in the state S1 obtained 
from S0 by performing x.  Similarly we cannot have y < x because d is disabled in the 
state S2 obtained from S0 by performing y. Finally, we cannot have a run where x and 
y are incomparable, that is neither x < y nor y < x. By the coherence condition, the 
final state S3 of such a run would be obtained from S1 by performing y which is 
impossible. (It would also be obtained from S2 by performing x which is equally 
impossible.) 

3 From Abstract State Machines to AsmL 

To actually program ASMs in industrial environment, we need an industrial-
strength language. One such language has been (and is being) developed in 
Microsoft Research. It is called AsmL (ASM Language). Here we focus on 
those aspects of AsmL that are most important for the general understanding 
and that are actually used in this paper. The description given here is 
incomplete in many respects. For an in-depth introduction to AsmL, we 
recommend the reader to consult  [2]. 

First we explain how the fundamental modeling concepts of ASMs are 
realized in AsmL. Then we introduce additional functionality into the 
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modeling framework that enables us to faithfully simulate distributed ASM 
agents; such simulation is needed because the current version of AsmL lacks 
runtime support for true concurrency or simulation of true concurrency. 

Remark. There is a fair amount of freedom in AsmL regarding the 
representation of ASM functions and domains. The reader should keep in 
mind that the particular choice of representation is often a matter of taste, 
readability and a way to control how the model is executed, and does not 
affect the underlying ASM semantics. 

3.1 Types 

Some ASM universes give rise to types in AsmL. Other universes are 
represented as (finite) sets; some examples are found below.  An AsmL 
model may first declare an abstract type C and later on concretize that type 
into a class, a structure, a finite enumeration, or a derived type. 

typetypetypetype C  

classclassclassclass C 

AsmL has an expressive type system that allows one to define new types 
using (finite) sets, (finite partial) maps, (finite) sequences, tuples, etc., 
combined in arbitrary ways. For example, if C and D are types then the type 
of all maps from C to sets of elements of D is this. 

Map ofofofof C totototo Set ofofofof D 

Finite sets, sequences, maps are ordinary elements. The common operations 
on sets, sequences, maps and other built-in data types are available as built-
ins, for example the binary operation apply(f, a) applies a map f to an element 
a. The shorthand notation for map application is f(a). 

3.2 Derived Functions 

Derived functions play an important role in applications of ASMs. A derived 
function does not appear in the vocabulary; instead it is computed on the fly 
at a given state. In AsmL, derived functions are given by methods that return 
values. A derived function f from C0×C1× ... ×Cn to D can be declared as a 
global method. 

f(x0 asasasas C0, x1 asasasas C1, ..., xn asasasas Cn) asasasas D 
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The definition of (how to compute) f may be given together with the 
declaration or introduced later on in the code. Alternatively, if C0 is a class 
(or a structure) then f can be declared as a method of C0. Notice that n can be 
0. 

classclassclassclass C0 

  f(x1 asasasas C1,...,xn asasasas Cn) asasasas D 

A nullary derived function can be introduced as a global method that takes no 
arguments. For example 

z() asasasas Integer returnreturnreturnreturn e 

where e is evaluated in a given state. 

3.3 Constants 

A nullary function that does not change during the evolution can be declared 
as a constant. 

z asasasas Integer = 0 

A unary static function from a class C to D can be declared as a constant field 
of C as in following example. 

classclassclassclass C 

  id asasasas String 

3.4 Variables 

There are two kinds of variables, global variables and local variable fields of 
classes. Semantically, fields of classes are unary functions. 

varvarvarvar b asasasas Boolean 

classclassclassclass C 

  varvarvarvar f asasasas Integer 

Notice that f represents a unary dynamic function from C to integers.  

Dynamic functions of ASMs are represented by variables in AsmL.  A 
dynamic function f from C1 × ... × Cn to D of any positive arity n can be 
represented as a variable map in AsmL. 
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varvarvarvar f asasasas Map ofofofof (C1, ..., Cn) totototo D 

With the map representation, a normal ASM update f(c) := b corresponds to a 
partial update of the map variable f. A set of consistent ASM updates to f 
corresponds to a set of consistent (non-conflicting) partial map updates that 
are combined into a single total update of f. We do not use partial updates on 
maps in this paper. The theory of partial updates is developed in  [23]. 

3.5 Classes and Dynamic Universes 

AsmL classes are special dynamic universes. Classes are initially empty. Let 
C and D be two dynamic universes such that C is a subset of D and let f be a 
dynamic function from C to integers.  

classclassclassclass D 

classclassclassclass C extendsextendsextendsextends D 

  varvarvarvar f asasasas Integer 

The following AsmL statement adds a new reserve element c to C and D and 
initializes f(c) to the value 0. 

letletletlet c = newnewnewnew C(0) 

Classes are special dynamic universes in that one cannot programmatically 
remove an element from a class. In general, classes cannot be quantified over 
like sets (given by expressions) but it is possible to check whether a given 
element is of type C by using the is keyword. 

ifififif x isisisis C thenthenthenthen ... 

In order to keep track of elements of a class C, one can introduce (essentially 
an auxiliary dynamic universe represented by) a variable of type set of C that 
is initially empty. 

varvarvarvar Cs asasasas Set ofofofof C = {}  

Set-valued variables can be updated partially by inserting and removing 
individual set members. Several such pairwise non-conflicting partial 
updates (i.e. you don't both insert and remove the same element) are 
combined into a single total update at the end of the step.  

letletletlet c = newnewnewnew C(0) 
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Cs(c) := truetruetruetrue    //insert c into Cs 

Sets (given by expressions) can be quantified over like in the following rule 
where all the invocations of R(x), one for every element x of the set s, happen 
simultaneously in one atomic step. 

forallforallforallforall x inininin s  

  R(x) 

3.6 Simulation of Agents 

Ideally one would like to have a distributed runtime environment for running 
distributed ASMs. The current version of AsmL doesn't have yet runtime 
support for true concurrency or simulation of true concurrency. Therefore we 
have to build functionality for simulating concurrent agents into our model. 
This is how we do it. 

Agents are introduced through a class Agent. To keep track of the currently 
active agents, a variable Agents of type set of Agent is updated each time an 
agent is created or discarded.  

classclassclassclass Agent 

varvarvarvar Agents asasasas Set ofofofof Agent = {} 

Each agent (more exactly, its state) evolves in sequential steps with each 
invocation of its Program. Each agent a has a mailbox of messages and a 
method InsertMessage that is used by other agents to send messages to a.  

typetypetypetype Message 

classclassclassclass Agent 

  Program() 

  varvarvarvar mailbox asasasas Set ofofofof Message = {} 

  InsertMessage(m asasasas Message) 

    mailbox(m) := truetruetruetrue 

Several agents may simultaneously insert messages into the mailbox of a. 
This will not cause a conflict in updating the mailbox of a because these 
updates are partial. 

The method RunAgents gives the operational semantics of a single step of the 
top-level system, in the definition of which chooseSubset selects 
nondeterministically a subset of the active agents. Thus, at each global step of 
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the system, some, none or all of the active agents in the system may perform 
a step. 

RunAgents()  

  forallforallforallforall a inininin chooseSubset(Agents) 

    Program(a) 

4 Abstract Communication Model 

It is not clear how to deal with the network in a sufficiently abstract and 
general way. This problem came up in a number of our projects, initially in 
the UPnP project. To solve this problem, we introduced a special category of 
agents which we call communicators. Each communicator represents a part of 
the communication network. Intuitively different communicators represent 
disjoint subnets, and typically this is indeed the case. But we don't impose 
this restriction.   

classclassclassclass COMMUNICATOR extendsextendsextendsextends Agent 

The communicators transfer messages between applications running on hosts 
connected to the network. Thus, one can think of communicators as an 
abstract kind of "router" of messages.  However, the term "router" used in 
this sense is much more general than the corresponding TCP/IP term.  

classclassclassclass APPLICATION extendsextendsextendsextends Agent 

Our communication model is a distributed ASM. It was obtained by an 
abstraction of TCP/IP networks  [13]. The multitude of communicators 
reflects the fact that a TCP/IP network consists of distinct interconnected 
physical networks. We abstract from routing details. The communicators 
transfer messages between applications. Figure 2 is a sketch of an instance of 
the abstract communication model. We emphasize that, even though the 
model was obtained by abstraction from TCP/IP networks, it is independent 
from TCP/IP and is used to deal with very different networks.  
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Figure 2. Communicators. 
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The whole system, applications and communicators, operates in some 
external environment which may affect the system in various ways. For 
example, it may change the system configuration by creating and removing 
agents.  It may also affect the communication load of the network which 
affects message delays.  Those external environmental actions and events are 
unpredictable as far as the system is concerned. 

Communicators are nondeterministic in two ways.  There is an internal 
nondeterminism that reflects abstraction of various details of routing. In 
addition, there is environment-induced nondeterminism that may cause e.g. 
that some messages are lost. For example, in the case of UPnP, one uses the 
TCP protocol, which is reliable, and the UDP protocol, which is not reliable. 
It is the responsibility of an application to tolerate the non-reliable behavior 
of the network.  

In the following subsections, we discuss the various aspects of the 
communicator's operation and then present the main program that integrates 
these aspects. 

4.1 Message Transformation 

Not all messages have a single recipient. Some messages are intended to be 
sent to many recipients.  However, multicasting is just one example of a 
general class of message processing. Other transformations include 
incrementing a hop count for time-to-live calculations and encryption. 

The ResolveMessage method transforms a message (an inbound message of 
the communicator) into a set of messages (outbound messages of the 
communicator).  For example, the transformation may involve adding or 
removing header information or converting a multicast message into separate 
unicast messages. The model places no restriction on the kind of 
transformation performed in this step. It is even possible that a transformation 
may discard a message completely, by returning an empty set.  
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typetypetypetype MESSAGE 

classclassclassclass COMMUNICATOR 

   ResolveMessage(m asasasas MESSAGE) asasasas Set ofofofof MESSAGE 

In the TCP/IP world, addressing mechanisms classify as unicasting, 
broadcasting or multicasting where multicasting can be viewed as the most 
general one  [13]. In our model, a multicast can involve any set of applications 
that are reachable over the network; in principle every such set of 
applications may have an address. The receiver addresses of a multicast 
message can themselves be multicast addresses. An addressTable of a 
communicator is a (possibly dynamic) mapping whose domain consists of the 
addresses a of some multicast groups (that the communicator can deal with). 
If a is the address of a multicast group g then addressTable(a) is a set that 
consists of the addresses of some multicast subgroups of g which could be 
singleton groups. The union of all the subgroups is g itself.  

typetypetypetype ADDRESS 

classclassclassclass COMMUNICATOR 

  varvarvarvar addressTable asasasas Map ofofofof ADDRESS totototo Set ofofofof ADDRESS 

The address table is used in the process of resolving an inbound message into 
a set of transformed outbound messages. 

destination(m asasasas MESSAGE) asasasas ADDRESS 

classclassclassclass COMMUNICATOR 

  Transform(m asasasas MESSAGE, dest asasasas ADDRESS) asasasas MESSAGE 

  ResolveMessage(m asasasas MESSAGE) asasasas Set ofofofof MESSAGE  

    returnreturnreturnreturn {Transform(m,a) | a inininin addressTable(destination(m))} 

4.2 Message Routing 

Communicators determine the recipient of a message. Presumably, this is 
done by examining addressing information in the headers and reconciling that 
information with the communicator's knowledge of network topology.  

The Recipient method of a communicator identifies which agent would 
receive an outbound message if that message were to be forwarded by the 
communicator. The recipient may be an application running on a local host 
that is connected directly to the communicator or another communicator that 
will forward the message further. The message may also have no recipient in 
which case the return value of the method is undef; this possibility forces us 
to use the type Agent? which consists of agents and the undef value. 
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class class class class COMMUNICATOR 

  Recipient(m as as as as MESSAGE) as as as as Agent? 

A generic way to encode global network topology, as far as this information 
is required in an abstract communication model (where the degree of detail 
and precision can be freely chosen depending on the given application 
context), is through a (possibly dynamic) mapping called routingTable. The 
routing table of a communicator maps addresses to neighboring agents 
(communicators or applications) as required for routing messages through a 
network. 

classclassclassclass COMMUNICATOR 

  varvarvarvar routingTable asasasas Map ofofofof ADDRESS totototo Agent 

The recipient of an outbound message is determined by looking up the 
destination address of the message in the routing table. If there is no entry in 
the routing table for a given address a then the value of routingTable(a) is 
undef. 

classclassclassclass COMMUNICATOR 

  Recipient(m asasasas MESSAGE) asasasas Agent? 

    returnreturnreturnreturn routingTable(destination(m)) 

4.3 Delivery Conditions 

In real-world distributed systems, there are complex conditions that govern 
when (or if) a message is forwarded by a communicator. These might include 
network latency, security parameters and resource limitations of the 
underlying physical network. Since we abstract here from lower-level 
network layers, the decision whether a message is ready to deliver in a given 
state of the network is expressed through an external predicate 
ReadyToDeliver. 

classclassclassclass COMMUNICATOR 

  externalexternalexternalexternal ReadyToDeliver(m asasasas MESSAGE) asasasas Boolean 

Note that messages that are never ready to deliver are in effect "lost", even 
though they persist in the communicator's mailbox. (For example, for some 
UDP message m the condition ReadyToDeliver(m) might never hold.)   
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4.4 Message Delivery  

We are now ready to present an algorithm for how communicators route 
messages to other agents. The control program of a communicator forwards 
messages found in its mailbox by inserting them into the mailboxes of the 
respective recipients of the message. The communicator program is highly 
nondeterministic. 

classclassclassclass COMMUNICATOR 

  Program() = 

    letletletlet availableMsgs = {m | m inininin memememe.mailbox wherewherewherewhere ReadyToDeliver(m)} 

    letletletlet selectedMsgs = chooseSubset(availableMsgs) 

 

    forallforallforallforall msg inininin selectedMsgs 

      memememe.mailbox(msg) := falsefalsefalsefalse               //delete the message 

      letletletlet resolvedMsgs = ResolveMessage(msg) //resolve the message 

      forallforallforallforall m inininin resolvedMsgs  

        letletletlet a = Recipient(m)  

        ifififif a <> undefundefundefundef thenthenthenthen                   // if recipient found  

          InsertMessage(a,m)                 // forward the message 

        elseelseelseelse 

          skipskipskipskip                               // else ignore message  

First, the communicator determines the subset of unprocessed messages that 
are ready to be delivered. Next, the communicator (nondeterministically) 
selects a subset of the available messages for processing in this step. Note 
that some, all or none of the available messages may be selected for 
processing. Next, the communicator transforms each selected message, as 
described above. This may result in the unfolding of a single message into 
many messages, each of which will be posted to a single recipient (for 
instance, in the case of multicasting).  Note that a recipient may be another 
communicator. Finally, the communicator calculates the recipient of each 
resolved message and inserts the (transformed) message to the mailbox of the 
recipient. 
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5 Universal Plug and Play 

The Universal Plug and Play Architecture (UPnP)  [33] is an industrial 
standard for dynamic peer-to-peer networking defined by the UPnP Forum 
 [34]. Here is how UPnP is described in  [33]: 

We have developed a high-level executable behavior model of the UPnP 
architecture  [17] [18] [19] based on the informal requirements specification 
 [33]. The construction of a DASM allows us to combine both synchronous 
(that is one-agent) execution models of individual devices and control points 
and asynchronous execution models of an ensemble of devices and control 
points within one uniform model of computation. Here we give an overview 
of our UPnP model focusing on some interoperability aspects (rather than on 
the internal behavior of UPnP components) related to the abstract 
communication model.  

5.1 The UPnP Protocol 

We briefly summarize here the basic characteristics of the UPnP protocol. 
Technically, it is a layered protocol built on top of TCP/IP by combining 
various standard protocols: DHCP, SSDP, SOAP, GENA, etc. It supports 
dynamic configuration of any number of devices offering various kinds of 
services requested by control points.  

To perform control tasks, a control point needs to know what devices are 
available (i.e. reachable over the network), what are the services advertised 
by devices, and when those advertisements expire. The services of a device 
interact with the external (physical) world through the actuators and sensors 
of the device.  

A sample UPnP device, a CD player, is shown in Figure 3. In the full model 
 [17], this device has two different services, called ChangeDisc, and PlayCD; 
Figure 3 illustrates only the first one. The ChangeDisc service allows a 
control point to add or remove discs from the CD player, to choose a disc to 
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be placed on the tray, and to toggle (open/close) the door.  The figure 
illustrates the relevant state information associated with the service. 

 

5.1.1 Protocol Phases 

The UPnP protocol defines 6 basic steps or phases. Initially, these steps are 
invoked one after the other in the order given below, but may arbitrarily 
overlap afterwards. (0) Addressing is needed for obtaining an IP address 
when a new device is added to a network. (1) Discovery informs control 
points about the availability of devices and their services. (2) Description 
allows control points to retrieve detailed information about a device and its 
capabilities. (3) Control provides mechanisms for control points to access and 
control devices through well-defined interfaces. (4) Eventing allows control 
points to receive information about changes in the state of a service at run 
time. (5) Presentation enables users to retrieve additional device vendor 
specific information. 
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Figure 3. ChangeDisc service of a CD player. 
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5.1.2 Restrictions 

Control points and devices interact through exchange of messages over a 
TCP/IP network where network characteristics, like bandwidth, dimension, 
and reliability, are left unspecified. In general, the following restrictions 
apply. Communication is considered to be neither predictable nor reliable, 
that is message transfer is subject to arbitrary and varying delays, and some 
messages may never arrive. Devices may appear and disappear at any time 
with or without prior notice. Consequently, there is no guarantee that a 
requested service is available in a given state or will become available in 
future. In particular, an available service may not remain available until a 
certain control task using this service has been completed. 

5.2 UPnP Abstract Machine 

The individual communication endpoints, or applications, in UPnP are 
devices and control points. 

classclassclassclass CONTROLPOINT extendsextendsextendsextends APPLICATION 

classclassclassclass DEVICE       extendsextendsextendsextends APPLICATION 

In addition to communicators and applications, the full model  [17] employs 
some additional agents that reflect the external world, e.g. DHCP server 
agents, but here we ignore them.  

With each agent type we associate one or more interfaces for interaction with 
other agents in our model or with the environment that is the external world. 
The environment affects the system behavior in various ways. For example, it 
changes the system configuration e.g. by creating and removing agents.  It 
also affects the communication load of the network which affects message 
delays.  Those external environmental actions and events are unpredictable. 

Our model is integrated with a graphical user interface (GUI) allowing for 
user-controlled interaction with the environment. The overall organization of 
the model is illustrated in Figure 4. 
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Figure 4. Instance of UPnP Abstract Machine. 

 

Device model  

The purpose of the device model specification is to describe how a device 
behaves in a UPnP compliant way. In a given system state, a UPnP device 
may or may not be connected to a network. The network connectivity of a 
device is affected by actions and events in the external world and may 
therefore change in an unpredictable way. The device model specification is a 
parallel composition of a number of rules operating in parallel; different rules 
describe different protocol phases.  

externalexternalexternalexternal isConnected(d asasasas DEVICE) asasasas Boolean 

classclassclassclass DEVICE 

  Program() 

    ifififif isConnected(memememe) thenthenthenthen 

      RunAddressing() 

      RunDiscovery() 

      RunDescription() 

      RunControl() 

      RunEventing() 

      RunPresentation() 
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Here we focus only on one of those phases, the control phase given by 
RunControl, that involves direct interaction with communicators. Every 
device offers a set of services. Each service of a device can be called by 
control points by means of messages. Each service call produces a response 
message sent back to the caller; the response message tells the caller whether 
the call succeded or not and may include a return value.  

The communication between the devices and the control points is enabled by 
communicators. Every device is associated with one communicator. A device 
sends messages by inserting them into the mailbox of that communicator. A 
device may receive messages from that communicator but also from other 
communicators. Who can deliver messages to whom depends on the actual 
address tables and routing tables used by communicators. 

ttttypeypeypeype SERVICE 

classclassclassclass DEVICE 

  services asasasas Set ofofofof SERVICE 

  varvarvarvar communicator asasasas COMMUNICATOR 

  Call(s asasasas SERVICE, msg asasasas MESSAGE) asasasas MESSAGE 

The control phase of the protocol is executed only if the device has a valid 
address. Initially the address is undef but it is eventually updated by the 
addressing phase of the protocol. When active, the control phase handles 
service requests one at a time and runs the services.  

IsServiceRequest(m asasasas MESSAGE, s asasasas SERVICE) asasasas Boolean 

classclassclassclass DEVICE 

  RunServices() 

 

  varvarvarvar address asasasas ADDRESS? = undefundefundefundef 

  RunControl() 

    ifififif address ≠ undefundefundefundef thenthenthenthen  

      RunServices() 

      choosechoosechoosechoose msg inininin mailbox, s inininin services 

             wherewherewherewhere IsServiceRequest(msg,s)  

        reply = Call(s,msg) 

        mailbox(msg) := falsefalsefalsefalse  

        InsertMessage(communicator, reply) 

After a service call to the device is taken care of, the service may continue to 
run. Whether only some or all of the services are allowed to run 
simultaneously depends on the definition of the RunServices method of the 
particular device. 
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6 Modeling Automated Business Processes 

In this section we summarize a real-life application of distributed abstract 
state machines to model automated business processes  [36]. The purpose of 
the summary is to illustrate the effective reuse of the abstract communication 
model. 

A business process is a protocol for commercial transactions that occur 
between two or more parties. Transactions are exchanges of goods, services 
or information. A typical example of a business process is the series of 
interactions required to settle a securities trade. Many business processes are 
designed to span organizational boundaries. For example, a process for 
corporate purchasing may include roles for a "buyer", a "seller" and a 
"shipping agent," where each of the parties is a separate enterprise. 

An automated business process is executed without manual steps. For 
example, banks in the United States use an automated clearinghouse to settle 
accounts for checks they honor on each other's behalf.  A protocol for an 
automated business process specifies data formats for messages, some 
constraints on the behavior of the electronic communications network itself, 
and a description of the possible patterns of messages that constitute a 
transaction.  

6.1 XLANG 

XLANG is an XML based formal language that can be used to define the data 
and networking protocols of automated business processes  [32]. XLANG 
builds on the existing standards for the Internet and World Wide Web. The 
building block standard that XLANG is most dependent on is WSDL, the 
Web Service Description Language  [35]. XLANG has a two-fold relationship 
with WSDL. Syntactically, an XLANG service description is a WSDL 
service description with an extension that describes the behavior of the 
service as a part of a business process. Operationally, an XLANG service 
behavior may rely on simple WSDL services to provide basic functionality 
for the implementation of the business process.  

The goal of XLANG is to make it possible to formally specify business 
processes as stateful long-running interactions. As a rule, business processes 
involve more than one participant. The full description of a process, called a 
contract, must constraint not only the behavior of each participant, but also 
the way these behaviors match to comply with the overall process. 
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6.2 XLANG Abstract Machine 

The definition of an abstract operational semantics for XLANG comes in the 
form of an abstract machine model in combination with an XLANG-to-AsmL 
compiler. The behavior is formalized by mapping a given XLANG contract 
to AsmL code effectively explaining this behavior in terms of machine runs.  

An XLANG contract contains two parts: 

•  a collection of individual so-called XLANG service behaviors (that is 
service behavior specifications), and  

•  a port map defining the interconnection topology of those services. 

Each of the service behaviors is compiled into a sequence of XLANG 
Abstract Machine (XAM) instructions. The port map determines the routing 
information that is used by the network abstract machine to interconnect the 
services. The approach taken here is similar to the concept of "phases of 
compilation" in compiler construction.  

 
Figure 5. Generation of XAM instructions 

 

Note that our approach is abstract: the structure we describe does reflect a 
real-world implementation but omits implementation-specific detail.  
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The full XLANG abstract machine is a DASM that has two main 
components, each of which is again a DASM: 

1) Service Abstract Machine: a service abstract machine is 
parameterized with a sequence of XAM instructions. 

2) Network Abstract Machine: here the port map of the contract 
determines the necessary interconnection topology of the services. 

In the remainder of this section, we first outline the overall structure of the 
service abstract machine. We omit the details regarding the behaviors of the 
individual XAM instructions. We then describe the interaction of the service 
abstract machine with the network abstract machine. 

6.2.1 Service Abstract Machine 

The Service Abstract Machine models an individual service. It consists of 
two different types of ASM agents: 1) a uniquely identified service manager 
that represents the behavior of the infrastructure on top of which the service 
runs; 2) some, possibly empty, collection of concurrently operating processes 
(or process agents) that represent the XLANG processes associated with that 
service. Each process represents either a service instance created directly by 
the manager or a sub-process spawned by a previously created process.    

During its lifetime, a service instance may spawn several sub-processes. The 
behavior of that agent group consisting of the service instance and all its 
descendants plays an important role. Each process belongs to some manager. 
There are four modes that indicate whether (a) a process has exited by having  
run all of the XAM instructions, (b) a process has been interrupted by an 
exception, (c) a process has been halted by external intervention, or (d) a 
process is currently executing instructions. 

typetypetypetype Service 

typetypetypetype Label 

typetypetypetype ServiceProgram 

classclassclassclass Manager extendsextendsextendsextends Agent 

  service asasasas Service  

  pgm asasasas ServiceProgram 

enumenumenumenum ProcessMode 

  exited  

  raised 

  halted 

  running 
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classclassclassclass Process extendsextendsextendsextends Agent 

  manager asasasas Manager 

  varvarvarvar pc asasasas Label 

  varvarvarvar mode asasasas ProcessMode 

  varvarvarvar subProcesses asasasas Set ofofofof Process 

classclassclassclass ServiceInstance extendsextendsextendsextends Process 

The program of a process is to execute the next XAM instruction in the 
running mode, and to do nothing (skip) in any other mode. Some instructions 
may be executed without incrementing the program counter; others cause the 
program counter to jump to a new position in the program. 

typetypetypetype Instruction 

Execute(intr asasasas Instruction, p asasasas Process) 

instr(pgm asasasas ServiceProgram, lbl asasasas Label) asasasas Instruction 

classclassclassclass Process 

  Program() 

    ifififif mode = running thenthenthenthen 

      letletletlet instr = instr(manager.pgm, pc) 

      Execute(instr, mmmmeeee) 

    elseelseelseelse 

      skipskipskipskip 

A manager has two independent jobs. One is to activate new service instances 
when activating messages are received. For example a buyer may send a 
purchase request to a seller that will trigger the creation of a new instance of 
the seller service to handle that request. The seller may of course receive 
several requests from different buyers and create several independent service 
instances to handle those requests. The other job is to handle message traffic 

classclassclassclass Manager 

  Program()  

    ActivateServiceInstance() 

    HandleMessageTraffic() 

  HandleMessageTraffic() 

    ReceiveIncomingMessages() 

    ForwardOutgoingMessages() 

6.2.2 Interaction with the Network Abstract Machine 

The Network Abstract Machine part of the XLANG model is a specialization 
of the abstract communication model with appropriate routing tables and 
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address tables that enable communication between services whose ports are 
interconnected according to the port map of the contract. 

A service manager has a set of communication ports. Each port is associated 
with an inbox and outbox of message instances. The inbox of a port contains 
all the message instances that have been sent to that port and the outbox 
contains all the outbound message instances from that port. (The message 
instance terminology is due to WSDL.) 

typetypetypetype MessageInst 

classclassclassclass Port 

  varvarvarvar inbox asasasas Set ofofofof MessageInst 

  varvarvarvar outbox asasasas Set ofofofof MessageInst 

classclassclassclass Manager  

  ports asasasas Set ofofofof Port 

A message instance is transformed into some concrete network message 
format when it is transmitted over the net. The network message contains the 
original message instance and a destination port. 

classclassclassclass NetworkMessage 

  port asasasas PortName 

  msg asasasas MessageInst 

Each port is associated with a communicator and may be owned by a 
manager (the manager, if any, who has the port among its ports). No port can 
be owned by more than one manager. 

classclassclassclass Communicator 

classclassclassclass Port  

  communicator asasasas Communicator 

A manager uses the port map of the contract to create network messages from 
outbound message instances and forwards them to the communicators of the 
corresponding ports. 

classclassclassclass Manager 

  portMap asasasas Map ofofofof Port totototo Port 

classclassclassclass Manager 

  ForwardOutgoingMessages() 

    forallforallforallforall p inininin ports wherewherewherewhere p.outbox nenenene {} 

      choosechoosechoosechoose m inininin p.outbox 

        p.outbox := p.outbox - {m} 
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        letletletlet msg = newnewnewnew NetworkMessage(portMap(p),m) 

        InsertMessage(p.communicator,msg)  

When a network message has arrived, the original message instance is 
extracted from it and inserted into the inbox of the destination port.  

classclassclassclass Manager 

  ReceiveIncomingMessages() 

    ifififif mailbox nenenene {} thenthenthenthen 

      choosechoosechoosechoose m inininin mailbox 

        mailbox := mailbox - {m} 

        letletletlet p = m.port 

        p.inbox := p.inbox unionunionunionunion {m.msg} 

Figure 6 shows an instance of the XLANG abstract machine.  

 

 
Figure 6. Instance of XLANG Abstract Machine 
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The XLANG model instance in Figure 6 contains several service abstract 
machines (SAMs) and a network abstract machine (NAM). Each SAM 
contains a manager, some service instances and other processes. The NAM 
contains several communicators. The XLANG abstract machine has been 
implemented in AsmL  [36]; a GUI is used to interact with the model and 
visualize the state during simulation runs.  

7 Related Work 

We start with domain-specific languages; the connection to AsmL will soon 
become apparent. General introductions to domain-specific languages are 
given in  [14] [27]. The annotated bibliography  [14] categorizes the domains 
of various domain-specific languages into five different groups. The group on 
software engineering is further subdivided into several subgroups including 
one for software architectures. The main focus of a software architecture 
description language (ADL) is to specify system's conceptual architecture 
rather than its actual implementation.  Recent surveys of ADLs are given in 
 [11] and  [30]. This is a quote from  [30] regarding the prevailing argument for 
using ADLs: 

They are necessary to bridge the gap between informal, "boxes and 
lines" diagrams and programming languages which are deemed too 
low-level for application design activities. 

According to  [29], an ADL must provide means for explicit specification of 
the following building blocks of an architectural description: components, 
connectors, and configurations. Let's see what these building blocks are in 
AsmL. 

Components are agents or groups of agents together with a collection of 
interfaces defining the interaction points of the component with the 
environment. The interfaces may be declared as native COM  [10] interfaces, 
automation interfaces or abstract model interfaces, depending on their usage. 
For example, in the UPnP model, devices are components that interact with 
communicators via abstract model interfaces and with the GUI via 
automation interfaces. 

Connectors are special components that enable the interaction of other 
components. Their behavior is clearly separated from the core behavior of the 
model. For example, in the UPnP model the communicators are the 
connectors; indeed they do not reflect any UPnP specific behavior. 
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Configurations describe the topology of the system. In AsmL, configurations 
are normally described explicitly in the state. For example, the address table 
and the routing table in the abstract communication model encode 
configurations. However AsmL does not have an explicit configuration 
sublanguage considered necessary in  [30]. 

The main strength of AsmL is the unified semantic model based on ASMs. 
This is in contrast to many existing ADLs which lack formal semantics 
completely, or use different formal semantic models for components and 
connectors  [30]. A rigorous semantics is often a prerequisite for many tool 
generators  [28]. AsmL specifications can be used for automatic test case 
generation  [25],  conformance checking  [4] [5], and to provide behavioral 
interfaces for components  [3]. 

Methodological guidelines and epistemological reasons how and why the 
ASM paradigm offers a mathematically well founded approach to high-level 
systems design and analysis of complex system behavior, also in relation to 
other formal methods, are discussed in  [7] [8]. 
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