

 - 1 -

An Abstract Communication Model

Uwe Glässer1, Yuri Gurevich and Margus Veanes

May 2002

Technical Report

MSR-TR-2002-55

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Abstract

We present an abstract communication model. The model is quite general
even though it was developed in the process of specifying a particular
network architecture, namely the Universal Plug and Play (UPnP)
architecture. The generality of the model has been confirmed by its reuse for
different architectures. The model is based on distributed abstract state
machines and implemented in the specification language AsmL.

Keywords: Distributed Systems, Computer Networks, Communications
Software, Requirements Specification, Systems Modeling, Rapid Prototyping

1 This author is currently at Heinz Nixdorf Institute, Paderborn, Germany. The work on
which this paper is based was done mainly when he visited Microsoft.

 - 2 -

1 Introduction

The group on Foundations of Software Engineering at Microsoft Research
 [16] has developed a high-level executable specification language AsmL [2]
based on the concept of abstract state machine or ASM [21]. AsmL is
integrated with Microsoft’s software development, documentation and
runtime environments. AsmL supports specification and rapid prototyping of
object oriented and component oriented software. It is a successful practical
instrument for systems design (and reverse engineering).

ASMs are able to simulate arbitrary algorithms in the step-for-step manner.
There is a substantial experimental confirmation [1] [16] as well as theoretical
confirmation [6] [22] of that ASM thesis. ASMs have been used to specify
various architectures, protocols and numerous languages, in particular C [20],
Java [30], SDL [15] and VHDL [8]. The International Telecommunication
Union adopted a comprehensive ASM-based formal definition of SDL as an
integral part of the current SDL standard [28]. AsmL specifications look like
pseudo code over abstract data structures. As such, they are easy to read and
understand by system engineers and program developers. Practical
experiences with industrial applications helped to establish a pragmatic
understanding of how to model complex system behavior with a degree of
detail and precision as needed [7] [8].

Some features of high-level rigorous specifications are well recognized in the
academic community as advantageous. While informal documentation is
often ambiguous, incomplete and even inconsistent, properly constructed
formal specifications are consistent, avoid unintended ambiguity and are
complete in the appropriate sense that allows for intended ambiguity
(nondeterminism). Let us emphasize though that in practice formal
specifications build on given informal descriptions. You fix loose ends,
resolve unintended ambiguities and inconsistencies, separate concerns, etc.
Gradually the given informal description gives rise to a mathematical model
or to a hierarchy of such models.

Some other features of high-level rigorous specifications are more
controversial. We advocate AsmL specifications that are executable and
written in the style of literate programming so that they are easy to
comprehend; see examples at [2]. AsmL is used to explore and test the
design, to validate the specification itself, and to test the conformance of the
implementation to the specification. In particular, executable specifications
are used for test-case generation [25] and runtime verification [3].

 - 3 -

And there are features of high-level rigorous specifications, at least of ASM
specifications, that have not been given sufficient attention. An ASM model
is a closed world with well delineated interfaces to the outside world. The
need to make that world closed provokes one to fill various gaps in a given
informal spec. That is what happened when we worked on the Universal Plug
and Play (UPnP) architecture [17]. While the informal documentation
described UPnP devices and the UPnP protocol, it did not provide a
conceptual model of the network. We had to construct such a model. It turned
out to be general and was reused on several occasions. The communication
model partitions the whole system into a collection of communicating
subsystems. The particular subsystems change from one project to another
but the communication structure is the same. In particular, the
communication model was reused in our work on XLANG [36] where the
documentation given to us was partially formal but did not address the
communication model.

In this paper, we present our communication model and illustrate it on the
examples of UPnP and XLANG. As far as domain specific languages [14]
are concerned, our work fits in well, the specific domain being Software
Architecture Description.

We try to make this paper self-contained. In Section 2, we recall some basic
definitions on abstract state machines (ASMs) and in particular distributed
abstract state machines (DASMs). In Section 3, we describe a portion of
AsmL sufficient for our purposes in this paper. The abstract communication
model is described in Section 4. The abstract communication model is reused
in both Section 5, where we describe the UPnP model, and in Section 6,
where we describe the XLANG model. In Section 7 we discuss the
classification of AsmL as a software architecture description language.

2 Abstract State Machines

Our method rests on the ASM theory. Here we give a quick description of
ASMs sufficient for our purposes in this paper. The interested reader may
want to consult [6] [22] [23].

2.1 Basic ASMs

A basic ASM consists of a basic ASM program together with a collection of
states (the legal states of the ASM) and subcollection of initial states. First we
describe basic ASM states and then define basic ASM programs.

 - 4 -

Basic ASMs are sequential algorithms. Intuitively sequential algorithms are
non-distributed algorithms with uniformly bounded parallelism. The latter
means that the number of actions performed in parallel is bounded
independently of the state or the input. The notion of sequential algorithms is
formalized in [23] where it is proved that, for every sequential algorithm,
there is a basic ASM that simulates the algorithm step for step.

2.1.1 States

The notion of ASM state is a variation of the notion of (first-order) structure
in mathematical logic.

A vocabulary is a collection of function symbols and relation symbols (or
predicates); each symbol has a fixed arity (the number of arguments).
Symbols split into dynamic and static. Every vocabulary contains (static)
logic symbols true, false, undef, the equality symbol, and the standard
propositional connectives.

A state A of a given vocabulary is a nonempty set X (the base set of A),
together with interpretations of the function symbols (the basic functions of
A) and the predicates (the basic relations of A). A function (respectively
relation) symbol of arity j is interpreted as a j-ary operation (respectively
relation) over X. A nullary function symbol is interpreted as an element of X.
The logic symbols are interpreted in the obvious way.

The value undef is the default value for basic functions. Formally a basic
function f is total but intuitively it is partial. The intended domain of f

consists of all tuples a with f(a) � undef. Every state includes an infinite
"naked" set called the reserve. The role of reserve will become apparent later.

The default value for relations is false. We think of a j-ary relation R as a set
of j-tuples of elements.

Remark. Traditionally, in logic, true and false do not belong to the base set,
and so there is a principal difference between basic functions (taking values
inside the structure) and basic relations (taking values outside). In our
framework, basic relations are seen as special basic functions whose only
possible values are true and false and whose default value is false rather than
undef.

This simple definition of state is very general. Any kind of static
mathematical reality can be described as a first-order structure. Second-order

 - 5 -

and higher-order structures of logic are special first-order structures. Many-
sorted first-order structures (with several base sets called sorts) are special
one-sorted structures; the roles of sorts are played by designated unary
relations which are called universes in the ASM literature. Notice that ASM
universes may be dynamic.

Example 1. The vocabulary consists of one static unary predicate Scandinavia and
one dynamic binary predicate Flight. (In addition, it contains the logic symbols but it
is customary to ignore the logic symbols, their interpretation and the reserve in the
descriptions of states.) The base set of our state consists of three airports ARN, CPH
and SEA. The unary relation Scandinavia contains ARN and CPH but not SEA. The
relation Flight is this

 {(ARN,CPH),(CPH,ARN),(CPH,SEA),(SEA,CPH)}

The intended meaning is that there are direct flights (of some fixed airline) from
ARN to CPH, from CPH to ARN, etc., but there are no direct flights between ARN
and SEA.

2.1.2 Updates

We view a state as a kind of memory. Dynamic functions are those that can
change during computation. A location of a state A is a pair l = (f, (x1,…, xj))
where f is a j-ary dynamic function (or relation) symbol in the vocabulary of
A and (x1,…, xj) is a j-tuple of elements of A. The element y = f(x1,…,xj) is
the content of that location.

An update of state A is a pair (l, y'), where l is a location (f, (x1,…, xj)) of A
and y' is an element of A; of course y' is true or false if f is a predicate. To
fire the update (l, y'), replace the old value y = f(x1,…, xj) at location l with
the new value y' so that f(x1,…, xj) = y' in the new state. Intuitively, one may
view dynamic functions as being represented by function tables that can be
updated dynamically at run time. The effect of the update instruction above is
illustrated in Figure 1; the new content y' is replaced by the old content y of
location l.

…

f

yxnx1 y’

Function table

Figure 1. Function update

 - 6 -

A set S = {(l1, y'1), ..., (ln, y'n)} of updates is consistent if the locations are
distinct. In other words, S is inconsistent if there are i, j such that li = lj but y'i
is distinct from y'j. To fire a consistent set of updates, fire all the updates at
once; to fire an inconsistent update set, do nothing.

2.1.3 Rules and Programs

Expressions are defined inductively. If f is a j-ary function symbol and e1,...,
ej are expressions then f(e1,..., ej) is an expression. (The base of induction is
obtained when j = 0.) If f is a predicate then the expression is Boolean.

An update rule R has the form

f(e1,...,ej) := e0

where f is a j-ary dynamic function symbol and each ei is an expression. (If f
is a predicate then e0 should be a Boolean expression.) To execute R, fire the
update (l, a0) where l = (f, (a1,..., aj)) and each ai is the value of ei.

A conditional rule R has the form:

if e then R1 else R2

where e is a Boolean expression and R1, R2 are rules. To execute R, evaluate
the guard e. If e is true, then execute R1; otherwise execute R2.

A do-in-parallel rule R has the form

do in-parallel
 R1
 R2

where R1, R2 are rules. To execute R, execute rules R1, R2 simultaneously.

An import rule R has the form

import x
 R1(x)

To execute R, fish out any element x of the reserve and execute the rule R1(x).

A program (that is a basic ASM program) is just a rule. An ASM is given by
a program, a collection of legal states and a subcollection of initial states.
Note that the program described just one step of the ASM. It is supposed to
be executed until – if ever – the state does not change.

 - 7 -

Example 1 (continuation). The following rule reflects that direct flights have
been established between ARN and SEA.

do in-parallel
 Flight(ARN,SEA) := true
 Flight(SEA,ARN) := true

2.2 Parallel ASMs

We generalize the definition of basic ASMs in a two directions.

First, we enrich the notion of expression.

{t(x) | x � s where φ(x)}

is an expression (a comprehension expression) denoting the set of all values
t(x) where x ranges over those elements of set s that satisfy φ(x). This
presumes that s is a set expression and φ(x) is Boolean. We require that every
state A is closed under tuples and (finite) sets: if a1,..., an are elements of A
then the tuple (a1,..., an) and the set {a1,..., an} are elements of A. We require
also that A contains the standard operations over tuples and sets, e.g. the set
pairing operation {e1, e2}.

Remark. We often require also that the states are closed under finite partial
maps but the set background is sufficient for theoretical purposes [6].

Second, we enrich the notion of rules. A do-forall rule R has the form

forall x � s
 R1(x)

where R1(x) is a rule and x does not occur freely in the expression r. To
execute R, execute all subrules R(x) with x in s at once.

Parallel ASMs are parallel algorithms. The appropriate notion of parallel
algorithms is formalized in [6] where it is proved that, for every parallel
algorithm, there is a parallel ASM that simulates the given algorithm step for
step.

2.3 Nondeterministic ASMs

Basic and parallel ASMs can be made nondeterministic by the use of external
basic functions. For example, an ASM can employ a function Input operated

 - 8 -

by the user. It is convenient though to have explicit nondeterminism. To this
end, we enrich parallel ASMs with choose rules.

A choose rule R has the form

choose x ∈ s
 R1(x)

where R1(x) is a rule and x does not occur freely in the set expression s. To
execute R, choose any element x of s and execute the subrule R1(x).

Example 1 (continuation). Imagine that, for some reason, you want to remove all
direct flights between SEA and one of the Scandinavian airports. The following rule
accomplishes that.

choose x ∈ {ARN,CPH}
 Flight(SEA, x) := false
 Flight(x, SEA) := false

2.4 Distributed ASMs

Until now, we dealt with one-agent ASMs. A distributed ASM (DASM)
involves a collection of agents. Mathematical abstraction allows us to speak
about global states of a DASM even though different agents may live on
different computers. In a global state, the agents interact by reading from and
writing into "shared" locations of the global state; potential read-write and
write-write conflicts are resolved according to the definition of partially
ordered runs below.

Agents are represented in global states as well. They are elements of a
dynamically universe Agent that may grow and shrink. With each agent we
associate a program defining its behavior. A static universe Program
abstractly represents the set of all agent programs collectively forming the
distributed program of A. Agents may perform their computation steps
concurrently. A single computation step of an individual agent is called a
move of this agent.

Formally, a run ρ of a distributed ASM A is given by a triple (M, λ, σ)
satisfying the following four conditions:

1. M is a partially ordered set of moves where each move has only
finitely many predecessors.

2. λ is a function on M associating agents with moves such that the
moves of any single agent of A are linearly ordered.

 - 9 -

3. σ assigns a state of A to each initial segment Y of M, where σ(Y) is the
result of performing all moves in Y; σ(Y) is an initial state if Y is
empty.

4. The coherence condition: If x is a maximal element in a finite initial
segment X of M and Y = X – {x} then λ(x) is an agent in σ(Y) and σ(X)
is obtained from σ(Y) by firing λ(x) at σ(Y).

Intuitively, a run can be seen as the common part of histories of the same
computation recorded by various observers. See [22] for further details.

Example 2. We illustrate the coherence condition in a simple situation. Suppose
that we have only two propositional variables (dynamic nullary relation symbols)
door and window. Intuitively door = true means that "the door is open" and window
= true means that "the window is open". Imagine now two distinct agents: a door-
manager (agent d) and a window-manager (agent w). The program of the door-
manager is to open the door if the window is closed (move x). The program of the
window-manager is to open the window if the door is closed (move y).

Programd = if ¬window then door := true

Programw = if ¬door then window := true

Assume that initially (in state S0) both the door and the window are closed. Then
there are only two possible runs, and in each run only one of the agents makes a
move. Indeed, we cannot have x < y because w is disabled in the state S1 obtained
from S0 by performing x. Similarly we cannot have y < x because d is disabled in the
state S2 obtained from S0 by performing y. Finally, we cannot have a run where x and
y are incomparable, that is neither x < y nor y < x. By the coherence condition, the
final state S3 of such a run would be obtained from S1 by performing y which is
impossible. (It would also be obtained from S2 by performing x which is equally
impossible.)

3 From Abstract State Machines to AsmL

To actually program ASMs in industrial environment, we need an industrial-
strength language. One such language has been (and is being) developed in
Microsoft Research. It is called AsmL (ASM Language). Here we focus on
those aspects of AsmL that are most important for the general understanding
and that are actually used in this paper. The description given here is
incomplete in many respects. For an in-depth introduction to AsmL, we
recommend the reader to consult [2].

First we explain how the fundamental modeling concepts of ASMs are
realized in AsmL. Then we introduce additional functionality into the

 - 10 -

modeling framework that enables us to faithfully simulate distributed ASM
agents; such simulation is needed because the current version of AsmL lacks
runtime support for true concurrency or simulation of true concurrency.

Remark. There is a fair amount of freedom in AsmL regarding the
representation of ASM functions and domains. The reader should keep in
mind that the particular choice of representation is often a matter of taste,
readability and a way to control how the model is executed, and does not
affect the underlying ASM semantics.

3.1 Types

Some ASM universes give rise to types in AsmL. Other universes are
represented as (finite) sets; some examples are found below. An AsmL
model may first declare an abstract type C and later on concretize that type
into a class, a structure, a finite enumeration, or a derived type.

typetypetypetype C

classclassclassclass C

AsmL has an expressive type system that allows one to define new types
using (finite) sets, (finite partial) maps, (finite) sequences, tuples, etc.,
combined in arbitrary ways. For example, if C and D are types then the type
of all maps from C to sets of elements of D is this.

Map ofofofof C totototo Set ofofofof D

Finite sets, sequences, maps are ordinary elements. The common operations
on sets, sequences, maps and other built-in data types are available as built-
ins, for example the binary operation apply(f, a) applies a map f to an element
a. The shorthand notation for map application is f(a).

3.2 Derived Functions

Derived functions play an important role in applications of ASMs. A derived
function does not appear in the vocabulary; instead it is computed on the fly
at a given state. In AsmL, derived functions are given by methods that return
values. A derived function f from C0×C1× ... ×Cn to D can be declared as a
global method.

f(x0 asasasas C0, x1 asasasas C1, ..., xn asasasas Cn) asasasas D

 - 11 -

The definition of (how to compute) f may be given together with the
declaration or introduced later on in the code. Alternatively, if C0 is a class
(or a structure) then f can be declared as a method of C0. Notice that n can be
0.

classclassclassclass C0

 f(x1 asasasas C1,...,xn asasasas Cn) asasasas D

A nullary derived function can be introduced as a global method that takes no
arguments. For example

z() asasasas Integer returnreturnreturnreturn e

where e is evaluated in a given state.

3.3 Constants

A nullary function that does not change during the evolution can be declared
as a constant.

z asasasas Integer = 0

A unary static function from a class C to D can be declared as a constant field
of C as in following example.

classclassclassclass C

 id asasasas String

3.4 Variables

There are two kinds of variables, global variables and local variable fields of
classes. Semantically, fields of classes are unary functions.

varvarvarvar b asasasas Boolean

classclassclassclass C

 varvarvarvar f asasasas Integer

Notice that f represents a unary dynamic function from C to integers.

Dynamic functions of ASMs are represented by variables in AsmL. A
dynamic function f from C1 × ... × Cn to D of any positive arity n can be
represented as a variable map in AsmL.

 - 12 -

varvarvarvar f asasasas Map ofofofof (C1, ..., Cn) totototo D

With the map representation, a normal ASM update f(c) := b corresponds to a
partial update of the map variable f. A set of consistent ASM updates to f
corresponds to a set of consistent (non-conflicting) partial map updates that
are combined into a single total update of f. We do not use partial updates on
maps in this paper. The theory of partial updates is developed in [23].

3.5 Classes and Dynamic Universes

AsmL classes are special dynamic universes. Classes are initially empty. Let
C and D be two dynamic universes such that C is a subset of D and let f be a
dynamic function from C to integers.

classclassclassclass D

classclassclassclass C extendsextendsextendsextends D

 varvarvarvar f asasasas Integer

The following AsmL statement adds a new reserve element c to C and D and
initializes f(c) to the value 0.

letletletlet c = newnewnewnew C(0)

Classes are special dynamic universes in that one cannot programmatically
remove an element from a class. In general, classes cannot be quantified over
like sets (given by expressions) but it is possible to check whether a given
element is of type C by using the is keyword.

ifififif x isisisis C thenthenthenthen ...

In order to keep track of elements of a class C, one can introduce (essentially
an auxiliary dynamic universe represented by) a variable of type set of C that
is initially empty.

varvarvarvar Cs asasasas Set ofofofof C = {}

Set-valued variables can be updated partially by inserting and removing
individual set members. Several such pairwise non-conflicting partial
updates (i.e. you don't both insert and remove the same element) are
combined into a single total update at the end of the step.

letletletlet c = newnewnewnew C(0)

 - 13 -

Cs(c) := truetruetruetrue //insert c into Cs

Sets (given by expressions) can be quantified over like in the following rule
where all the invocations of R(x), one for every element x of the set s, happen
simultaneously in one atomic step.

forallforallforallforall x inininin s

 R(x)

3.6 Simulation of Agents

Ideally one would like to have a distributed runtime environment for running
distributed ASMs. The current version of AsmL doesn't have yet runtime
support for true concurrency or simulation of true concurrency. Therefore we
have to build functionality for simulating concurrent agents into our model.
This is how we do it.

Agents are introduced through a class Agent. To keep track of the currently
active agents, a variable Agents of type set of Agent is updated each time an
agent is created or discarded.

classclassclassclass Agent

varvarvarvar Agents asasasas Set ofofofof Agent = {}

Each agent (more exactly, its state) evolves in sequential steps with each
invocation of its Program. Each agent a has a mailbox of messages and a
method InsertMessage that is used by other agents to send messages to a.

typetypetypetype Message

classclassclassclass Agent

 Program()

 varvarvarvar mailbox asasasas Set ofofofof Message = {}

 InsertMessage(m asasasas Message)

 mailbox(m) := truetruetruetrue

Several agents may simultaneously insert messages into the mailbox of a.
This will not cause a conflict in updating the mailbox of a because these
updates are partial.

The method RunAgents gives the operational semantics of a single step of the
top-level system, in the definition of which chooseSubset selects
nondeterministically a subset of the active agents. Thus, at each global step of

 - 14 -

the system, some, none or all of the active agents in the system may perform
a step.

RunAgents()

 forallforallforallforall a inininin chooseSubset(Agents)

 Program(a)

4 Abstract Communication Model

It is not clear how to deal with the network in a sufficiently abstract and
general way. This problem came up in a number of our projects, initially in
the UPnP project. To solve this problem, we introduced a special category of
agents which we call communicators. Each communicator represents a part of
the communication network. Intuitively different communicators represent
disjoint subnets, and typically this is indeed the case. But we don't impose
this restriction.

classclassclassclass COMMUNICATOR extendsextendsextendsextends Agent

The communicators transfer messages between applications running on hosts
connected to the network. Thus, one can think of communicators as an
abstract kind of "router" of messages. However, the term "router" used in
this sense is much more general than the corresponding TCP/IP term.

classclassclassclass APPLICATION extendsextendsextendsextends Agent

Our communication model is a distributed ASM. It was obtained by an
abstraction of TCP/IP networks [13]. The multitude of communicators
reflects the fact that a TCP/IP network consists of distinct interconnected
physical networks. We abstract from routing details. The communicators
transfer messages between applications. Figure 2 is a sketch of an instance of
the abstract communication model. We emphasize that, even though the
model was obtained by abstraction from TCP/IP networks, it is independent
from TCP/IP and is used to deal with very different networks.

R2

R3

R1

Hosts

Router
Communicator 1 Communicator 2

Network 2 Network 1

R2

R3

R1

Hosts

Router
Communicator 1 Communicator 2

Network 2 Network 1

Figure 2. Communicators.

 - 15 -

The whole system, applications and communicators, operates in some
external environment which may affect the system in various ways. For
example, it may change the system configuration by creating and removing
agents. It may also affect the communication load of the network which
affects message delays. Those external environmental actions and events are
unpredictable as far as the system is concerned.

Communicators are nondeterministic in two ways. There is an internal
nondeterminism that reflects abstraction of various details of routing. In
addition, there is environment-induced nondeterminism that may cause e.g.
that some messages are lost. For example, in the case of UPnP, one uses the
TCP protocol, which is reliable, and the UDP protocol, which is not reliable.
It is the responsibility of an application to tolerate the non-reliable behavior
of the network.

In the following subsections, we discuss the various aspects of the
communicator's operation and then present the main program that integrates
these aspects.

4.1 Message Transformation

Not all messages have a single recipient. Some messages are intended to be
sent to many recipients. However, multicasting is just one example of a
general class of message processing. Other transformations include
incrementing a hop count for time-to-live calculations and encryption.

The ResolveMessage method transforms a message (an inbound message of
the communicator) into a set of messages (outbound messages of the
communicator). For example, the transformation may involve adding or
removing header information or converting a multicast message into separate
unicast messages. The model places no restriction on the kind of
transformation performed in this step. It is even possible that a transformation
may discard a message completely, by returning an empty set.

 - 16 -

typetypetypetype MESSAGE

classclassclassclass COMMUNICATOR

 ResolveMessage(m asasasas MESSAGE) asasasas Set ofofofof MESSAGE

In the TCP/IP world, addressing mechanisms classify as unicasting,
broadcasting or multicasting where multicasting can be viewed as the most
general one [13]. In our model, a multicast can involve any set of applications
that are reachable over the network; in principle every such set of
applications may have an address. The receiver addresses of a multicast
message can themselves be multicast addresses. An addressTable of a
communicator is a (possibly dynamic) mapping whose domain consists of the
addresses a of some multicast groups (that the communicator can deal with).
If a is the address of a multicast group g then addressTable(a) is a set that
consists of the addresses of some multicast subgroups of g which could be
singleton groups. The union of all the subgroups is g itself.

typetypetypetype ADDRESS

classclassclassclass COMMUNICATOR

 varvarvarvar addressTable asasasas Map ofofofof ADDRESS totototo Set ofofofof ADDRESS

The address table is used in the process of resolving an inbound message into
a set of transformed outbound messages.

destination(m asasasas MESSAGE) asasasas ADDRESS

classclassclassclass COMMUNICATOR

 Transform(m asasasas MESSAGE, dest asasasas ADDRESS) asasasas MESSAGE

 ResolveMessage(m asasasas MESSAGE) asasasas Set ofofofof MESSAGE

 returnreturnreturnreturn {Transform(m,a) | a inininin addressTable(destination(m))}

4.2 Message Routing

Communicators determine the recipient of a message. Presumably, this is
done by examining addressing information in the headers and reconciling that
information with the communicator's knowledge of network topology.

The Recipient method of a communicator identifies which agent would
receive an outbound message if that message were to be forwarded by the
communicator. The recipient may be an application running on a local host
that is connected directly to the communicator or another communicator that
will forward the message further. The message may also have no recipient in
which case the return value of the method is undef; this possibility forces us
to use the type Agent? which consists of agents and the undef value.

 - 17 -

class class class class COMMUNICATOR

 Recipient(m as as as as MESSAGE) as as as as Agent?

A generic way to encode global network topology, as far as this information
is required in an abstract communication model (where the degree of detail
and precision can be freely chosen depending on the given application
context), is through a (possibly dynamic) mapping called routingTable. The
routing table of a communicator maps addresses to neighboring agents
(communicators or applications) as required for routing messages through a
network.

classclassclassclass COMMUNICATOR

 varvarvarvar routingTable asasasas Map ofofofof ADDRESS totototo Agent

The recipient of an outbound message is determined by looking up the
destination address of the message in the routing table. If there is no entry in
the routing table for a given address a then the value of routingTable(a) is
undef.

classclassclassclass COMMUNICATOR

 Recipient(m asasasas MESSAGE) asasasas Agent?

 returnreturnreturnreturn routingTable(destination(m))

4.3 Delivery Conditions

In real-world distributed systems, there are complex conditions that govern
when (or if) a message is forwarded by a communicator. These might include
network latency, security parameters and resource limitations of the
underlying physical network. Since we abstract here from lower-level
network layers, the decision whether a message is ready to deliver in a given
state of the network is expressed through an external predicate
ReadyToDeliver.

classclassclassclass COMMUNICATOR

 externalexternalexternalexternal ReadyToDeliver(m asasasas MESSAGE) asasasas Boolean

Note that messages that are never ready to deliver are in effect "lost", even
though they persist in the communicator's mailbox. (For example, for some
UDP message m the condition ReadyToDeliver(m) might never hold.)

 - 18 -

4.4 Message Delivery

We are now ready to present an algorithm for how communicators route
messages to other agents. The control program of a communicator forwards
messages found in its mailbox by inserting them into the mailboxes of the
respective recipients of the message. The communicator program is highly
nondeterministic.

classclassclassclass COMMUNICATOR

 Program() =

 letletletlet availableMsgs = {m | m inininin memememe.mailbox wherewherewherewhere ReadyToDeliver(m)}

 letletletlet selectedMsgs = chooseSubset(availableMsgs)

 forallforallforallforall msg inininin selectedMsgs

 memememe.mailbox(msg) := falsefalsefalsefalse //delete the message

 letletletlet resolvedMsgs = ResolveMessage(msg) //resolve the message

 forallforallforallforall m inininin resolvedMsgs

 letletletlet a = Recipient(m)

 ifififif a <> undefundefundefundef thenthenthenthen // if recipient found

 InsertMessage(a,m) // forward the message

 elseelseelseelse

 skipskipskipskip // else ignore message

First, the communicator determines the subset of unprocessed messages that
are ready to be delivered. Next, the communicator (nondeterministically)
selects a subset of the available messages for processing in this step. Note
that some, all or none of the available messages may be selected for
processing. Next, the communicator transforms each selected message, as
described above. This may result in the unfolding of a single message into
many messages, each of which will be posted to a single recipient (for
instance, in the case of multicasting). Note that a recipient may be another
communicator. Finally, the communicator calculates the recipient of each
resolved message and inserts the (transformed) message to the mailbox of the
recipient.

 - 19 -

5 Universal Plug and Play

The Universal Plug and Play Architecture (UPnP) [33] is an industrial
standard for dynamic peer-to-peer networking defined by the UPnP Forum
 [34]. Here is how UPnP is described in [33]:

We have developed a high-level executable behavior model of the UPnP
architecture [17] [18] [19] based on the informal requirements specification
 [33]. The construction of a DASM allows us to combine both synchronous
(that is one-agent) execution models of individual devices and control points
and asynchronous execution models of an ensemble of devices and control
points within one uniform model of computation. Here we give an overview
of our UPnP model focusing on some interoperability aspects (rather than on
the internal behavior of UPnP components) related to the abstract
communication model.

5.1 The UPnP Protocol

We briefly summarize here the basic characteristics of the UPnP protocol.
Technically, it is a layered protocol built on top of TCP/IP by combining
various standard protocols: DHCP, SSDP, SOAP, GENA, etc. It supports
dynamic configuration of any number of devices offering various kinds of
services requested by control points.

To perform control tasks, a control point needs to know what devices are
available (i.e. reachable over the network), what are the services advertised
by devices, and when those advertisements expire. The services of a device
interact with the external (physical) world through the actuators and sensors
of the device.

A sample UPnP device, a CD player, is shown in Figure 3. In the full model
 [17], this device has two different services, called ChangeDisc, and PlayCD;
Figure 3 illustrates only the first one. The ChangeDisc service allows a
control point to add or remove discs from the CD player, to choose a disc to

 - 20 -

be placed on the tray, and to toggle (open/close) the door. The figure
illustrates the relevant state information associated with the service.

5.1.1 Protocol Phases

The UPnP protocol defines 6 basic steps or phases. Initially, these steps are
invoked one after the other in the order given below, but may arbitrarily
overlap afterwards. (0) Addressing is needed for obtaining an IP address
when a new device is added to a network. (1) Discovery informs control
points about the availability of devices and their services. (2) Description
allows control points to retrieve detailed information about a device and its
capabilities. (3) Control provides mechanisms for control points to access and
control devices through well-defined interfaces. (4) Eventing allows control
points to receive information about changes in the state of a service at run
time. (5) Presentation enables users to retrieve additional device vendor
specific information.

10

.

9
8
7
6

5
4
3
2
1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied
Slots

10

.

9
8
7
6

5
4
3
2
1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied
Slots

Figure 3. ChangeDisc service of a CD player.

 - 21 -

5.1.2 Restrictions

Control points and devices interact through exchange of messages over a
TCP/IP network where network characteristics, like bandwidth, dimension,
and reliability, are left unspecified. In general, the following restrictions
apply. Communication is considered to be neither predictable nor reliable,
that is message transfer is subject to arbitrary and varying delays, and some
messages may never arrive. Devices may appear and disappear at any time
with or without prior notice. Consequently, there is no guarantee that a
requested service is available in a given state or will become available in
future. In particular, an available service may not remain available until a
certain control task using this service has been completed.

5.2 UPnP Abstract Machine

The individual communication endpoints, or applications, in UPnP are
devices and control points.

classclassclassclass CONTROLPOINT extendsextendsextendsextends APPLICATION

classclassclassclass DEVICE extendsextendsextendsextends APPLICATION

In addition to communicators and applications, the full model [17] employs
some additional agents that reflect the external world, e.g. DHCP server
agents, but here we ignore them.

With each agent type we associate one or more interfaces for interaction with
other agents in our model or with the environment that is the external world.
The environment affects the system behavior in various ways. For example, it
changes the system configuration e.g. by creating and removing agents. It
also affects the communication load of the network which affects message
delays. Those external environmental actions and events are unpredictable.

Our model is integrated with a graphical user interface (GUI) allowing for
user-controlled interaction with the environment. The overall organization of
the model is illustrated in Figure 4.

 - 22 -

Figure 4. Instance of UPnP Abstract Machine.

Device model

The purpose of the device model specification is to describe how a device
behaves in a UPnP compliant way. In a given system state, a UPnP device
may or may not be connected to a network. The network connectivity of a
device is affected by actions and events in the external world and may
therefore change in an unpredictable way. The device model specification is a
parallel composition of a number of rules operating in parallel; different rules
describe different protocol phases.

externalexternalexternalexternal isConnected(d asasasas DEVICE) asasasas Boolean

classclassclassclass DEVICE

 Program()

 ifififif isConnected(memememe) thenthenthenthen

 RunAddressing()

 RunDiscovery()

 RunDescription()

 RunControl()

 RunEventing()

 RunPresentation()

Devices Control Points

D CP

Network

CP D

C C
C

C

GUI (VB)

 - 23 -

Here we focus only on one of those phases, the control phase given by
RunControl, that involves direct interaction with communicators. Every
device offers a set of services. Each service of a device can be called by
control points by means of messages. Each service call produces a response
message sent back to the caller; the response message tells the caller whether
the call succeded or not and may include a return value.

The communication between the devices and the control points is enabled by
communicators. Every device is associated with one communicator. A device
sends messages by inserting them into the mailbox of that communicator. A
device may receive messages from that communicator but also from other
communicators. Who can deliver messages to whom depends on the actual
address tables and routing tables used by communicators.

ttttypeypeypeype SERVICE

classclassclassclass DEVICE

 services asasasas Set ofofofof SERVICE

 varvarvarvar communicator asasasas COMMUNICATOR

 Call(s asasasas SERVICE, msg asasasas MESSAGE) asasasas MESSAGE

The control phase of the protocol is executed only if the device has a valid
address. Initially the address is undef but it is eventually updated by the
addressing phase of the protocol. When active, the control phase handles
service requests one at a time and runs the services.

IsServiceRequest(m asasasas MESSAGE, s asasasas SERVICE) asasasas Boolean

classclassclassclass DEVICE

 RunServices()

 varvarvarvar address asasasas ADDRESS? = undefundefundefundef

 RunControl()

 ifififif address ≠ undefundefundefundef thenthenthenthen

 RunServices()

 choosechoosechoosechoose msg inininin mailbox, s inininin services

 wherewherewherewhere IsServiceRequest(msg,s)

 reply = Call(s,msg)

 mailbox(msg) := falsefalsefalsefalse

 InsertMessage(communicator, reply)

After a service call to the device is taken care of, the service may continue to
run. Whether only some or all of the services are allowed to run
simultaneously depends on the definition of the RunServices method of the
particular device.

 - 24 -

6 Modeling Automated Business Processes

In this section we summarize a real-life application of distributed abstract
state machines to model automated business processes [36]. The purpose of
the summary is to illustrate the effective reuse of the abstract communication
model.

A business process is a protocol for commercial transactions that occur
between two or more parties. Transactions are exchanges of goods, services
or information. A typical example of a business process is the series of
interactions required to settle a securities trade. Many business processes are
designed to span organizational boundaries. For example, a process for
corporate purchasing may include roles for a "buyer", a "seller" and a
"shipping agent," where each of the parties is a separate enterprise.

An automated business process is executed without manual steps. For
example, banks in the United States use an automated clearinghouse to settle
accounts for checks they honor on each other's behalf. A protocol for an
automated business process specifies data formats for messages, some
constraints on the behavior of the electronic communications network itself,
and a description of the possible patterns of messages that constitute a
transaction.

6.1 XLANG

XLANG is an XML based formal language that can be used to define the data
and networking protocols of automated business processes [32]. XLANG
builds on the existing standards for the Internet and World Wide Web. The
building block standard that XLANG is most dependent on is WSDL, the
Web Service Description Language [35]. XLANG has a two-fold relationship
with WSDL. Syntactically, an XLANG service description is a WSDL
service description with an extension that describes the behavior of the
service as a part of a business process. Operationally, an XLANG service
behavior may rely on simple WSDL services to provide basic functionality
for the implementation of the business process.

The goal of XLANG is to make it possible to formally specify business
processes as stateful long-running interactions. As a rule, business processes
involve more than one participant. The full description of a process, called a
contract, must constraint not only the behavior of each participant, but also
the way these behaviors match to comply with the overall process.

 - 25 -

6.2 XLANG Abstract Machine

The definition of an abstract operational semantics for XLANG comes in the
form of an abstract machine model in combination with an XLANG-to-AsmL
compiler. The behavior is formalized by mapping a given XLANG contract
to AsmL code effectively explaining this behavior in terms of machine runs.

An XLANG contract contains two parts:

• a collection of individual so-called XLANG service behaviors (that is
service behavior specifications), and

• a port map defining the interconnection topology of those services.

Each of the service behaviors is compiled into a sequence of XLANG
Abstract Machine (XAM) instructions. The port map determines the routing
information that is used by the network abstract machine to interconnect the
services. The approach taken here is similar to the concept of "phases of
compilation" in compiler construction.

Figure 5. Generation of XAM instructions

Note that our approach is abstract: the structure we describe does reflect a
real-world implementation but omits implementation-specific detail.

XML text of XLANG contract

Abstract syntax tree of service behaviors

WSDL Port map Service behavior

Instruction sequences of XLANG Abstract Machine

Parsing

Code generation

 - 26 -

The full XLANG abstract machine is a DASM that has two main
components, each of which is again a DASM:

1) Service Abstract Machine: a service abstract machine is
parameterized with a sequence of XAM instructions.

2) Network Abstract Machine: here the port map of the contract
determines the necessary interconnection topology of the services.

In the remainder of this section, we first outline the overall structure of the
service abstract machine. We omit the details regarding the behaviors of the
individual XAM instructions. We then describe the interaction of the service
abstract machine with the network abstract machine.

6.2.1 Service Abstract Machine

The Service Abstract Machine models an individual service. It consists of
two different types of ASM agents: 1) a uniquely identified service manager
that represents the behavior of the infrastructure on top of which the service
runs; 2) some, possibly empty, collection of concurrently operating processes
(or process agents) that represent the XLANG processes associated with that
service. Each process represents either a service instance created directly by
the manager or a sub-process spawned by a previously created process.

During its lifetime, a service instance may spawn several sub-processes. The
behavior of that agent group consisting of the service instance and all its
descendants plays an important role. Each process belongs to some manager.
There are four modes that indicate whether (a) a process has exited by having
run all of the XAM instructions, (b) a process has been interrupted by an
exception, (c) a process has been halted by external intervention, or (d) a
process is currently executing instructions.

typetypetypetype Service

typetypetypetype Label

typetypetypetype ServiceProgram

classclassclassclass Manager extendsextendsextendsextends Agent

 service asasasas Service

 pgm asasasas ServiceProgram

enumenumenumenum ProcessMode

 exited

 raised

 halted

 running

 - 27 -

classclassclassclass Process extendsextendsextendsextends Agent

 manager asasasas Manager

 varvarvarvar pc asasasas Label

 varvarvarvar mode asasasas ProcessMode

 varvarvarvar subProcesses asasasas Set ofofofof Process

classclassclassclass ServiceInstance extendsextendsextendsextends Process

The program of a process is to execute the next XAM instruction in the
running mode, and to do nothing (skip) in any other mode. Some instructions
may be executed without incrementing the program counter; others cause the
program counter to jump to a new position in the program.

typetypetypetype Instruction

Execute(intr asasasas Instruction, p asasasas Process)

instr(pgm asasasas ServiceProgram, lbl asasasas Label) asasasas Instruction

classclassclassclass Process

 Program()

 ifififif mode = running thenthenthenthen

 letletletlet instr = instr(manager.pgm, pc)

 Execute(instr, mmmmeeee)

 elseelseelseelse

 skipskipskipskip

A manager has two independent jobs. One is to activate new service instances
when activating messages are received. For example a buyer may send a
purchase request to a seller that will trigger the creation of a new instance of
the seller service to handle that request. The seller may of course receive
several requests from different buyers and create several independent service
instances to handle those requests. The other job is to handle message traffic

classclassclassclass Manager

 Program()

 ActivateServiceInstance()

 HandleMessageTraffic()

 HandleMessageTraffic()

 ReceiveIncomingMessages()

 ForwardOutgoingMessages()

6.2.2 Interaction with the Network Abstract Machine

The Network Abstract Machine part of the XLANG model is a specialization
of the abstract communication model with appropriate routing tables and

 - 28 -

address tables that enable communication between services whose ports are
interconnected according to the port map of the contract.

A service manager has a set of communication ports. Each port is associated
with an inbox and outbox of message instances. The inbox of a port contains
all the message instances that have been sent to that port and the outbox
contains all the outbound message instances from that port. (The message
instance terminology is due to WSDL.)

typetypetypetype MessageInst

classclassclassclass Port

 varvarvarvar inbox asasasas Set ofofofof MessageInst

 varvarvarvar outbox asasasas Set ofofofof MessageInst

classclassclassclass Manager

 ports asasasas Set ofofofof Port

A message instance is transformed into some concrete network message
format when it is transmitted over the net. The network message contains the
original message instance and a destination port.

classclassclassclass NetworkMessage

 port asasasas PortName

 msg asasasas MessageInst

Each port is associated with a communicator and may be owned by a
manager (the manager, if any, who has the port among its ports). No port can
be owned by more than one manager.

classclassclassclass Communicator

classclassclassclass Port

 communicator asasasas Communicator

A manager uses the port map of the contract to create network messages from
outbound message instances and forwards them to the communicators of the
corresponding ports.

classclassclassclass Manager

 portMap asasasas Map ofofofof Port totototo Port

classclassclassclass Manager

 ForwardOutgoingMessages()

 forallforallforallforall p inininin ports wherewherewherewhere p.outbox nenenene {}

 choosechoosechoosechoose m inininin p.outbox

 p.outbox := p.outbox - {m}

 - 29 -

 letletletlet msg = newnewnewnew NetworkMessage(portMap(p),m)

 InsertMessage(p.communicator,msg)

When a network message has arrived, the original message instance is
extracted from it and inserted into the inbox of the destination port.

classclassclassclass Manager

 ReceiveIncomingMessages()

 ifififif mailbox nenenene {} thenthenthenthen

 choosechoosechoosechoose m inininin mailbox

 mailbox := mailbox - {m}

 letletletlet p = m.port

 p.inbox := p.inbox unionunionunionunion {m.msg}

Figure 6 shows an instance of the XLANG abstract machine.

Figure 6. Instance of XLANG Abstract Machine

SAM

SI
 P

 Manager

SI

 P

 P

SAM

 P

 Manager SI

 P

 P

Network

 C

 C

 C

GUI (VB)

 C

 - 30 -

The XLANG model instance in Figure 6 contains several service abstract
machines (SAMs) and a network abstract machine (NAM). Each SAM
contains a manager, some service instances and other processes. The NAM
contains several communicators. The XLANG abstract machine has been
implemented in AsmL [36]; a GUI is used to interact with the model and
visualize the state during simulation runs.

7 Related Work

We start with domain-specific languages; the connection to AsmL will soon
become apparent. General introductions to domain-specific languages are
given in [14] [27]. The annotated bibliography [14] categorizes the domains
of various domain-specific languages into five different groups. The group on
software engineering is further subdivided into several subgroups including
one for software architectures. The main focus of a software architecture
description language (ADL) is to specify system's conceptual architecture
rather than its actual implementation. Recent surveys of ADLs are given in
 [11] and [30]. This is a quote from [30] regarding the prevailing argument for
using ADLs:

They are necessary to bridge the gap between informal, "boxes and
lines" diagrams and programming languages which are deemed too
low-level for application design activities.

According to [29], an ADL must provide means for explicit specification of
the following building blocks of an architectural description: components,
connectors, and configurations. Let's see what these building blocks are in
AsmL.

Components are agents or groups of agents together with a collection of
interfaces defining the interaction points of the component with the
environment. The interfaces may be declared as native COM [10] interfaces,
automation interfaces or abstract model interfaces, depending on their usage.
For example, in the UPnP model, devices are components that interact with
communicators via abstract model interfaces and with the GUI via
automation interfaces.

Connectors are special components that enable the interaction of other
components. Their behavior is clearly separated from the core behavior of the
model. For example, in the UPnP model the communicators are the
connectors; indeed they do not reflect any UPnP specific behavior.

 - 31 -

Configurations describe the topology of the system. In AsmL, configurations
are normally described explicitly in the state. For example, the address table
and the routing table in the abstract communication model encode
configurations. However AsmL does not have an explicit configuration
sublanguage considered necessary in [30].

The main strength of AsmL is the unified semantic model based on ASMs.
This is in contrast to many existing ADLs which lack formal semantics
completely, or use different formal semantic models for components and
connectors [30]. A rigorous semantics is often a prerequisite for many tool
generators [28]. AsmL specifications can be used for automatic test case
generation [25], conformance checking [4] [5], and to provide behavioral
interfaces for components [3].

Methodological guidelines and epistemological reasons how and why the
ASM paradigm offers a mathematically well founded approach to high-level
systems design and analysis of complex system behavior, also in relation to
other formal methods, are discussed in [7] [8].

References

[1] Abstract State Machines (ASMs), the academic Web site,
http://www.eecs.umich.edu/gasm.

[2] AsmL, the ASM Language, the website,
htt:p//research.microsoft.com/fse/asml

[3] M. Barnett and W. Schulte. The ABCs of Specification: AsmL, Behavior, and
Components, Informatica, 25(4), 2001.

[4] M. Barnett, C. Campbell, W. Schulte, and M. Veanes. Specification,
simulation and testing of COM components using Abstract State Machines. In
Formal Methods and Tools for Computer Science, Eurocast 2001, pp. 266-
270. IUCTC Universidad de Las Palmas de Gran Canaria, February 2001.

[5] M. Barnett, L. Nachmanson, and W. Schulte. Conformance checking of
components against their non-deterministic specifications. Technical Report
MSR-TR-2001-56, Microsoft Research, June 2001.

[6] A. Blass and Y. Gurevich. Abstract State Machines Capture Parallel
Algorithms. Microsoft Research, Technical Report, MSR-TR-2001-117. To
appear in ACM Transactions on Computational Logic, 2002.

[7] E. Börger. High Level System Design and Analysis using Abstract State
Machines. In D. Hutter, W. Stephan, P. Traverso, M. Ullman, eds., Current

 - 32 -

Trends in Applied Formal Methods (FM-Trends 98). Springer LNCS 1641,
pp. 1-43, 1999.

[8] E. Börger. The Origins and the Development of the ASM Method for High
Level System Design and Analysis. Journal of Universal Computer Science, 2
(8): 2-74, Springer Pub. Co., 2002.

[9] E. Börger, U. Glässer and W. Müller. Formal Definition of an Abstract
VHDL'93 Simulator by EA-Machines. In C. Delgado Kloos and Peter T.
Breuer, editors, Formal Semantics for VHDL, Kluwer Academic Publishers,
1995, 107-139.

[10] D. Box, Essential COM, Addison-Wesley, Reading, MA, 1998.

[11] P. Clements, A Survey of Architecture Description Languages. In Proc.
Eighth Intl. Workshop in Software Specification and Design, Paderborn,
Germany, March 1996.

[12] E. Christensen et al. Web Service Description Language (WSDL). W3C Note,
March 15, 2001, URL: www.w3.org/TR/wsdl.

[13] D. E. Comer. Internetworking with TCP/IP, Principles, Protocols, and
Architectures. Prentice Hall, 2000.

[14] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices, 35(6):97-105, June 2000.

[15] R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis and A. Prinz. Formal
Definition of SDL-2000 – Compiling and Running SDL Specifications as
ASM Models. Journal of Universal Computer Science, 11 (7): 1025-1050,
Springer Pub. Co., 2001.

[16] Foundations of Software Engineering Group at Microsoft, the website,
http://research.microsoft.com/fse.

[17] U. Glässer, Y.Gurevich and M. Veanes, Universal Plug and Play Machine
Models, Foundations of Software Engineering, Microsoft Research,
Redmond, Technical Report, MSR-TR-2001-59, June 15, 2001.

[18] U. Glässer, Y. Gurevich and M. Veanes. High-level Executable Specification
of the Universal Plug and Play Architecture.. In Proc. of 35th Hawaii
International Conference on System Sciences (HICSS-35), Software
Technology Track, Hawaii, Jan. 2002.

[19] U. Glässer and M. Veanes. Universal Plug and Play Machine Models:
Modeling with Distributed Abstract State Machines. To appear in Proc. of
IFIP World Computer Congress, Stream 7 on Distributed and Parallel
Embedded Systems (DIPES’02), Montreal, Aug. 2002.

 - 33 -

[20] Y. Gurevich and J. Huggins. The Semantics of the C Programming
Language. Springer Lecture Notes in Computer Science 702, 1993,
pages 274-308.

[21] Y. Gurevich and J. Huggins: The Railroad Crossing Problem: An Experiment
with Instantaneous Actions and Immediate Reactions. Springer Lecture
Notes in Computer Science 1092, 1996, pages 266-290.

[22] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Specification and Validation Methods, Oxford University Press, 1995, pages
9-36,

[23] Y. Gurevich. Sequential Abstract State Machines Capture Sequential
Algorithms, ACM Transactions on Computational Logic, vol. 1, no. 1, July
2000, pages 77-111.

[24] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of
Universal Computer Science, 11 (7): 917-951, Springer Pub. Co, 2001.

[25] W. Grieskamp, Y. Gurevich, W. Schulte and M. Veanes. Generating Finite
State Machines from Abstract State Machines, Microsoft Research, Redmond,
Technical Report, MSR-TR-2001-97, Updated May 2002, to appear in
Proceedings of the ACM SIGSOFT 2002 International Symposium on
Software Testing and Analysis, ISSTA 02.

[26] D. Hamlet and J. Maybee. The Engineering of Software: Technical
Foundations for the Individual. Addison Wesley, 2001.

[27] J. Heering. Application software, domain-specific languages, and language
design assistants, in: Proceedings SSGRR 2000 International Conference on
Advances in Infrastructure for Electronic Business, Science, and Education
on the Internet, May 2000.

[28] J. Heering and P. Klint, Semantics of programming languages: A tool-oriented
approach, ACM SIGPLAN Notices, 35(3):39-48, March 2000.

[29] ITU-T Recommendation Z.100: Languages for Telecommunications
Applications - Specification and Description Language (SDL), Annex F: SDL
Formal Semantics Definition, International Telecommunication Union,
Geneva, 2000.

[30] N. Medvidovic and R.N. Taylor, A Classification and Comparison Framework
for Software Architecture Description Languages, IEEE Transactions on
Software Engineering, 26(1):70-93, January 2000.

[31] R. Stärk, J. Schmid and E. Börger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer, 2001.

 - 34 -

[32] S. Thatte. XLANG: Web Services for Business Process Design.
URL: www.gotdotnet.com/team/xml_wsspecs/xlang-c

[33] UPnP Device Architecture V1.0. Microsoft Universal Plug and Play Summit,
Seattle 2000, Microsoft Corporation, Jan. 2000.

[34] Official Web site of the UPnP Forum. URL: www.upnp.org.

[35] E. Christensen et al. Web Service Description Language (WSDL). W3C
Note, March 15, 2001, URL: www.w3.org/TR/wsdl

[36] XLANG Abstract Machine, Foundations Of Software Engineering,
Microsoft Research, Internal Report, 2002.

