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Abstract

Many real life networks, including the World Wide Web, electric power grids, and social networlsmatieworld networks
The two distinguishing characteristics of small-world networks are strong local clustering (nodes have many mutual neighbors),
and small average distance between two nodes. Small-world networks are promising candidates for communication networks
since typical data-flow patterns in communication networks show a large amount of clustering with a small number of “long-
distance” communications that need to be completed quickly.

Most previous research on small-world networks has used simulations, probabilistic techniques, and random replacements
of edges to study the limiting behaviour of these networks. In this paper, we initiate the study of small-world networks
as communication networks using graph-theoretic methods to obtain exact results. We construct networks with strong local
clustering and small diameter (instead of average distance). Our networks have the additional property thatejelaare
0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction of mathematicians with a givekrd6s number[5].

The initial paper has led to considerable research and

Small-world networkswere introduced by Watts ~ publication activity [2,6-8].

and Strogatz in a recent paper [9] as models of real Many classes ostructured" networks, including
world situations including electric power grids, the the restricted class afirculant graphsstudied in [9]
spread of diseases in populations, the collaboration @nd subsequent papers, have strong lobastering
networks of film actors, and the neural network of the (nodes have many mutual neighbors), but laager-
worm Caenorhabditis elegan8,9]. Other examples ~ age distancebetween pairs of nodes. The opposite
include the World Wide Web [1] and the network €xtreme israndomnetworks which have small aver-
age distances but exhibit very little clustering. Net-
works between these two extremes can be constructed
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moving one endpoint of each edge with probabil-
ity p. Structured graphs correspondpe= 0 and ran-
dom graphs are obtained by settipg= 1. Watts and
Strogatz discovered that the average distance between
nodes (which they calledharacteristic path lengfh
decreases rapidly ag increases, but clustering de-
creases slowly. In [9], small-world networks occur in
the region aroungh = 0.01 (i.e., a random change of
only 1% of the edges). Whep = 0.01, the average
distance is approximately 20% of its original value but

95% of the clustering remains. e
Small-world networks are promising candidates “‘v’l’!
for communication networks since data-flow patterns V/“\vf‘\ﬂf’

show a large amount of clustering with a small num-
ber of “long-distance” communications that need to Fig. 1.C, 4 with n =24 andA = 6, a circulant graph with steps
be accomplished efficiently. The probabilistic analy- *1 2 +3.

sis techniques and random replacements of edges that

have been used in most previous studies of small- _

world networks are not appropriate for communication 2- Notation

networks which have fixed interconnections. In this

paper, we replace the probabilistic models with de-  In this paper a network will be represented by a
terministic small-world networks and non-randomin- 9raph G = (V. E) of order n = |V]. We will use
terconnection patterns. Instead of the average distanceStandard graph theory terminology. Ttuegree of
between nodes, we will study the maximum distance f'i qodex, denoted deg), is the ”“mk?er of edges
or diameter Small diameter is consistent with the con- incident onx and the degree of a grajghis

cept of small-world network and it is easier to calcu- A — maxdeqx).

late. Moreover, it is often more relevant than average xev

distance in the study of communication networks. A graph isA-regularif the degree of every node is.

We define a parametefi that serves the same The distancebetween two nodes andy, d(x, y),
purpose thatp serves in the probabilistic models is the number of edges of a shortest path between
and give exact expressions for the diameter and the andy. The maximum distance over all pairs of nodes,
clustering as functions of this new parameter. Our
constructions give networks with small diameters and
strong clustering similar to the networks obtained in
previous studies with probabilistic methods. In the
networks that result from the probabilistic methods,
the nodes will have different numbers of neighbors,

so the networks are natgular. Our constructions tegers modulor, and A links per node such that

add new edges with the goal of reducing the diametgr each nodei is adjacent to the nodes+ 1,i + 2,
of the network, but we also replace some edges in  ; | A/2 (modn). We will use C, 4 to denote

a way that restores the regularity. Our model retains c(;; 1,2, ..., A/2). This graph has diameteb =
the essence of the probabilistic model, but it is more [n/A]. We will refer to edges between nodeand
useful for practical applications in which the number nodes + ¢, ¢ > 1, aschordsof length¢. We will also
of neighbors of a node must be fixed because of usedouble loop graphsC(n; a, b), which are circu-
technical considerations. lant graphs such that each nodés adjacent to the

D = maxd(x,y),
x,yeV

is thediameterof the graph.

The basic family of graphs considered here (and
in [9]) is circulant graphs. The circulant graphn; 1,
2,...,A4/2), A even, has: nodes labeled with in-
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four nodes +a, i + b (modn). The diameter o€ (n; nearest end node &§. The last jump might use a
a,b)is shorter chord. The maximum number of jumps is
1+ =1 exactlyk. O
o[ 2P
2

) Theorem 3. Given C,,, 4, A even, andD < Dc, ,.
fora = D andb = D + 1 [3,4]. Other graphs used in The number of hubs required to construct a new graph
this paper are the complete graphonodesk,,, and G with diameter at mosDg < D from C,» by using

the star grapfky , 1, which hasn nodes and: — 1 a graphH of diameterDy to interconnect the hubs is
edges joining one node to all the others.

Most previous studies of small-world networks have j — ( 2n —‘ if D — Dy is even and
used two parameters to characterize the networks: A(D - Dp)+2
average distance ardustering As explained above, on_2A . .
we will study the diameter instead of average distance. & = {A(D “bn D+ 2—‘ if D— Dy is odd

We delay the formal definition of clustering until
Section 4. Informally, it is the fraction of possible prgof. 1f p — Dy is even, we can choogenodes of
edges among neighbors of a node that are actually Cn. 4 t0 be hubs such that each segmérhias length
present, averaged over all nodes. (k - 1)A+1< €5 <kA + 1 for somek > 1. Then,

by Lemma 2, the maximum distance from any node of
G to a hub isk and the maximum distance between
any two hubs ofG is Dy. Thus, the diameter daf is

Dg <2k + Dy.

Now, we determine the value df. Let h = [n/

(kA +1)]. Then all segments are of length at most

3. Diameter reduction

The diameter ofC, o = C(n;1,2,...,A4/2), A
even, isDc, , = [n/A] and C, 4 is A-regular. In
this section we show how to reduce the diameter X :
of C,.o by selecting a number of nodes @f, A k,A + 1 and so the diameter Bg < 2k + Dy = D.
to be hubs and then using a grap of known  SINC& =(D —Dn)/2,we get = [2n/(A(D — D)

diameterDy to interconnect the hubs. The resulting +2)1.

graphG has a smaller diameter tham, 4 but is not If D — Dy is odd, leth = [(n — 4)/(kA+ D).

A-regular because the hubs have acquired more edges) €N —1 of the segments have lengtid + 1 and the

In Section 4, we will show how to modif in the length of the remaining segmentis- (h — 1) (kA + 1)

regions near its hubs to obtainaregular graph with < (k + 1A + 1. In this case the diameter 8¢ <
the same diameter 3. (2k+ 1)+ Dy = D. Sincek = (D — Dy —1)/2 we

geth=[(2n —2A)/(A(D— Dy —1)+2)]. O
Definition 1. A segmentS of C, 4 is the subgraph

of C, 4 induced by two consecutive hukisand j Remark 4. The_thfeorem assumes tha is known.
and all nodes betweenand j. The lengthof S is For example, this is the casefif is a complete graph
ts=min(ji —jl.n— i = jI). or a star graph. 1Dy depends on the order @f, the

theorem can still be used by fixing — Dy as shown

The following lemma and theorem establish bounds in the next example.

on the number of hubs that are needed to achieve a
given diameter. Example 5. The diameter o€, 4 with » = 1000 and

A =10 is 100. If we want a graph with diameter
Lemma 2. LetS be a segment af, 4, A even, with D¢ < 34 and we use a complete graph for joining
length (k — DA +1 < {ls <kA+ 1, k > 1 The the hubs, thenDy =1 and D — Dy is odd. From
maximum distance between any nodé&afnd one of  Theorem 3,h = 7 hubs are required. On the other
the end nodes & is k. hand, if we use the star graph, thény = 2 and

D — Dy is even. In this case} = 7 hubs are also
Proof. From any given node ofS, use chords of required. Finally, if H is a double loop graphDy
length A/2 or —A/2 to make jumps towards the depends on the number of hubs, so welix- Dy.
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To obtain a graph with diametdd; < 32+ Dy, we
needh = 7 by Theorem 3. In this case the diameter
of the double loop graph i®y = 2 using chords of
length 2 and 3, s®¢ < 34.

We now establish bounds on the diameter that can

be obtained when the number of hubs is given.

Theorem 6. Given C,,. o, A even, letH denote a
graph with 2z nodes and diameteDy. There is a
graph G with n nodes and: hubs(using graphH to
interconnect the hubsvhich has diametebgs < 2k +
Dy, wherek = [([n/h] —1)/A7. If the condition
n—((k—1)A+1)(h—1) <kA+1is also satisfied,
then the diameter i®g <2k — 1+ Dy.

Proof. Since the number of hubs is it is possible

to divide C,,, o into segments of length at most/ 47.

Letk be the integersuchthét —1)A+1< [n/h] <

kA +1,s0k=[([n/h] —1)/A]. Construct graplis

by using the grapl#/ to interconnectthe hubs 6f, 4.

By Lemma 2, the distance from any node®fo a hub

is at most and the distance between any two hubs of

G isatmostDy, soDg < 2k + Dy.
fn—((k—1)A+1)(h—1) <kA+1,thenwe can

choose the hubs so that— 1 of the segments have

length (k — 1)A + 1 and the remaining segment has

length at moskA + 1. By Lemma 2, the distance to

a hub is at most — 1 for any node iz — 1 of the

segments and at mostfor nodes in the remaining

segment. This give®g <2k — 1+ Dy. O

Remark 7. It is not possible to give equalities in the
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On the other hand, Theorem 3 shows that the same
diameterDg < 2k + Dy is possible with

h:(#wzw
AD — D) +2

hubs. In this case, 76 of the segments have length
kA +1= 13 and the remaining segment has length 12.

Example 9. The diameter o, » with » = 1000 and

A =10is 100. If we want a graph with diameteg; <
64+ Dy thenh =4 hubs are required by Theorem 3.
However, with 4 hubs the diameter can be reduced to
Dg <50+ Dy using Theorem 6 and

k= (W—‘ — 25,

A

There are many choices for the grafihthat joins
the hubs. For a given number of hubs the com-
plete graphK, gives the maximum reduction in the
diameter, but also causes the maximum increase in
the degree of the hubs. If the maximum degree is
not important, then a good choice is the star graph
K1 n—1, which has diameter 2 and uses the minimum
possible number of edges to connect one hub to all
the others. An interesting choice f&f is the fam-
ily of double loop graph<C(h;a,b). The diameter
D = [(—1++/2h —1)/2] is relatively small and the
degree is only 4 (see [3]). Consid€tioooqio, Which
has diameter 1000, arid= 50 hubs. The diameter is
reduced to 45 using a double loop graph compared to a
diameter of 41 usin&so, but the degree of the hubs is
only increased by 4 instead of by 49 wikg. Other
families of regular low degree graphs with known di-
ameters can be used féf. We will restrict our at-
tention to double loop graphs in this paper because

expressions for the diameter in Theorem 6 because thethey preserve important properties of the transformed
final diameter depends on the structure of the graph 9raphs and permit easy derivations of the parameters
H that iS used to join the hubs_ For example, Suppose of small-world networks. Note that in this particular

thath — 1 segments have lengitt — 1)A + 1 and
the remaining segment has length at moat+ 1. If

example, the diameter can be reduced from 1000 to 41
(a factor close to 25) while only affecting 50 of the

the two hubs of the longer segment are at distance 10000 nodes (only 0.5% of the nodes) of the initial

less thanDy from all of the other hubs, thePs <
2k —2+ Dp.

Example 8. The diameter o€, 4, with » = 1000 and
A =4is 250. Using: = 99 hubs, the diameter can be
reduced taDg < 2k + Dy with k = 3 by Theorem 6.

graph.
WhenDg > Dy, we obtain
DCn,A

b~ 2n N 2n ~2
" | A(Dg—-Du)+2| | ADg | D¢

from Theorem 3. Thus, if we want to reduce the
diameter by a factor of 10 we will need approximately
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20 hubs and this value does not depend on the ordertriangles containing nodeé. The factor% appears

of the initial graph. So, even if the number of nodes
is 10/, a reduction of the diameter from 100 to 10
will only require approximately 20 hubs. These results
show that it is possible to dramatically reduce the
diameter of a network while affecting only a very
small fraction of its nodes.

4. Clustering and regularity

Clusteringis a measure of the connectedness of a

because each triangle is counted twice.

The maximum possible number of edges among the
neighbors of a nodéis A(A — 1)/2 and the number
of these edges that are presentin, is the same as
the number of triangles to whighbelongs. Therefore,
the clustering parameter Gf, 4 is

§A(é_l>/A(A—l) _34-2)
27\ 2 2 AA—1)

Ccn,A =

graph and is one of the parameters used to characterize In Section 3, we showed how to reduce the diameter

small-world networks. In this section, we calculate
the clustering parameters 6§, o and the graphs that
result when hubs o, o have been identified and

of C,. o by selectingh nodes to be hubs and then
interconnecting the hubs with a graptl with %
nodes and diametddy . The resulting grapli is not

interconnected and some small modifications have A-regular because the hubs have acquired more edges.

been made to preserve regularity.

Definition 10. For each nodé of a graphG, letn; be
the number of neighbors of LetC; be the fraction of

In particular, if H is a double loop grapld'(; a, b),
then the degree of the hubs i+ 4. We will now
show how to modifyG to obtain aA-regular graptG’
with the same diameter &s. Then we will determine

then; (n; — 1)/2 possible edges among the neighbors the clustering parameter 6f'.

of i that are present ii;. The clustering parameter
of G, denoted’, is the average over all nodesf ;.

To obtain a A-regular graphG’ from G, four
edges incident on each hub must be removed. This
will reduce the degrees of the other endpoints of the

Note that the clustering parameter can be calculated removed edges tat — 1, so two edges need to be

from the number of cycles of length three (triangles)
in which each given node is included.

We start by calculating the clustering parameter for
the circulant graptC, » before any hubs are added
and interconnected.

Proposition 11. The clustering parameter @,  is
3(4-2)

Ce,a= 2A-1)

Proof. Since C, o is node-symmetric, each node

contributes equally to the clustering parameter and

the calculations are the same for each nodEirst
we calculate the number of triangles to which naéde
belongs. Nodes andi + 1 have A — 2 neighbors
in common; node$ andi + 2 haveA — 3 common
neighbors, and so on. In general, nodesndi + j
haveA — (j + 1) common neighbors, & j < A/2,
and the same is true for nodeandi — j. Summing
over all neighbors of nodegives

A2
. _3 A
_(J+1))_4_1A<E —1>

1
E.z.Z(A
j=1

added to obtaim-regularity (see Fig. 2). We must do
this in a way that avoids multiple edges, so the added
edges should not be between nodes which are adjacent
in G. We also want to maintain the same diameter and
minimize the change in the clustering parameter.
Suppose that node is a hub. The edges from
to i £ A/2 should not be removed if there is some
segment with lengtlfs = kA + 1 because this will
increase the diameter (see Theorem 6). On the other
hand, we prove in the next Lemma that any removal of
four edges around a given hub (affecting two nodes on
each side as in Fig. 2) leads to the same reduction in
the number of triangles. We choose two nodes on each
side to ensure that the nodes that will be connected by
new edges are not adjacentn 4.

Lemma 12. Leti be a node ofC, . Removing the
edgedi,i +(A/2—1))and(i,i = (A/2—2)) or any
other combination that affects two nodes on each side
of i, and connecting the nodes as in Fyeduces the
number of triangles bpA — 6. We assume that the
affected nodes are not adjacentah .
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i

i—(3-2 i+(3-2)
i—(5-1) i+(5-1)
i-5 i+5
Fig. 2. The reconnection.
Proof. Choose nodes — j,i — k,i +1,i + m such Note that in the case that all segments have length
that 1< j,k,I,m < A/2, j #k, 1 # m. The number at most¢ < A + 1 (which corresponds té = 1 in
of removed triangles on one sideds— (j +1) + A — Theorem 6) the bound on the diameter is increased

(k+ 1) — 1 (see the proof of Proposition 11). Note that (by 2). This is because the distance of any nod& of
we subtract 1 because one triangle has been countedo its nearest hub i = 1 and we have removed the
twice. The corresponding value for the other side is edge inG’ that connects the affected nodes to the hub
A—({+1)4+A—(m+1) —1.Thusthe total number (sowe have nodes i’ at distance 2 from the nearest
of removed triangles is4 — (j + k + 1 + m) — 6. hubs). In any other case (i.¢.> 2), the final diameter
On the other hand, when adding the new edges we does not change.

add some new triangles. If we add an edge between To calculate the clustering parameter, we also need

i — j andi + [, the number of new triangles is/2 — to take into account the triangles induced by the
Jj+A/2—1 (i.e., the number of common neighbors graphH. If H is a double loop graph and the number
of i — j andi +[). If we connecti — k with i + m, of hubs is greater than 8, there is no contribution

the number isA /2 — k + A/2 — m giving a total of from H.
2A — (j + k + [ + m) added triangles. This value is Let C;, , denote the graph resulting from the graph

the same if we add edges between j andi + m, Cn.a after choosingh hubs, connecting them with
and between — k andi + [. Therefore the number a double loop graph, and modifying the connections
of triangles is reduced byAl— (j + k + 1+ m) — according to the above rules to regain regularity.

6—2A—(j+k+1+m))=2A— 6 and this does

not depend on the choice gfk,/,m as long as N0 prgposition 13. The clustering parameter of ,

duplicate edges are addeda with 2 > 8 hubs is
Consistent with the requirement that edges mustbe o | _ . _ h 624 —6)
added between nodes which are not adjaceqt,in, Cn.a "o AA-D]

we consider the removal of the edges betweamnd
the four nodes + (A/2 — 1) andi + (A/2 — 2). If
we join these 4 nodes with edges as shown in Fig.
then the condition(A/2 — 1) + (A/2—-2) > A/2 )
is necessary to avoid duplicate edges. In this case Proof- Let 7; denote the number of triangles of a
A > 6. Any other selection of nodes or another way nodei and let7g denote the number of triangles of
of connecting the four nodes will requirg > 8 if agraphg.

i £ A/2 cannot be chosen. On the other hand, when 1 1 T

all segments have length at mask kA + 1 thenit  Co ==» Ci==) ————

is possible to remove the edges frano i + A/2 s nAA-D/2

without affecting the diameter. In this case the result 1 1

of Lemma 12 is true for\ > 4. - (A(TD/Z)sTC,Q,A

where Cc, , = 3(A—2)/4(A - 1) is the clustering
5 parameter oiC;, A.

n



F. Comellas et al. / Information Processing Letters 76 (2000) 83-90

The total number of triangles is the total frofh a
minus h(2A — 6) according to Lemma 12, so the
clustering parameter @, , is

3T¢, , — 3h(2A —6)

C / =
Cra nA(A—1)/2
_ h624-6)
AT AL —D)

Proposition 13 can be used together with Theo-
rem 6 to show thaC, , is a small-world network.
ConsiderC1ooq10 With 2 = 50 hubs. The diameter of
C100010 IS Dcy4q10 = 100 and the clustering parame-
ter is Ccypoq10 = 0-667. The diameter o€y IS
DCiooqm =9 by Theorem 6 and the clustering para-
meter ich/loo010 = 0.62 by Proposition 13. So, the
diameter ofC’100Qlo is only 9% of the diameter of
C1o00q10 While the clustering parameter 67i00010 re-
mains nearly the same at 93% of the value@@oq 10.

5. Comparison of analytical and numerical
approaches

In Fig. 3, we compare our analytical results with
numerical values obtained using the method of Watts
and Strogatz [9] and an initial circulant graphooq 0.
The numerical clustering and diameter curves in the

89

figure were obtained by using the technique of [9]
and averaging the results of 20 runs. The double
loop clustering and diameter curves are for the graphs
C/100010 obtained using the methods of this paper
and double loop graphs to interconnect the hubs. The
parameterp for the numerical results corresponds
to the ratio of the number of added and modified
edges to the total number of edges in our analytical
models. FoC), ,, the ratio is 4 /| E|. In this example,
|E| = nA/2 = 5000 andp = 4h/5000. The fifth
curve in Fig. 3 shows the diameter when star graphs
K1,,-1 are used to interconnekthubs ofC1g0q10. IN
this case, no modifications were made to recover the
regularity of the resulting graphs, go= (h — 1)/|E|.
All of the curves are normalized with respect to the
graphCiooq1o; they show the diameters and clustering
parameters as fractions of the valuep at 0.

The small-world region in Fig. 3 occurs aroupd=
0.01 where clustering remains above 95% of the value
for p = 0 and diameter is less than 20% of the value
for p = 0. In our graph-theoretic modelg, = 0.01
corresponds té = 12 hubs when double loop graphs
are used to interconnect the hubs d@ne: 51 when
star graphs are used. The figure shows that small-
world behaviour is more pronounced in our graph-
theoretic models than in the probabilistic model. Since
the hubs are chosen exactly rather than at random, the

1 “ZJY:: BB - OOt O .
é e ", Lng ---0O-- clustering double loop
PN \\ ‘&\‘n
e ‘AQ\ ---/c-- clustering numerical
075 SN N _
S <> AN --<>-- diameter double loop
b o
Q --5F-- diameter numerical
05 - u W 5 ---o-- diameter star
\‘\ “‘ \</> \\“ \\'I
b V " L Q
025 - . \"{>\ S
' W e
\\ ?2:\ ,»<>‘i
o. 157, '
= 8%%} & "
o 0 _D"'~D»~D G VD'::, G5
T T T :)_ P
0.0001 0.001 0.01 0.1 1

Fig. 3. Comparison of numerical and analytical clustering and diameter.
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increases the diameter of the double loop graph butthe ~ small-world networks, Phys. Rev. E 60 (2) (1999) R1119-
distance from any node to the nearest hub remains 1. 1122.
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