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Abstract:  
This document contains important aspects of SAT Solver performances and specification for 
improving this performance. 
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1 Introduction and Background 
Algorithms for checking the satisfiability of propositional logic are widely used in verification 
and analysis of hardware and software systems. The research around SAT-procedures started in 
the context of automated theorem proving, where SAT was identified as a simple instance of 
formally proving theorems, but in the last years there were many advances driven by the 
electronic design automation (EDA) community with their huge interest in efficiently solving 
large HW problems. Hence in the past years we saw a rise in the number of SAT solvers 
available on the market, and their efficiency in solving HW verification problems.  

All SAT tools are based on search algorithms that aim at finding a satisfying assignment by 
variable splitting. The continuously improving results have been provided by work on good 
heuristics and algorithms. As proved by the past experience with SAT solvers, once found a 
good heuristics or another improvement for SAT solver, it can be implemented and used by all. 

The purpose of this Prosyd task is to share information regarding SAT Solvers performances, 
and find ways to improve their performance.  

1.1 Motivation 

The classical NP-complete problem of boolean satisfiability (SAT) has seen much interest in 
areas where practical solutions to this problem enable significant practical applications. Since the 
development of the DPLL algorithm, this area has seen active research that generated the current 
state-of-the-art SAT solvers, able to handle problem instances with thousands, and in same cases 
even millions, of variables. 

There are several SAT algorithms that have seen practical success. These algorithms are based 
on various principles such as resolution, search, local search and random walk, Binary Decision 
Diagrams, Stälmarck’s algorithm, and others. We will take a look at some of SAT solvers used 
in EDA. 

1.2 Today’s SAT Solvers 

The solutions offered by SAT solvers to the following major issues differentiate among them:. 

Learned conflict clauses. Adding conflict clauses allows one to prune many of the branches of the 
search tree that are yet to be examined.  

Restart. Some SAT-solvers use restarts when the SAT-solver abandons the current search tree 
(without completing it) and starts a new one.  
 
Locality. Locality is an important advancement in pruning the search space. The variable score 
(VSIDS) and branching on variables within certain locality ( BerkMin, Siege) exhibit great 
speedups.  
 
Clauses. Long clauses are very harmful when they are not frequently used. Shorter clauses lead to 
faster BCP and quicker conflict detection.  

The variation in solutions chosen for the above gives us a large variety of solvers. Choosing the 
most efficient solution to implement should be a result of looking at the existing solutions. There 
are though problems in doing so: finding the touchstone on which to test the existing solutions, 
the complexity in comparing the results, and finally in deciding what is efficient for each tool 
separately. For the purpose of this document we took a look at several important SAT solvers. 

Zchaff.   
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Zchaff was initially released in 2001 by the Princeton University  as a new implementation of the 
Chaff algorithm. The SAT 2002 Competition considered it the Best Complete Solver in both 
industrial and handmade benchmark categories.  Zchaff was a pioneering solution and continues 
to be an important player in the field  by amasses the best of Princeton university research. It is 
especially popular with user applications that take advantage of its version as a linkable library 
(e.g. NuSMV). Its main features are:  

� the Two Literal Watching scheme for boolean constraint propagation,  

� the Variable State Independent Decaying Sum (VSIDS) scores for decision making and 
locality centric decision strategy,  

� non-chronological backtracking with multiple conflict analysis, 

� adoption of a rapid restart policy,  

� an aggressive clause database management. 
 

BerkMin. 

BerkMin (Berkeley-Minsk) [GN]  is a descendent of the family of SAT-solvers that includes 
GRASP, SATO, Chaff.  BerkMin uses the procedures of conflict analysis and non-chronological 
backtracking (GRASP), fast BCP (SATO), variable decaying (Chaff), and restarts. BerkMin 
individualizing features are visible in: 

� decision making (branching variable is chosen among the free variables, whose literals 
are in the top unsatisfied conflict clause),  

� clauses database management (chronologically ordered stack, decision to remove 
depends on age and activity)  

� heuristics in choosing which assignment of the chosen branching variable to be examined 
first,  

� a special algorithm to compute the activity of variables, taking into account a wider set of 
clauses involved in conflict making than generally used. 

Siege  

Siege is a SAT solver provided by the Simon Fraser University. It is known that it implements as 
a decision strategy VMTF and the uses the BCP techniques. 

E-Solver. 

E-Solver is a SAT solver developed experimentally by Infineon.  

DPSat. 

DPSat is Infineon’s currently productive solver DPSat. 

The next chapter is taking a look at benchmarking problems, and tries to compare the 
performance of the above solvers.  The following chapters offer ideas on how to improve the 
performance of existing solvers. 
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2 Benchmarking of SAT Solvers 
Modern SAT solvers are highly dependant on heuristics. Therefore, benchmarking is of prime 
importance in evaluating the performances of different solvers. However, making relevant 
benchmarking is not necessarily straightforward. We present IBM and Infineon experiments 
using the IBM CNF Benchmark on several SAT solvers. 

2.1 Benchmarking of zChaff, BerkMin and Siege  

2.1.1 Experimental results 
Our experiments compared three famous SAT solvers, zChaff, BerkMin561 and siege_v4. In 
these experiments we use the IBM CNF Benchmark, with CNFs generated by BMC from the 
IBM Formal Verification Benchmark Library. 

2.1.1.1 zChaff vs BerkMin561 

We ran zChaff (2001.2.17 version) and BerkMin561 on the IBM CNF Benchmark. We used the 
default configuration for both engines. For each model, we used SAT dat.k.cnf with k=1, 10, 15, 
20, 25, 30, 35, 40, 45, 50. The time-out was set at 10 000 seconds on a workstation with 
867841X Intel(R) Xeon(TM) CPU 2.40GHz. The following is a summary of the results obtained: 

 
 zChaff BerkMin561 

Total time (10000 sec timeouts) 344765 414094 

First (# of CNF where the engine is the fastest) 298 131 

Timeout number 25 30 

+ (# of CNF where the engine is the fastest by more than a minute and 20%) 67 32 

First by model (# of models where the engine is the fastest) 28 18 

Table 2.1. The results are displayed in seconds. The timeout was set to 10000 seconds.  

More complete experimental results are presented in Table 2.2, where for each model in the table, 
we present the sum of the results of SAT dat.k.cnf with k=1, 10, 15, 20, 25, 30, 35, 40, 45, 50 (ie 
the BMC translation of each model for the different k’s). For more details, see the complete 
results in [ICBI]. Because SAT solvers do not always behave in an homogeneous manner (Cf. 
detailed results in [ICBI] or table 2.3), the complete results analysis should not be disregarded. 

The results show that zChaff and BerkMin561 achieved close results. On some CNFs, zChaff 
runs faster, and on others, BerkMin561 runs faster. In most cases, the differences in their 
performances is not significant (i. e., the faster speed is not faster by more than one minute or 
20%). However, while zChaff seems to perform slightly better overall, BerkMin561 gets better 
results than zChaff on the UNSAT CNFs. 

From these results, it is not possible to conclude that BerkMin561 performs better than zChaff. 
This is not consistent with what can be read in the literature or with the final results of the 
SAT03 contest (Cf. 2.3). 

2.1.1.2 Siege 

Siege was hors-concours for the SAT03 contest. Therefore it did not participate in the second 
stage. Nevertheless, the siege results were pretty good for the first stage and siege has the 
reputation for being one of the best SAT solvers available. We ran siege_v4 on the benchmark 
using 123456789 as a seed. 
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Table 2.4 displays the overall conclusions. For more details see Table 2.2. Siege_v4 is the fastest 
in 298 cases (CNFs) out of 498. In many difficult cases, siege_v4 is the fastest by an order of 
magnitude or more. In some cases, siege_v4 performed significantly worse than zChaff or 
BerkMin561 in a significant way (e. g., for 26 rule, siege_v4 is slower than zChaff by an order of 
magnitude and slower than BerkMin by two orders of magnitude).  

In conclusion, we see that siege_v4 performs significantly better than zChaff on the IBM CNF 
benchmark. In addition, within the timeout, several CNFs can be solved only by siege_v4. 
However, siege is a randomized solver hence it can be argued that the comparison is not fair 
since the zChaff and BerkMin561 versions we used were not randomized (though the versions of 
these two solvers that participated in the SAT03 contest were not randomized). Nevertheless, 
even a deterministic solver can be lucky and running siege with a fix random seed makes it 
deterministic. 

2.1.1.3 Comparison with SAT03 contest results  

In order to try to understand whether or not our results are consistent with those of the SAT03 
contest, we had a look at the results of the first and second stages of the competition. 

First stage 

When we look at the results 4 for the industrial category, we note the following: 

• Series 13_rule_ is over represented. Besides, since all solvers timeout on most of the CNFs 
from this series, it is not very meaningful. 

• Except for series 13_rule_ and 11_rule_, the series from IBM CNF benchmark are easy for 
zChaff, BerkMin561 and siege_v1. 

• Results for rule_07 are not consistent with our own experiments. Even if Table 2.5 is somehow 
biased by the fact that we did not use the same hardware as the SAT03 contest for our 
experiments, it clearly points out that there is a strong discrepancy for series 07_rule_. This 
discrepancy is probably caused by the “Lisa syndrome”: CNFs were shuffled for SAT03 and 
solvers performance can change dramatically between a shuffled CNF and the original. We 
believe that for SAT03 07 rule series, zChaff was a “victim” of the Lisa syndrome but 
BerkMin561, forklift and siege were not affected, or at least not in such an order of magnitude. 
Indeed, the results we get on 07 rule with BerkMin561 and siege_v4 are consistent with the 
SAT03 results. 

The SAT03 contest results for BerkMin561, forklift, siege_v1, and zChaff on (shuffled) series 
from IBM CNF Benchmark are summarized in Table 2.6. If results from series 07 rule and 13 
rules are discarded, zChaff gets better results than BerkMin561. We believe that the result 
differences between the first stage of SAT03 contest results for IBM benchmark and our 
experiments are due to clauses shuffling in SAT03 and to the fact that the SAT03 experiment 
used a smaller test bed of CNFs from IBM benchmark. 

Second stage 

Table 2.7 gives some results from the second stage of the SAT03 contest on industrial 
benchmarks. Clearly, the respective zChaff and BerkMin561 ranking do not correspond with our 
experimental results (see Table 2.1). However, in the second stage, all solvers “timed-out” on the 
IBM benchmarks. In other words, the ranking of the solvers selected for the second stage of the 
competition did not take into account performances on IBM benchmarks. This probably explains 
why our evaluation of zChaff and BerkMin561 on the IBM CNF Benchmark gives results that 
are not in line with the second stage results (on industrial benchmarks) of the SAT03 contest. 
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2.1.2 Lessons for benchmarking 
Our experimental results, especially the comparison between zChaff and BerkMin561, are not in 
line with other results, such as those from SAT03. In this section we try to understand why and 
attempt to learn from this. 

Use relevant benchmarks 

To compare two SAT solvers for BMC, it is extremely important to use relevant benchmarks 
from BMC applications. For instance, results from theoretical problems such as 3-SAT 
problems, hand-made problems, or problems from applications others than BMC (such as 
planning), are not relevant and will not provide a good comparison between SAT solvers 
performances for BMC applications. 

It is not sufficient to use only the CNFs generated by BMC; the models from which the CNFs are 
generated should be relevant. Therefore, it is of prime importance to use models from real-life 
industrial verification projects. 

Use relevant timeout 

The timeout used for the SAT03 contest was 600 seconds or 900 seconds for the first stage, and 
up to 2400 seconds for the second stage of the competition. For our experimentation, we used a 
10000 seconds timeout. From the detailed experimental results it is clear that the lower the 
timeout, the less relevant the results. Additionally, the lower the timeout, the more timeout 
results would be received for all the SAT solvers. Consequently, these timeouts can actually 
cover up different situations. For example, in our experiments for CNF k45 from model 11 rule 
1, with a timeout of 900 seconds, zChaff and BerkMin561 would both get time out. However 
with a 10000 second timeout, we realized that one solver performs seven times faster than the 
other on this CNF. 

The ideal solution would be not to use any timeout or at least use very long timeouts (e. g. one 
week). In this way, the results for the SAT solvers can always (or almost always) be compared 
for a given CNF (at least a “reasonable” CNF). The obvious drawback is that this makes the 
experiments very, very long, hence limiting the scope of such experiments. In the SAT contests, 
the choice of a short timeout allows a great number of SAT solvers to be run against a very broad 
spectrum of CNFs. In our experiments, we ran a very limited number of SAT solvers against a 
smaller (but more relevant for BMC) number of CNFs with a longer timeout. We believe that 
this is one of the main explanations for the difference in results between SAT03 and our results. 
More precisely, if a longer timeout would have been used for the second stage of the SAT03 
contest, probably some solvers would have solved of the benchmark from the IBM CNF 
Benchmark; therefore, the final results would more likely have been consistent with our 
experiments. In summary, using shorter timeouts can be very useful for larger scopes 
experiments (many SAT solvers and very broad benchmark). However, in order to get more 
relevant results for BMC7, these kinds of experiments must be refined by limiting the scope (e. 
g., the number of SAT solvers). 

Shuffling clauses in benchmark CNFs is tricky  
Shuffling clauses in benchmark CNFs can have a dramatic effect and potentially changes solvers 
performance ranking. However, in real life, SAT users don’t shuffle their CNFs. One of the 
major differences between our experiments and the SAT03 experimentation is that we did not 
shuffle CNFs. 

Use a broad benchmark: easy for a SAT solver, does not means easy for all 

When assessing the performance of a new SAT solver, a common trend is to run the new solver 
against CNFs that are difficult to solve with a well established solver (e. g. zChaff). Although it 
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seems reasonable, this can be very misleading. Modern SAT solvers rely heavily on heuristics; 
therefore a CNF can be solved very easily with one solver and still be very difficult with others. 
For example, the CNFs from model 01 rule are very easy for zChaff to solve but difficult for 
BerkMin561. On the 01 rule series, zChaff typically runs faster than BerkMin561 by two orders 
of magnitude. On the 26 rule series siege_v4 typically runs worse than zChaff by one order of 
magnitude and worse than BerkMin561 by two orders of magnitude. The reason for this kind of 
behavior is not that some models are “special”, but more likely the limitation of the heuristics 
used by different solvers. The fact that solvers performance ranking often varies for different 
CNFs generated from the same model comforts us with the idea that the relationship between 
solvers (and heuristics) performances and model specifics is not as strong as one would think. 

For results analysis, there is no real reason to discriminate between results for satisfiable 
and unsatisfiable CNFs 
We believe that it does not make much sense to differentiate between the performance of solvers 
for satisfiable and unsatisfiable CNFs – at least for BMC applications. Firstly, BMC is usually 
run in an incremental manner (e. g., k = 0 . . . 10, k = 11 . . . 15, . . .). Therefore, before you can 
get a satisfiable result you often have to get several unsatisfiable results. Secondly, some models 
cannot be falsified and CNFs generated by BMC will always be unsatisfiable. Therefore, only 
the global performances are really relevant for real-life BMC SAT use. 

Use several metrics for comparisons 
Since SAT solvers rely heavily on heuristics, it is unlikely (or at least rare) that a SAT solver 
would be better on all possible CNFs (from real-life models). For example, even though 
siege_v4 performs better than zChaff and BerkMin561 in most CNFs of the IBM benchmark, it 
does not perform better for all (e. g. model 26 in Table 2.2). The following metrics can be used 
to compare two SAT solvers, solver 1 and solver 2: 

• Global time. This presents two drawbacks: 1) There is no perfect solution to take timeouts into 
account, and 2) All the weight is on the CNFs which take the longest to be solved. 

• Ratio between the number of CNFs solved more quickly by solver 1 and the number of CNFs 
solved more quickly by solver 2. Optionally, only the cases where performance differences are 
significant can be taken into account. 

• The average of the ratio between solver 1’s performance and solver 2’s performance on each 
CNF. This presents two drawbacks: 1) There is no perfect solution to take the timeout into 
account, and 2) All the CNFs have the same weight. 

• Timeout numbers. It is quite relevant if one considers that the timeout value is roughly 
equivalent to the real-life timeout (i.e. the maximum reasonable waiting time of the real-life 
formal tool users). 

2.1.3 Conclusion 
Benchmarking is not a trivial task and it can be misleading. Our experiments on zChaff and 
BerkMin561 present results that are contradictory with what is commonly accepted by the SAT 
community (i.e. that BerkMin561 would outperform zChaff).  

It is diffcult to compare two SAT solvers (e. g. CNFs that are difficult for zChaff are not the 
same as CNFs that are diffcult for BerkMin561). Even when a SAT solver such as siege_v4 
seems to clearly outperform BerkMin561 and zChaff, it is not necessarily so for all benchmark 
CNFs. In order to help benchmarking and compare between solvers results, we proposed 
guidelines that sketch a methodology. We believe that the systematic use of this benchmarking 
methodology can improve the general quality of experimental performance evaluations for SAT 
BMC and will help to produce practical and fundamental advances in the area. 
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In near future we plan to use our methodology to benchmark the winners of the SAT04 contest 
and the updates of “old” SAT solver (e. g. SAT04 version of zChaff). 

Though we tackled only the SAT part of BMC formal verification, the actual BMC (translation 
from a bounded model to a CNF) is very important. First, BMC translation runtime can 
sometimes make an actual difference. Second, and most importantly, solvers performance 
actually depends heavily on the quality of the CNFs generated.  

  
Model zChaff BerkMin561 siege_v4 Model zChaff BerkMin561 siege_v4 

01_ 166 22800(1) 262 14__2 3490 2480 378 

02_1__1 347 34 38 15_ 6 21100(1) 1 

02_1__2 336 69 104 16_2__1 0 10 0 

02_1__3 26 16 10 16_2__2 0 9 1 

02_1__4 34 12 13 16_2__3 0 11 0 

02_1__5 32 16 19 16_2__4 3 16 0 

02_2_ 118 83 11 16_2__5 1 17 2 

02_3__1 96 157 22 16_2__6 1 18 1 

02_3__2 702 34 13 17_1__1 0 509 0 

02_3__3 154 133 18 17_1__2 219 427 70 

02_3__4 333 39 13 17_2__1 1 28 0 

02_3__5 126 172 25 17_2__2 1 98 0 

02_3__6 396 34 16 18_ 32200(2) 31200(2) 5160 

02_3__7 262 86 39 19_ 127 2910 482 

03_ 190 733 126 20_ 21800(1) 9590 4020 

04_ 170 597 161 21_ 150 2245 383 

05_ 33 267 124 22_ 5290 5980 582 

06_ 296 1140 130 23_ 38700(2) 28500(1) 2820 

07_ 61 73 69 26_ 155 26 2850 

09_ 7 1 2 27_ 53 364 134 

11__1 5080 21900(1) 1760 28_ 385 843 96 

11__2 6640 14500(1) 982 29_ 35700(2) 58200(5) 16700 

11__3 24100(2) 24000(2) 3135 30_ 76600(7) 72000(7) 66000(5) 

12_ 0 0 0     

13__1 90000(9) 90000(9) 90000(9)     

14__1 191 719 126     

Table 2.2 The results are displayed in seconds. The timeout was set to 10000 seconds. For each model, the number of timeouts, if 
any, appears in brackets. 

 

18_ruleCNF Result zChaff BerkMin Siege 

SAT_dat.k1.cnf unsat 0 0 0 

SAT_dat.k10.cnf unsat 1 1 0 

SAT_dat.k15.cnf unsat 13 4 5 

SAT_dat.k20.cnf unsat 65 47 41 
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SAT_dat.k25.cnf unsat 951 109 251 

SAT_dat.k30.cnf sat 700 755 557 

SAT_dat.k35.cnf sat timeout 2230 1730 

SAT_dat.k40.cnf sat 5510 8060 247 

SAT_dat.k45.cnf sat timeout timeout 959 

SAT_dat.k50.cnf sat 5010 timeout 1370 

Table 2.3 The results are displayed in seconds for the CNFs from 18 rule model. The timeout was set to 10000 seconds. zChaff 
performs the worst for k=15, 20, 35; BerkMin561 performs the worst for k=30, 40, 50; Siege 4 has the best performance except 
for k=15, 25.  

 
 total time (including 10000sec timeout) # timeout 

zChaff 345000 sec 25 

BerkMin561 414000 sec 30 

Siege_v4 187000 sec 14 

Table 2.4 The timeout was set to 10000 seconds. 

 
 SAT03 SAT03 

SAT_dat.k1.cnf 0 0 

SAT_dat.k10.cnf >900 11 

SAT_dat.k15.cnf >900 5 

SAT_dat.k30.cnf >900 6 

Table 2.5  zChaff CPU runtime in sec for SAT03 contest 07 rule series. 

 

 BerkMin561 forklift Siege_1 zChaff 

Total # of Solved 
Benchmarks 

112 112 112 101 

Total CPU time needed 
(sec) 

105000 103000 10300 114000 

 

without 13 rule (sec) 1510 518 408 4160 

 

without 13 rule and 07 
rule (sec) 

1410 424 268 553 

 

Table 2.6 Partial results from first stage SAT03 contest 

 
Rank Solver  #Solved 

1 Forklift 12 

2 BerkMin561 11 

   

6 zChaff 4 

Table 2.7 Partial second stage SAT03 contest results on industrial benchmarks 
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2.2 Comparison between ESolver, Siege and DPSAT (Infineon) 

2.2.1 Test set-up 
We present the results for our experimental SAT solver (E-Solver), one of the best publicly 
available solver (Siege V4), and our currently productive solver DPSat. The set of benchmarks 
used is the IBM-BMC benchmark consisting of 45 groups of CNF problems, with each group 
containing in the order of 20 instances. The tests were run on an Intel(R) Xeon(TM) CPU 
2.66GHz, with 512 KB first level cache, and 2 GB physical memory under Linux. More than 200 
CPU hours of computer time was used for the tests. For most instances, a resource limit of 10000 
sec was used. If the algorithm did not terminate within that, the process was killed. 

2.2.2 Results 

2.2.2.1 Raw data 

A total of 936 test cases were run, most of them with each of the three tools. The results were 
collected in a large table, of which we include two random sections below. Each section collects 
all instances of one problem class. The columns labelled E-Solver, Siege_V4 and DPSat give the 
computation times of the respective tool in seconds. The next column says whether the instances 
is satisfiable or unsatisfiable. 

The last two columns compare E-Solver to the best of the other two on each instance: the “Best” 
column repeats the lower of the two figures for Siege and DPSat, and “ESolver/Best” gives the 
quotient of the computation times. 

 
Instance E-Solver Siege_V4 DPSat S/U Best Esolver/Best 
01_rule:SAT_dat.k10: 0,24 0,04 0,85 u 0,04 6,00 
01_rule:SAT_dat.k15: 0,87 0,33 1,25 s 0,33 2,64 
01_rule:SAT_dat.k1: 0,00 0,01 0,05 u 0,01 0,00 
01_rule:SAT_dat.k20: 4,92 2,20 4,50 s 2,20 2,24 
01_rule:SAT_dat.k25: 14,31 1,41 5,65 s 1,41 10,15 
01_rule:SAT_dat.k30: 20,72 111,72 34,15 s 34,15 0,61 
01_rule:SAT_dat.k35: 34,08 59,05 87,03 s 59,05 0,58 
01_rule:SAT_dat.k40: 68,82 19,08 211,23 s 19,08 3,61 
01_rule:SAT_dat.k45: 18,77 82,61 108,52 s 82,61 0,23 
01_rule:SAT_dat.k50: 74,29 120,71 277,99 s 120,71 0,62 
01_rule:SAT_dat.k55: 121,05 173,05 365,78 s 173,05 0,70 
01_rule:SAT_dat.k60: 172,02 670,99 419,12 s 419,12 0,41 
01_rule:SAT_dat.k65: 405,05 267,53 465,86 s 267,53 1,51 
01_rule:SAT_dat.k70: 266,59 126,91 2167,20 s 126,91 2,10 
01_rule:SAT_dat.k75: 357,19 343,09 1178,03 s 343,09 1,04 
01_rule:SAT_dat.k80: 814,58 678,73 1795,83 s 678,73 1,20 
01_rule:SAT_dat.k85: 1038,83 476,54 4246,15 s 476,54 2,18 
01_rule:SAT_dat.k90: 252,81 547,49 1143,03 s 547,49 0,46 
01_rule:SAT_dat.k95: 842,81 1884,67 4674,76 s 1884,67 0,45 
01_rule:SAT_dat.k100: 4590,83 2474,72 1221,02 s 1221,02 3,76 
total 9098,78 8040,88 18408,00  8040,88 1,13 
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Instance E-Solver Siege_V4 DPSat S/U Best Esolver/Best 
05_rule:SAT_dat.k10: 0,12 1,00 1,35 u 1,00 0,12 
05_rule:SAT_dat.k15: 0,43 1,00 2,50 u 1,00 0,43 
05_rule:SAT_dat.k1: 0,00 1,00 0,02 u 0,02 0,00 
05_rule:SAT_dat.k20: 0,19 1,00 3,79 u 1,00 0,19 
05_rule:SAT_dat.k25: 0,49 1,00 6,07 u 1,00 0,49 
05_rule:SAT_dat.k30: 0,39 3,00 8,54 u 3,00 0,13 
05_rule:SAT_dat.k35: 1,65 8,00 17,63 s 8,00 0,21 
05_rule:SAT_dat.k40: 2,28 22,00 18,09 s 18,09 0,13 
05_rule:SAT_dat.k45: 4,38 37,00 29,33 s 29,33 0,15 
05_rule:SAT_dat.k50: 4,83 60,00 37,37 s 37,37 0,13 
05_rule:SAT_dat.k55: 5,48 142,00 43,34 s 43,34 0,13 
05_rule:SAT_dat.k60: 8,30 151,00 63,25 s 63,25 0,13 
05_rule:SAT_dat.k65: 13,15 219,00 86,53 s 86,53 0,15 
05_rule:SAT_dat.k70: 11,13 249,00 105,18 s 105,18 0,11 
05_rule:SAT_dat.k75: 21,09 506,00 126,21 s 126,21 0,17 
05_rule:SAT_dat.k80: 30,23 559,00 244,52 s 244,52 0,12 
05_rule:SAT_dat.k85: 16,26 538,00 124,41 s 124,41 0,13 
05_rule:SAT_dat.k90: 38,70 1162,00 273,90 s 273,90 0,14 
05_rule:SAT_dat.k95: 55,12 852,00 183,56 s 183,56 0,30 
05_rule:SAT_dat.k100: 79,98 1110,00 541,40 s 541,40 0,15 
total 294,20 5623,00 1916,99  1916,99 0,15 

 

Instead of copying the full result tables here, we give a more condensed view in the next 
paragraph. 

 

2.2.2.2 Statistics 

Unsolved instances: 

11 (of 936) instances were not solved within reasonable resource bounds (10000 sec) by neither 
DPSat nor Siege. All but two of these were solved by E-Solver. 

Solved instances 
The rest of the analysis takes only those instances into account which were solved by E-Solver 
and at least one other tool. For those we counted the number of instances for which E-Solver was 
better by certain factors compared to the better of the other two. In the following table, the 
column “<K” means that in 729 instances out of 924, i.e. 78,9%, E-Solver was faster than K 
times the run-time of the better of the other tools. It is remarkable that in many instances (34% 
resp. 6 %) it is much faster, i.e. by a factor of 5 resp. 100. 

As it is well known that such results show a wide variance, we included the “<2” column: it can 
be taken to say that in 78.9% the new approach is at least reasonably good compared to the other 
two. 



PROSYD 15 D3.2/1 

 
# solved 
instances <2 <1 <0,2 <0,01 
924 729 630 321 56 
100,0% 78,9% 68,2% 34,7% 6,1% 

  

Hard instances 
It can be argued that a performances gain even by a factor of 100 is not really too relevant if the 
required time is in the seconds range anyway. We therefore defined “hard” instances to be those 
that required at least 10 sec by the previous tools, and did the same evaluation on this population, 
with the following result: 

#hard 
instances <2 <1 <0,2 <0,01 
405 387 351 191 14 
100,0% 95,6% 86,7% 47,2% 3,5% 

Very hard instances 

If, in the same line of reasoning, we take “very hard” to mean more than 1000sec, the picture 
remains quite consistent with the above: 

 
#instances <2 <1 <0,2 <0,01 
78 74 64 24 10 
100,0% 94,9% 82,1% 30,8% 12,8% 

Satisfiable vs unsatisfiable. 
Similar evaluations were done for the satisfiable and unsatisfiable instances, but no significant 
difference arose, i.e. the performance gain is approximately equal regardless of satisfiability of 
the instance. 

Average performance gain 
On the set of “hard” instances, we computed the average of the performance ratios (E-
Solver/Best).  It is 0.37, i.e. the average performance gain can be said to be a factor of (1/3.7=) 
2.7. 

 

2.3 Experimental results and conclusions 

2.3.1 Comparison technique 
We made a comparison among five SAT solvers: zChaff, BerkMin561, zChaff II, Siege V4 and 
E-Solver. Due to technical reasons we did not run all the SAT solvers on the same machine.  

� Infineon ran E-Solver and Siege V4 on an Intel(R) Xeon(TM) CPU 2.66GHz, with 512 
KB first level cache, and 2GB physical memory on Linux.  

� IBM ran zChaff, BerkMin561, zChaff II and Siege V4 on an Intel Xeon dual CPU 
2.4GHz, with 512 KB first level cache, and 2.5GB physical memory, also on Linux. 

In order to compare the SAT solvers we used Siege V4 runtime as a common denominator for 
our experiments and based our comparison on the relative speed of each SAT solver to Siege v4. 
Hence we normalize, for each CNF instance, the runtime of each solver by the runtime execution 
of Siege V4 on the same machine. After normalization the ratio of Siege V4 is 1, the ratio of 
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SAT solver that take longer than Siege V4 on the same rule are > 1 and  the ratio of  runtime 
executions that take shorter time than Siege V4 are < 1.  The runtime ratio between IBM and 
Infineon machines for each execution of Siege V4 lay in the range 0.9 and 1.1.  

2.3.2 Join Results 

We picked 39 instances from IBM benchmark on which we base our comparison. They all fulfil 
the ratio requirement of having the Siege v4 runtime executions on the two machines in the 
range 0.9 – 1.1. The following chart 

 
 

represents the solvers runtime executions normalized with Siege V4.  

� zChaff, stands for the first zChaff version that was released by Princeton. 

� zChaff II stands for the new zChaff, a version that was released at 13.5.2004. 

We used a logarithmic scale to represent the runtime ratio. Due to the comparison process, in 
which we use Siege v4 as the base of our comparison, Siege V4 ratio is 1 for all instances, hence 
we removed it from the chart. According to our experiments E-Solver has the best performance 
overall. In 35 of the instances E-Solver runtime is shorter than Siege V4 and in most cases the 
speedup ratio is up to one order of magnitude. In 3 of the instances, Siege V4 runtime is better 
than E-Solver, but the speed up ratio in these cases is no more than 2.2 for Siege V4. We 
conclude that on our benchmark E-Solver performance is consistently much better than the other 
SAT solvers. Siege V4 is the best SAT solver only for 3 instances. According to our results 
Siege V4 takes the second place of the best SAT solver, among the SAT solvers used in our 
experiments. 

zChaff performs better than Siege V4 in 10 of the CNF instances. Unlike E-Solver, zChaff 
results are not consistent throughout the benchmark and vary from slowdowns of ~18 to a 
speedup of almost two orders of magnitude. The results for zChaff remain not consistent even 
when we compare it to the rest of the SAT solvers. To be noticed that zChaff has the worst 
performance in 9 of the instances. We must also note that even in cases where zChaff 
outperforms Siege V4, E-Solver is usually (excluding one instance) better than zChaff on these 
instances. 
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BerkMin561 performs better than Siege V4 in 4 of the CNF instances. In most of the examples 
BerkMin561 performs much worse than Siege V4, getting even slowdowns of ~25. In two 
examples BerkMin561 performs better than Siege V4 by more than two orders of magnitude. 
BerkMin561 performance is also not consistent, the result depending a lot on the cnf run. To be 
noticed that in 22 CNF instances BerkMin561 is the slowest among the participating SAT 
solvers. 

zChaff II performs better than Siege V4 in only 4 of the CNF instances, and on those occasions 
its speedup over Siege V4 is never higher than 2. On the other hand zChaff II appears to be the 
worst among all the participating SAT solvers only in 4 instances, which is much better than the 
other participating (excluding E-Solver). Overall, zChaff II looks better than BerkMin561. 

After analyzing the results, we conclude that E-Solver has no competitors among the 
participating SAT solvers. Only in 6 instances E-Solver does not provide the best result, but even 
in these cases only one SAT solver performance was better than E-Solver. Siege V4 clearly takes 
the second place as the best SAT solver, it is clear to see that Siege V4 performance is better 
than the rest of the solver (excluding E-solver) in most of the instances). There is no clear 
conclusion regarding the rest of the SAT solver, because their results are similar and the 
benchmark is not large enough to be able to learn a definite relation among their performance. 

 

2.3.3 Heuristics and randomness effects 
Siege is a SAT solver that can run in a random mode; its heuristics are affected by a random 
value. If provided a seed, Siege runs are deterministic, if not, it behaves randomly. As we noticed 
before, one of the problems in SAT solvers is an inconsistency in their result. Depending on the 
cnf, SAT solvers can show varying performances. Heuristics success is generally highly 
dependent on the cnf they run on. Looking at the same problem from a different angle, we can 
state that the same cnf can be solved faster or slower by the same SAT solver with a slight 
change in the heuristics it uses.  

The effect of randomness is not a new issue. What is surprising is how strong this influence is, as 
seen in the next charts. On one hand we have Siege V4 run deterministically with a fix seed on 
all the benchmark. On the other hand we have the results of it being run randomly, each time 
with a different seed chosen by the system. Our experiments show difference in performance 
ranging from a speed up of x52 to a slowdown of x12.65.  It proves that using randomness while 
searching for the satisfying assignment can be in the same time power and problematic. 
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3 The Improvements of SAT based Bounded Model Checking 
Proper benchmarking, which matches day to day use of formal methods, allows us to assess 
direct improvements for SAT use for formal methods. Proper use of our benchmark allowed us 
to prove that previous results on tuning SAT solver for Bounded Model Checking (BMC) were 
overly optimistic and that a simpler algorithm was in fact more efficient. 

Over the past decade, verification via model checking has evolved from a theoretical concept to 
a production-level technique. It is being actively used in chip design projects across the industry, 
where formal verification engineers can now tackle the verification of large industrial hardware 
designs. Assessing theoretical results requires more than simply getting experimental results on 
some benchmarks. Rather, results must be attained for a wide range of benchmarks, under 
conditions as close as possible to real-life formal verification. 

In order to illustrate the significance of proper benchmarking, we demonstrate how applying 
overly restrictive benchmarking can be misleading. We show how proper benchmarking, which 
matches day-to-day use of formal methods, allows us to assess direct improvements. We present 
a method of splitting up the problem, which verification engineers usually meet in day-to-day 
real-life work. This allows us to distribute the problem in a simple and efficient way. This 
distribution technique is simple, but we, nevertheless, prove that it is very efficient by 
benchmarking. In a more general way, our goal is to show how very simple ideas can be proven 
to have great impact by experimentation. 
�

3.1 Decision Heuristics for Tuning SAT 

This section presents some decision heuristics for tuning the zChaff VSIDS for bounded model 
checking as in [��]. The experimental results use a predecessor of the IBM Formal Verification 
Benchmark. The next section shows how proper use of the IBM Formal Verification (Cf. 
appendix A).  Benchmarking proves the results in this section are too optimistic.  
�

3.1.1 Bounded Model Checking and SAT Basis  

���������	�BMC translates a safety formula from LTL [��] into a propositional formula under 
bounded semantics. The general structure of a �(�) formula, as generated in BMC [���], is as 
follows: 

 
where ���is the initial state, �is the transition between cycles ��and �+1, and ���is the 
property in cycle �. If this propositional formula is proven to be satisfiable, the satisfying 
assignment provided by the SAT solver is a counterexample to the property ��(�). To convert the 
initial propositional formula into Conjunctive Normal Form (used as the input format by most 
SAT solvers), extra variables are introduced to avoid combinatory explosion. Usually, these 
extra variables represent more than 80% of the total number of variables in the CNF formula. 


��� �����	� SAT is the problem of determining the satisfiability of a Boolean formula. The 
problem was used by Cook to define NP-completeness [�	]. Today, many implementations are 
available for solving the problem, such as Grasp[SS] and zChaff [
 	]. Most of them are based 
on the complete DPLL algorithm [���], we now 

describe as in [
 	]: 
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while(true) { 

if (!decide()) // if no unassigned vars 

return(satisfiable) ; 

while (!bcp()) { 

if (!resolveConflict ()) 

return (not_satisfiable) ; 

} } 

bool resolveConflict() { 

d=most recent decision not ’tried both ways’ ;  

if (d==null) // no such d was found 

return false ; 

flip the value of d; 

mark d as tried both ways ; 

undo any invalidated implications; 

return true; 

}  

 

decide() is a function that chooses the next variable according to which branching will occur. 
There are many heuristics for choosing this next variable, such as DLIS (Dynamic Largest 
Individual Sum) and VSIDS (Variable State Independent Decaying Sum). zChaff uses VSIDS as 
its decision heuristic. bcp() returns true when the boolean constraint propagation (bcp) [
 	] 
finishes without conflict. Our next subsection focuses on tuning this heuristic for BMC.�
�

3.1.2 Tuning VSIDS 
�

The original zChaff decision VSIDS strategy is as follows: 

1. Each variable in each polarity has a counter, which is initialized to 0. 

2. When a clause is added (by learning) to the database, the counter associated with each literal 
in the clause is incremented. 

3. The (unassigned) variables and polarity with the highest counter are chosen at each decision. 

4. Periodically, all counters are divided by a constant.  

 

One of Strichman’s [�] main idea is as follows: in the Davis-Putnam decision procedure, the 
variable of the original propositional formula is used first and in a specific static order. This 
static order is determined by a breadth first search of the (�-unfolding of the) variable 
dependency graph; the search starts from the set � . Roughly speaking the intuition 
behind it is that the formula variables are the most critical. We chose to implement several 
decision heuristics on top of zChaff �. We tuned the zChaff VSIDS decision heuristic in several 
different ways. First, we wanted to reflect the idea of static order (SO) [�]. Second, we wanted 
to implement a heuristic that gives priority to dominant variables (DV) over any other variables, 
but otherwise relies on zChaff decisions. This is because it is unclear from [��] whether the 
improvements were due to the static order or to the priority given to the dominant variables (����, 
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the variables from the initial propositional formula before the conversion to CNF, or domain 
variables). Because zChaff uses the VSIDS decision strategy, which is less time consuming than 
the decision heuristic used by Strichman with GRASP (���., DLIS), it is not clear whether the 
benefits from a static order would still be realized. Therefore, we also implemented a static order 
heuristic and dominant variables priority heuristics to act as a tie breaker for the zChaff decision 
(respectively SB and DVB). The four decision strategies implemented are described in details in 
[��]. 
�

3.1.3 Experimental Results 

In our first experiments, we used a predecessor of the IBM Formal Verification Benchmark. For 
each model we used only one CNF (see Table 3.1 contend for experimental results). In Table 
3.2, we computed speedup, taking the VSIDS heuristic as a reference: therefore we did not take 
into account IBM_16 and IBM_19, for which VSIDS times out. We could also have decided to 
take the Static Order (SO) heuristic as a reference and not take IBM_10 and IBM_17 into 
account. However, SO is the only heuristic that times out for IBM_10 and IBM_17, while three 
out of five heuristics time out for IBM_16 and IBM_19. When we compared 
min(DVB,SB,DV,SO) with VSIDS for each case, we were impressed: Running four concurrent 
instances of SAT, each with a different heuristic, should give a theoretical speedup greater than 
six. Indeed if we could build a tool which would run concurrently SAT instances with DVB, SB, 
DV and SO heuristics, this would solve SAT problems about six times faster than with VSIDS 
heuristics�.  
 VSIDS DVB SB DV SO min(DVB,SB,DV,SO) 

1_2001 18 12 31 14 170 (DVB)12 

2_2001 1400 620 820 300 1300 (DV)300 

3_2001 43 66 190 240 240 (DVB)66 

4_2001 4000 1000 800 210 120 (SO)120 

5_2001 2400 44 240 170 100 (DVB)44 

6_2001 1000 67 190 3800 250 (DVB)67 

7_2001 340 120 140 8 19 (DV)8 

8_2001 13 10 34 14 4800 (DVB)10 

9_2001 71 44 110 190 900 (DVB)44 

10_2001 70 70 110 86 timeout (DVB)70 

11_2001 4800 4200 6400 timeout 3100 (SO)3100 

12_2001 44 42 73 46 51 (DVB)42 

13_2001 78 6 58 6 52 (DVB)6 

14_2001 32 31 42 18 26 (DV)18 

15_2001 13 13 13 13 13 13 

16_2001 timeout timeout 9200 timeout 180 (SO)180 

17_2001 7600 4000 3100 2400 timeout (DV)2400 

18_2001 11 85 95 6 3000 (DV)6 

19_2001 timeout timeout timeout 1600 8700 (DV)1600 

 

�����������The results are displayed in seconds, with two significant digits. Timeout was set 
to 10000 seconds. 
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 VSIDS DVB SB DV SO 

Total time 21933 10430 12446 ��17521 ��34141 

Global speedup 

(VSIDS total time/total time) 

 2.10 1.76 ��1.25 ��0.64 

 

Average speedup 

(average VSIDS time/time) 

 6.11 2 ��6.26 ��5.15 

 

�����������The results are computed without IBM_16 and IBM_19 for which VSIDS times 
out 

In order to evaluate this claim, we made some additional experiments, with a different approach. 
First, we decided to use the IBM Formal Verification Benchmark, which is wider than its 
predecessors; the fact that it is available online (for academic organizations) allows the 
reproduction of our results. Second, we decided not to run SAT as a stand-alone with one or two 
CNFs per model, but to run our global bounded model checking tool, as a regular user would, 
without any prior knowledge of the model. We began with a bound equal to 10, and in the case 
where no satisfiable assignment is found for the CNF generated by BMC translation, we 
incremented the bound by 5, and so on. In other words, in order to try to falsify a safety formula, 
say ��(�)), we usually try to find a satisfiable assignment for  

� 
if it fails, we try  

 
and keep incrementing until a satisfiable assignment is found for some 		�� , some timeout is 
reached, or a user defined maximal bound is reached. This is the most common approach for 
day-to-day use of BMC. Even when the completeness threshold 
� (as in [���]) is known, it is 
very often too big to allow the BMC to finish with ��= 
. Therefore, most of the time, users will 
try to falsify a formula with BMC, without knowing whether the formula holds or not, or which 
��would be needed to get a satisfiable 		�. 

We ran RuleBase with five concurrent SAT BMC instances (each of them using a different 
decision heuristic from VSIDS, DV, DVB, SB, SO). Each instance was independent and run on a 
single workstation with a 867841X Intel(R) Xeon(TM) CPU 2.40GHz with Red Hat Linux 
release 7.3. Surprisingly, we got a speedup of only 1.14 (see the following section and Concur 
5/5 heuristics results in Table 3.4). This can be explained by several factors: 

��The search includes a SAT search together with pre-processing and BMC translation 
(translation from the model with a given bound to a CNF). SAT is only a part of the 
whole process, however the bottom line for formal verification is performance of this 
global process. 

�� For each model, several CNFs (from BMC translation with different bounds) are 
searched for satisfiability. All in all, SAT was run in many more CNFs than for the 2001 
benchmark (several CNFs from the 2001 benchmarks are generated from the IBM 
Benchmark). Running SAT on a benchmark that was too small did not accurately reflect 
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the conditions of day-to-day formal verification. This led us to anticipate overly optimist 
conclusions. 

3.2 A Simple but Efficient distributed SAT BMC Algorithm 

We conducted several experiments with the IBM Formal Verification Benchmark. In fact, it has 
become one of our main tools to assess new search engines and algorithms. The experiments we 
present here were conducted to offer a better assessment of different decision heuristics for 
zChaff and to assess a straightforward distributed algorithm for bounded model checking. The 
results provide a good perspective on the importance of the IBM Formal Verification 
Benchmark. 

3.2.1 Experimental Settings 
We ran RuleBase on the IBM benchmark with several configurations on 867841X Intel(R) 
Xeon(TM) CPU 2.40GHz blade workstations running Red Hat Linux release 7.3. When 
RuleBase was used with engines distributed on several workstations, they were interconnected 
with a 1 Gb Ethernet LAN. The different configurations are as follows: 

��Sequential: RuleBase runs SAT bounded model checking on a single workstation. 

The bounds used sequentially include k=0. . . 10, k=11. . . 15,. . . , k=46. . . 50. As soon as a 
satisfiable assignment is found, the search is over. If no satisfiable assignment is found for any of 
the bounds, the result is then unsat with bound 50. 

��Concur 7: RuleBase distributes the tasks corresponding to the seven first bounds to seven 
workstations (i.e., BMC translation and SAT search for k=0. . . 10, k=11. . . 15,. . . , k=36. . . 40). 
As soon as a satisfiable assignment is found, the whole search is over. If a task finishes without 
finding a satisfiable assignment, the next task is then assigned to the now idling workstation 
(until there are no tasks left, in which case the result is unsat 50). 

��Concur 5: This uses the same principle as Concur 7, but distributes tasks in a five by five 
manner to five workstations. 

��Concur 3: This uses the same principle as Concur 7, but distributes tasks in a three by three 
manner to three workstations. 

�� Concur 5, 5 heuristics: RuleBase runs five independent SAT BMC instances (similar to 
sequential). Each of the SAT BMC instances uses a different decision heuristic for zChaff, from 
VSIDS, SO, SB, DV, DVB. 

��Concur 9 2/nodes: RuleBase distributes the nine SAT BMC tasks (corresponding to bounds 
k=0. . . 10, k=11. . . 15,. . . , k=46. . . 50) on five bi-processor workstation. 

Table 3.3 presents the experimental results for the rules from the IBM Benchmark. We omitted 
the rules that ran in under two minutes with Sequential configuration and the rules that timed out 
(timeout was set at two and a half hours) for every configuration. For this experiment, we used 
bi-processor workstations with 867841X Intel(R) Xeon(TM) CPUs 2.40GHz and Red Hat Linux 
release 7.3. Speedup NA means the search timed out for both configurations (i.e., Sequential ). 
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 result S C7 C5 H5 C9/2 C3 

  (hh:mm:ss) (speedup) (speedup) (speedup) (speedup) (speedup) 

02_1 rule 1 Unsat 50 00:06:00 2.0 1.9 1.5 2.0 1.6 

02_1 rule 2 Unsat 50 00:08:19 2.8 2.7 1.5 2.8 2.2 

02_3 rule 2 Unsat 50 00:09:02 2.7 2.6 1.4 2.7 2.5 

02_3 rule 4 Unsat 50 00:09:46 2.4 2.3 1.2 2.4 1.9 

02_3 rule 6 Unsat 50 00:09:25 2.3 2.2 1.7 2.4 1.8 

02_3 rule 7 Unsat 50 00:05:18 2.0 1.9 1.1 2.1 1.7 

06 Sat 31 00:02:25 1.8 1.7 1.1 1.8 1.6 

10 Unsat 50 00:29:47 2.7 2.6 1.9 2.8 2.0 

11 rule 1 Sat 31 00:25:26 8.9 8.2 1.3 8.8 7.4 

14 rule 1 Unsat 50 00:02:10 2.3 2.2 1.0 2.7 1.7 

14 rule 2 Unsat 50 00:25:43 2.9 2.7 1.0 1.9 2.2 

17_1 rule 2 pass 00:05:13 2.5 2.4 1.0 2.1 1.9 

18 Sat 29 00:38:59 1.4 1.3 1.3 1.1 1.3 

19 Sat 29 00:02:23 1.4 1.4 1.1 1.2 1.2 

20 Sat 44 �02:30:00 1.9 1.8 NA 1.8 1.3 

22 Unsat 50 �02:30:00 NA NA 1.6 NA NA 

23 Sat 36 �02:30:00 6.8 6.8 NA 6.3 5.9 

26 Unsat 50 00:15:25 3.4 3.1 1.0 3.8 2.3 

29 Sat 26 �02:30:00 26.5 26.6 NA 21.8 9.7 

 

�����������Experimental results with the IBM Formal Verification Benchmark. S stands for 
Sequential, C7 for Concur 7, C5 for Concur 5, C3 for Concur 3, H5 for Concur 5 with five 
heuristics, C 9/2 for Concur 9 with two processes per node. and the given configuration). 

3.2.2 Interpretation of Results 

We noticed that Concur 9 2/node performs more poorly than Concur 5. This may seem quite 
surprising at first. However, we should keep in mind that BMC translation and SAT solving are 
very memory accesses consuming. Therefore, memory access can be a bottleneck when running 
two SAT instances on bi-processor workstations. Heuristic tuning sometimes allows spectacular 
speedup for SAT solving (the only way we were able to achieve a result for 22). However, the 
overall improvement for SAT BMC, even when concurrently running several heuristics, is 
altogether marginal (though this approach could be mixed with the Concur approach). Concur 7 
and Concur 5 produce results that are similar, however, the Concur 3 results are significantly 
poorer. Therefore, the ideal configuration for our search (incremental bounded model checking 
with a maximal bound of 50) appears to be Concur 5. 

Concur k ( ������Concur 3, Concur 5, Concur 7) configurations may give more than linear��
speedup (e.g., 11 rule 1 and 29). The difficulty of a SAT BMC search does not necessarily grow 
with the bound. For some rules, it is far more difficult to prove they are no satisfiable assignment 
for k-5 than to find a satisfiable assignment for k, when searching concurrently. On the other 
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hand, for some models, if k is the smallest bound for which a satisfiable assignment can be 
found, it will be easier to find a satisfiable agreement for k+5 than for k. Because k is the length 
of the shortest counter-examples to the model, it is likely that there will be more counter-
examples of a longer length, eg k+5, and so more satisfiable assignments. In summary, Concur k 
configurations have the biggest speedup potential for models that fail (in a number of cycles less 
than the maximal bound). Most such models from our benchmark fail in less than 30 cycles. This 
explains why Concur 7 displays little improvement when compared to Concur 5. In order to 
exhibit better performance for Concur k with k greater than or equal to 7, we would have to run 
the SAT BMC with a greater maximal bound and probably a broader benchmark (with models 
failing within a greater number of cycles). As can be observed in  
 Concur 7 Concur 5 Concur3 5 heuristics 

Global speedup 

(Sequential total time/total time) 

��3.40 ��3.40 ��2.78 ��1.14 

 

Average speedup 

(average Sequential time/time) 

��4.26 ��4.13 ��2.49 ��1.29 

 

�����������The results are computed without the “NA” cases 

Table 3.4, the Concur 5 and Concur 3 results are quite good, especially considering that these 
two configurations distribute their tasks in a straightforward manner on five and three nodes, 
respectively. 

3.3 Conclusions 

We explained how we used the IBM Formal Verification Benchmark to prove that previous 
results on SAT tuning were too optimistic and to assess the efficiency of a straightforward 
distribution for day-to-day SAT bounded model checking. We noted that a wider benchmark 
would allow even better and sounder assessments. As a result, we plan to make the IBM Formal 
Verification Benchmark library a living repository. We will add new design models in the future, 
to increase the benchmark diversity and keep it relevant in light of new technological advances.�

3.4 The IBM Formal Verification Benchmark 

With the increased use of formal verification, benchmarking new verification algorithms and 
tools against real-life test-cases is now a must in order to assess performance gains. However, 
industrial designs are generally highly proprietary; therefore, models generated from these 
designs are usually not published. This makes difficult to assess the results reported in papers 
from the industry, as their benchmarks are usually not available and it is not possible to compare 
the published results with those achieved by other engines. Additionally, formal verification 
algorithms described in academic papers are often difficult to assess in terms of performance, 
since they are usually not applied to “real-life” benchmarks. We want to stress how difficult it is 
to assess the real practical value of more sophisticate theoretical results without proper 
benchmarking. In the past, benchmarking enabled significant technology improvements, such as 
those for BDD packages in [��]. In the same way, many major improvements to boolean 
satisfyability solvers were proven useful by experimental results [�
 ]. This may appear trivial, 
however there are many examples in the literature where elaborated and complex algorithms are 
not evaluated in a satisfactory manner. From the author’s experience, the claims of several 
papers could not be reproduced using the IBM Formal Verification Benchmark. 

The IBM Formal Verification Benchmark library encompasses 37 declassified models, from 31 
different hardware designs. The IBM Formal Verification benchmark library is available for 
academic users from the IBM Haifa verification projects web site [�����]. 
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The designs presented in the library are industrial designs that were verified by IBM teams. Each 
of the benchmark’s 37 files contains: 

��A group of one or more temporal formulas, collectively called “rule”. To avoid language 
compatibility issues related to the specification language, the original PSL/Sugar [��,���] 
formulas were translated into very simple �(�) formulas (still written in PSL/Sugar), which most 
model checkers can readily address. 

��A design model in PSL/Sugar environment description layer format. Some variables were 
renamed and some simple reductions were applied to hide the original design intent. 

The models presented are of different sizes (Cf. Table 3.5) and varying degrees of complexity. 
However, as shown in Table 3.6 and Table 3.3, the same problem can sometimes be easily 
solved by one verification engine and at the same time with difficulty for another engine. For this 
reason, we tried to use a variety of problems. This benchmark is available in PSL/Sugar [���] 
and in Sugar1 format [���]. It was also translated to BLIF[����] format. The CNF output of 
BMC, applied to the benchmark for several bounds, is available from [���]. Some of these 
CNFs were used for the SAT2003 and SAT2004 contests[����� �����]. 
Name Variables Gates Formulas Name Variables Gates Formulas 

IBM 01 94 3266 1 IBM 17-1 1582 29190 2 

IBM 02-1 139 1699 5 IBM 17-2 1581 28807 2 

IBM 02-2 135 1671 1 IBM 18 78 4768 1 

IBM 02-3 177 1983 7 IBM 19 120 5557 1 

IBM 03 109 2656 1 IBM 20 78 4805 1 

IBM 04 222 5067 1 IBM 21 78 4768 1 

IBM 05 309 8410 1 IBM 22 103 6451 1 

IBM 06 132 3375 1 IBM 23 102 6259 1 

IBM 07 438 1341 1 IBM 24-1 49048 125896 3 

IBM 08 395 84886 1 IBM 24-2 44807 115151 2 

IBM 09 232 2000 1 IBM 25 120 4501 1 

IBM 10 218 8702 6 IBM 26 1713 9640 1 

IBM 11 222 8987 3 IBM 27 42 999 1 

IBM 12 224 1055 1 IBM 28 95 3303 1 

IBM 13 1506 17459 27 IBM 29 90 2562 1 

IBM 14 156 3066 2 IBM 30 180 6654 1 

IBM 15 231 4884 1 IBM 31-1 224 2488 3 

IBM 16-1 1163 21750 1 IBM 31-2 224 2488 2 

IBM 16-2 1162 21674 6     

��������!��IBM Formal Verification Benchmark Circuits Details 

We present some sample results��achieved against this benchmark. To achieve these results, we 
used the Discovery engine, one of the RuleBase Classic [���] BDD engines. Each rule was run 
“from scratch” (i.e., without taking advantage of any pre-existing BDD orders). In real-life 
projects, the Discovery engine runs considerably faster when a good BDD order was found 
previously. This occurs because RuleBase can take advantage of rules previously run for this 
design, and get the best BDD order for a new rule. However, since the notion of “good order” is 
not very precise, and because an accurate description of such an order would comprise its entire 



PROSYD 27 D3.2/1 

listing, we only present results of runs without pre-existing orders. In fact, RuleBase includes a 
set of engines of significantly higher performance than those referenced here. 

We used an IBM Cascades PC with a Pentium III 700 MHz microprocessor running Red Hat 
Linux Advanced Server Release 2.1AS (Pensacola). The results are presented in Table 3.6 in an 
hh:mm:ss format. 

�

Name Discovery Name Discovery 

IBM 01 0:04:29 IBM 17-1 timeout 

IBM 02-1 0:02:04 IBM 17-2 timeout 

IBM 02-2 0:00:30 IBM 18 0:02:49 

IBM 02-3 0:01:23 IBM 19 0:05:46 

IBM 03 0:01:26 IBM 20 0:08:35 

IBM 04 0:05:25 IBM 21 0:04:14 

IBM 05 0:19:09 IBM 22 1:40:22 

IBM 06 0:07:31 IBM 23 0:09:32 

IBM 07 0:01:05 IBM 24-1 timeout 

IBM 08 0:23:38 IBM 24-2 timeout 

IBM 09 0:00:06 IBM 25 timeout 

IBM 10 2:48:16 IBM 26 timeout 

IBM 11 1:32:45 IBM 27 0:00:18 

IBM 12 timeout IBM 28 1:34:52 

IBM 13 0:03:44 IBM 29 0:15:18 

IBM 14 timeout IBM 30 timeout 

IBM 15 3:08:01 IBM 31-1 timeout 

IBM 16-1 timeout IBM 31-2 timeout 

IBM 16-2 0:08:15   

��������"��Experimental Results – time out: 3 hours 
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4 Future activity: Investigating Incrementality 
States of the FSM are given by the assignment of truth values to the state variables. The FSM 
has a non-empty set of initial states, and the reachable states are all those states which can be 
reached from one of these initial states. A safety property is specified as a propositional formula 
over the state variables. The aim is to prove that the safety property holds in every one of the 
reachable states.Transitions of the FSM are represented by a propositional formula T(s, s') and 
the set of initial states by a formula I(s). The safety property that is to be proved is denoted by 
P(s), and the value of the state variables at time n are denoted by sn. The shorthand notations In, 
Pn and Tn are used in place of I(sn), P(sn) and T(sn, sn+1) respectively. Furthermore, [�]p is used to 
denote a set of clauses defining �, such that p is the literal representing the truth-value of the 
whole formula. To this end, p is called the definition literal of �. The expression [�] is used as 
shorthand for [�]p �  {p}. 
 

4.1  Incremental SAT 

Standard DPLL solvers which use conflict analysis and clause reordering techniques traditionally 
take a complete propositional formula and state whether or not it is satisfiable. If there are a 
number of similar SAT instances to be solved, then the solver will potentially carry out a high 
number of the same inferences for each one. Incremental SAT addresses this issue by allowing 
new clauses to be added to the database and the solver run again, without starting the search 
process from the beginning. The motivation behind this functionality is that learned clauses may 
not only be useful in that particular problem, but in similar ones too. This extension is still quite 
restrictive as there is no provision for the removal of clauses from the database, a facility which 
greatly increases the range of problems that can be tackled. 
 
A method to remove, as well as add, clauses to a modern state-of-the-art DPLL based solver (one 
which uses conflict clauses for learning purposes) was suggested by [WKS01]. However, when 
clauses are to be removed, deciding which conflict clauses also have to be removed requires 
considerable analysis, and thus time. The reason being that the conflict clauses are dependent on 
other clauses in the database - removing one or more clauses may therefore invalidate some of 
the conflict clauses. 
 
To avoid this problem Eén and Sörensson [ES03a] proposed that clauses should only be able to 
be added but that when the solver is called it is passed a list of unit literals which are assumed to 
be true. These are then "forgotten" when the solver returns. The advantage of this method is that 
all the learned clauses can be kept in the database since conflict clauses are independent of the 
assumptions under which they are made. 
 
Note, also, that the removal of added clauses can be achieved in the following manner: 
 
  1. augment each clause to be added with a new variable. 
  2. call the solver with that variable set to false. 
  3. to delete the clauses, call the solver with the new variable set to true. 
 
Although this will introduce a significant number of new variables, they will all be passed as unit 
clauses to the solver, so will be removed by the simplification procedures before the search 
begins. 
 
 addClauses(Initial)  -- the initial clause set 
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 for i �  0..n do   -- for each problem instance 
  addClauses([Pn]pn) -- add clauses specific to the current problem 
  solve(LiteralList)  -- solve current problem (passing necessary  assumptions) 
 
Any clauses which may need to be removed at some stage should be augmented with a definition 
variable, as described above. The list of assumption literals passed to the solver are used to 
determine which clauses to keep and which to discard for that specific problem instance. 
 This interface has been implemented in the MINISAT [ES03b] boolean satisfiability solver, 
available from http://www.cs.chalmers.se/~een. 
 

4.2 BMC and Incremental BMC 
 

 
Bounded Model Checking (BMC) was introduced at the end of the last decade [BCCZ99] as an 
alternative to Binary Decision Diagrams (BDDs) for showing the presence of, or proving the 
absence of specific properties in a given system. For successively increasing problem bounds (n), 
a formula which encodes the statement "the property P holds for all paths of length n which 
begin in an initial state" is generated. This formula is then passed to a SAT solver which states 
whether it is satisfiable or not. The problem bound is increased until either a maximum value is 
reached, or the property is found to be false. Because of the nature of BMC, unless the upper 
bound on possible bug lengths is known, it is not possible to prove that a property holds for any 
value of n, just that it holds for all paths of length no greater than n. 
 
Typically, for a given value of n, the formula which is generated is similar to the one for n-1, 
which in turn is similar to the one for n-2, and so on. Each individual formula is treated as a 
completely new problem instance by the SAT solver, instead of it exploiting these similarities. 
Bounded Model Checking therefore has a great deal to gain from the incremental techniques 
described in the previous section. 
 
For increasing values of n (starting at 0), the following information needs to be represented by 
the formula which is to be solved: 
 

� the property to be checked should hold in all states reachable in n steps from an initial 
state. 

� each path must not contain any duplicated states (equivalent to forcing every state to be 
unique). 

 
Clauses which represent the fact that the property has to hold in all states reachable in n-1 steps 
can be removed, as they are no longer needed for the subsequent stages. The uniqueness 
requirement can be encoded by including extra clauses over and above those which state that 
paths of length n-1 must have no loops. This form of Incremental Bounded Model Checking is 
equivalent to just extending the base-case in Temporal Induction (see the next section). An upper 
bound on possible bug lengths can be found using Temporal Induction techniques too. This 
operates in a similar manner to what is described here except that it works backwards, finding 
the longest distinct state paths in which the property eventually does not hold. 
 
4.3.  Incremental Temporal Induction 
 
Temporal Induction was introduced in [SSS00] as a method for reasoning about safety properties 
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over the individual time steps of a FSM. A modification to this algorithm that operated 
incrementally was later presented in [ES03a]. As with a standard induction proof, a temporal 
induction proof consists of a base-case and an induction-step. For a given number of steps, the 
base-case proves that the property always holds, while the induction-step proves that no state 
where the property is false can be reached with one more transition. The base-case and 
induction-step are defined in terms of the following formula: 
 
  Basen := I0 �  ((P0 �  T0) �  ... �  (Pn-1 �  Tn-1)) �  ¬Pn 

  Stepn := ((P0 �  T0) �  ... �  (Pn �  Tn)) �  ¬Pn+1 
 
4.3.1. Basic Temporal Induction 
 
Base-Case 
 
The base-case is defined as all paths of length n starting from an initial state such that P, the 
property to be checked, holds in all of the states except the nth one. Therefore, if the base case is 
unsatisfied then the property holds for all paths of length n, starting from an initial state (when 
checking a base case, it is assumed that all shorter base cases have already been proven). In other 
words, assuming that the property holds for the first n-1 states, there is no path of length n to a 
state in which P does not hold. 
 
Induction-Step 
 
The induction step is defined as a path of length n+1 where P holds in all states except the last 
one. Once again, if it is unsatisfiable then, given that the property holds for a path of length n, 
there exists no next state where it does not hold. The states in the induction step must be unique 
to ensure that the method is complete. Without this restriction it may not be provable even 
though the property is true. The reason being that if a path contains a loop then it is infinite, thus 
the induction-step will hold for any length, even if the property is eventually false. 
 
Algorithm 
 
The following algorithm checks successively increasing lengths of base and step cases. 
 
 for n �  0..� do 
  if (satisfiable([Basen])) 
   return PROPERTY FAILS 
  if (¬satisfiable([Stepn] �  [Uniquen])) 
   return PROPERTY HOLDS 
 
where Uniquen is a set of constraints representing the fact that every state must be different. 
 
This algorithm can be modified in a number of ways, for example checking only the base-case 
gives a pure bug hunting algorithm which will find counter-examples more quickly (it cannot 
however prove that no bug exists). Also, executing body of the for ... do loop for every value of 
n may take too long, especially if the bug or proof is deep. Therefore, starting at a higher n and 
taking bigger steps can reduce the time taken to return a result. This may not return the shortest 
counter-example though, whereas the algorithm given above is guaranteed to do so. 
 
 
4.3.2. Exploiting Incremental Induction 
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The temporal induction algorithm presented in the previous section can be split in to two parts -- 
one to find increasing lengths of base-cases and the other to find increasing lengths of induction-
steps. The incremental algorithms for these two parts and an interleaving of them, all given in 
[ES03a], are shown and described below.  
  
Extending the Base-Case 
 
 addClauses([I0]) 
 for n �  0..� do 
  addClauses([Pn]pn) 
  solve({¬pn}) 
  if (SATISFIABLE) 
   return PROPERTY FAILS 
  addClause({pn}) 
  addClauses([Tn]) 
 
The first line adds the formula which represents the set of initial states. Line 3 adds the clauses 
representing the safety property for the states reachable in n steps (Pn) -- this is done because it 
generally makes the SAT problem easier. These clauses are augmented with an additional new 
variable that is assumed to be false when the solver is called. If the property holds then a unit 
clause containing only the negation of the new literal is added to the database, thus resulting in 
the removal of the previously added clauses. Finally, clauses representing the transition to the 
next state are added and the process (from line 2) is repeated. 
 
This algorithm terminates if the property is found not to hold, or once a desired value for n has 
been reached (by replacing � with the desired maximum value). 
 
Extending the Incremental-Step 
 
 addClauses([¬P0]) 
 for n �  -1..-� do 
  solve({}) 
  if (UNSATISFIABLE) 
   return INDUCTIVE STEP HOLDS 
  addClauses([Tn]) 
  addClauses([Pn]) 
 for i �  0..n+1 do 
  addClauses([si � sn]) 
 
This algorithm works backwards from the states in which the property does not hold. At any 
stage of the algorithm, if the clause set is satisfiable then there is a route consisting of n+1 steps 
that leads to a state where the property does not hold. In each of the initial n steps, the property is 
assumed to hold. When the formula is unsatisfiable, this means that there are no paths of length 
greater than n (where each state is unique) that lead to a state in which the property does not 
hold. Therefore, the longest possible counter-example will be of length n. At each stage, when 
the step is being extended, the clauses representing the transitions to the previous states are 
added, as well as those which say that the property should hold in every such state. The 
restriction to unique states ensures that the paths considered do not contain any loops and are 
therefore finite. 
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Combined Algorithm 
 
There exist many possible ways in which to combine algorithms 2 and 3. The following is an 
example of how they can be interleaved, thereby allowing the solver to share conflict clauses 
between the two processes. 
 
 addClauses([I0]z)     -- z is the definition literal for I0 
 for n �  0..� do 
  addClauses([Pn]pn)    -- pn is the definition literal for Pn 
  solve({¬pn})     -- induction-step: I0 not included 
  if (UNSATISFIABLE)    -- property guaranteed to hold 
   return PROPERTY HOLDS 
  solve({z, ¬pn})     -- base-case: include I0 
  if (SATISFIABLE)    -- counter-example found 
   return PROPERTY FAILS 
  addClause({pn})    -- assert Pn from now on 
  addClauses([Tn])    -- assert transition from sn to sn+1 
 for i �  0..n-1 do     -- add uniqueness constraints 
  addClauses([si � sn]) 
 
The definition literals are used to control how their clauses are used by the solver. Not asserting 
the definition literal at all is equivalent to not including those clauses in the overall formulae, 
since they are tautological. Note that such clauses are satisfied when either the original variables 
satisfy them and the definition literal is true, or the original variables do not satisfy them and the 
definition literal is false. In both cases the definition literal will take on the required truth 
assignment. Asserting it to be true forces them to be satisfied by the original variables only and 
asserting it to be false forces them to be unsatisfied by the original variables. 
 
If the induction-step is unsatisfiable then the property is guaranteed to hold because a base-case 
of length n has already been proven, therefore any counter-examples are of greater length. 
However, recall that if the induction-step is unsatisfiable, then this means that the longest 
possible counter-example is of length n therefore the property holds as there are no possible 
counter-examples. 
 
 
4.3.3. A graphical Notation 
 
It is possible to have a pictorial representation of thr algorithms described in previous section. In 
the following, the term bad state is used to mean any state in which the safety property does not 
hold. Counter-examples are symmetric with respect to the initial states and the bad states, that is 
they begin in an initial state, have a number of intermediate states and end in a bad state. As 
such, if the transition relation was inverted and the initial and bad states swapped then everything 
described so far could have been carried out in reverse. 
 
The induction-step is therefore a method for finding an upper bound for the counter-example, 
and the base-case as a way to produce the counter-example. Graphically, shortest counter-
examples will look like the following (where B' and I' are used to mean ¬B and ¬I respectively): 
 
   length 0:                    IB 

   length 1:            IB' �T� I'B 
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   length 2:   IB' �T� I'B' �T� I'B 
   length 3:  IB' �T� I'B' �T� I'B' �T� I'B 
                        ... 
   length n:   IB' �T� I'B' �T� ... �T� I'B' �T� I'B 
 
As can be seen from the diagram, there is a significant amount of sharing between the counter-
examples of different lengths. More specifically, if the initial I or the final B is removed from the 
nth counter-example: 
 
    (1)    B' �T� I'B' �T� ... �T� I'B' �T� I'B 
   or (2)   IB' �T� I'B' �T� ... �T� I'B' �T� I' 
 
then any counter-example of length n or longer will include both these sections. This means that 
if the clauses representing (1) and (2) are unsatisfiable then all shortest counter-examples of 
longer lengths will also be unsatisfiable. Therefore this gives an upper bound on the length of the 
shortest counter example. 
 
Since it is a shortest counter-example that is being considered, it can also be concluded that: 
 

    1. Between no two states is there a shorter path 
 or weaker  2. Between no two non-neighbours is there a transition (and 
                                  the last state is unique) 
 or weaker  3. No two states are the same 
 
The weaker versions are easier to implement, and using only the third condition is enough to 
make the algorithm complete. 
 
4.4. Future Steps 

 

The algorithms described in this section are going to be integrated within the NuSMV 
[CCGPR02] model checker. Then, we will experiment with the above algorithms on the IBM 
benchmarks that have been used and described in previous sections (The EDL version of the 
benchmarks can be retrieved at  

http://www.haifa.il.ibm.com/projects/verification/RB_Homepage/fvbenchmarks.html).  

 

So far we achieved the following results: 
� we translated the EDL version of the IBM benchmarks to the SMV language needed to be 

given in input to the NuSMV model checker.  
� We started the integration of the algorithms described in this document within the NuSMV 

model checker. 

 

We will provide at month +10 from the beginning of the PROSYD project an revised version of 
this deliverable, extended with the results of the experimental analysis.   
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