
Improving SAT-based Bounded Model Checking by Means

of BDD-based Approximate Traversals

Gianpiero Cabodi
(Politecnico di Torino, Dip. di Automatica e Informatica, Turin, Italy

gianpiero.cabodi@polito.it)

Sergio Nocco
(Politecnico di Torino, Dip. di Automatica e Informatica, Turin, Italy

sergio.nocco@polito.it)

Stefano Quer
(Politecnico di Torino, Dip. di Automatica e Informatica, Turin, Italy

stefano.quer@polito.it)

Abstract: Binary Decision Diagrams (BDDs) have been widely used in synthesis and
verification. Boolean Satisfiability (SAT) Solvers, on the other hand, have been gaining
ground only recently, with the introduction of efficient implementation procedures.
Specifically, while BDDs have been mainly adopted to formally verify the correctness
of hardware devices, SAT-based Bounded Model Checking (BMC) has been widely
used for debugging.

In this paper, we combine BDD and SAT-based methods to increase the efficiency of
BMC. We first exploit affordable BDD-based symbolic approximate reachability anal-
ysis to gather information on the state space. Then, we use the collected overestimated
reachable state sets to restrict the search space of a SAT-based BMC. This is possible
by feeding the SAT solver with a description that is the combination of the original
BMC problem with the extra information coming from BDD-based symbolic analy-
sis. We develop specific strategies to appropriately mix BDD and SAT efforts, and
to efficiently convert BDD-based symbolic state set representations into SAT-oriented
ones.

Experimental results prove the validity of our strategy to reduce the amount of vari-
able assignments and variable conflicts generated by SAT solvers, with a subsequent
significant performance gain. We gather results with four among the most used SAT
solvers, namely Chaff, Limmat, BerkMin, and Siege. We could reduce the number of
conflicts up to more than 100×, and the verification time up to 30×.

Key Words: binary decision diagrams (BDDs), satisfiability (SAT), bounded model
checking (BMC), reachability analysis

Category: I.6.4, J.6

1 Introduction

Given a propositional formula, the Boolean Satisfiability Problem (commonly
abbreviated as SAT) consists of determining a variable assignment such that
the formula evaluates to true, or establishing that no such assignment exists.

Journal of Universal Computer Science, vol. 10, no. 12 (2004), 1693-1730
submitted: 15/10/03, accepted: 14/8/04, appeared: 28/12/04 © J.UCS

Although SAT is an NP-complete problem, or at least no polynomial algorithm
to solve it is known, large practical instances have been worked out thanks to
efficient implementation procedures [Moskewicz et al. 2001, Limmat, Goldberg
and Novikov 2002,Siege].

In the verification domain, SAT techniques are mainly used for Bounded
Model Checking [Biere et al. 1999] (BMC) and inductive verification [Sheeran
et al. 2000]. BMC formulates reachability checks as a series of satisfiability prob-
lems for paths of increasing (bounded) length. In practice, to see if a path of
length n connecting initial and failure states exists, the transition relation of the
system is unrolled n times, and the SAT solver is run on the generated problem.

Binary Decision Diagrams [Bryant 1986] (BDDs) are commonly used to im-
plicitly represent large solution spaces in combinational and sequential problems
that arise in synthesis and verification. BDDs may achieve an exponential com-
pression rate, as the number of vertices and edges (graph size) is often expo-
nentially lower than the number of paths from root to leaves. Nonetheless, even
after almost two decades of intensive research in the area, BDDs have never been
able to deal with real-world models and problem instances.

In the past few years, SAT and BDDs have been often presented as comple-
mentary techniques. In general, a BDD approach is more suitable for capturing
all solutions of the problem simultaneously, whereas SAT decision trees, with no
variable ordering restrictions, can potentially manage larger problems. Follow-
ing this consideration, we propose a new way to trade of memory usage and run
time by combining BDDs and SAT tools. Our target is to accelerate SAT-based
BMC with the help of BDD-based reachability analysis. Symbolic BDD-based
reachability analysis computes the set of states reachable from an initial set of
states. This computation is applicable only to medium–small circuits because it
may incur in an exponential blow-up. However, instead of computing an exact
result we can adopt approximate techniques. Approximate reachability analy-
sis estimates (in an under or overapproximated way) the reachable state set. It
may also deal with larger circuits, as approximation techniques can be easily
trade-off memory and time for the accuracy of the result. Unfortunately, the
limit of approximate techniques, in verification, is that they are not complete.
For example, with an overapproximate reachable state set it is possible to prove
correctness1, but it is not possible to disprove it2. As a consequence we need to
appropriately adopt the SAT tool to complete the work started with the BDD
in the symbolic domain. Our driving idea is to complement the initial overap-
proximate BDD-based state space visit, with a final SAT solver search. In our
1 This happens any time there is no intersection between the estimate and the bad set

of states.
2 Whenever there is an intersection between the estimate and the bad set of states, it

is not possible to establish whether the intersection lies in the exact reachable state
set or only within the states added by overapproximating it.

1694 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

method, the role of the overapproximation obtained with BDDs is essentially to
prune and focus the SAT search. We proceed as follows.

In a first phase, we compute an overapproximate estimate of the traces con-
necting the initial state set to the set of bad states. We can compute this estimate
starting from the initial set of states and proceeding in the forward direction,
or starting from the bad set of states and proceeding backward. Then, the esti-
mate is combined, as an additional constraint, with the original Bounded Model
Checking problem. Notice that this estimate is redundant information already
contained in the original problem formulation: The estimate is essentially an
explicit time frame by time frame representation, i.e., a set of overapproximated
state sets, of the behavior of the design in each time frame. This information
can be seen as an explicit constraint for the SAT solver, which, in turn, does not
have to imply it from the initial state set.

The effect we achieve somehow mimics the contribution of conflict clauses,
generated by means of conflict analysis, in state-of-the-art SAT tools, where each
new conflict clause individually represents a sub-set of the state space in which
no solution exists. The information gathered in a conflict clause is redundant, as
it was already contained in a set of clauses of the original problem.

Our estimate of the reachable state space is another formulation of the in-
formation already contained in the BMC problem. The advantage of using state
sets is their ability to prune the SAT solver search space. We generate this ex-
tra information with an initial pre-processing and learning phase. Although we
might lose some optimizations achievable through a tighter and more dynamic
inter-leaving with the SAT solver, our methodology is compatible with any SAT
solver, as, theoretically, we do not require any interaction with inner steps of
SAT algorithms. Practically, we may need some interaction to avoid a perfor-
mance degradation of the SAT tool due to a bad use of our additive state space
information.

Our procedure mixes BDD-based and SAT-based algorithms, trading-off mem-
ory and time. As far as we know, this is the first time symbolic BDD-based over-
approximate reachability analysis is used to prune a SAT solver search space.

A further contribution of our work is to introduce a set of strategies to convert
BDDs (in a monolithic or conjoined form) to CNF formulas. The strategies
we propose are compared in terms of their ability to generate a compact CNF
problem (number of variables, literals and clauses), and benefit for the SAT
engine (pruning efficiency).

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some preliminary concepts on notation, SAT techniques for verification, and
reachability analysis. Section 3 summarizes the related work. Section 4 outlines
our approach. Section 5 presents our top-level algorithm. Section 6 introduces
our approximate reachability analysis routines, and Section 7 describes how to

1695Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

feed the symbolic BDD-based information to the SAT solver. Section 8 describes
our technique to store BDDs as CNF problems. Section 9 presents our experi-
mental results. Finally, Section 10 concludes the paper.

2 Background

2.1 Model, Notation, and Property Definition

The sequential systems we address are usually modeled as Finite State Machines
(FSMs). Each FSM is described by a Transition Relation TR(s, y), which indi-
cates its present–next state behavior, and an initial state set S. We will also use
the C symbol to indicate the gate-level netlist of the system.

In our notation, B indicates the Boolean space. Symbols ∧, ∨, ¬, and ≡
are used for Boolean conjunction (AND), disjunction (OR), negation (NOT),
and exclusive-nor (XNOR) respectively. The ↓ symbol denotes the generalized
cofactor [Coudert et al. 1989] function, i.e., in f ↓ g, g can be viewed as care
set for f , which, as a consequence, can be arbitrarily simplified in the domain
subspace where g is false. Set operations are indicated with ∪ and ∩. We make
no distinction between the BDD representing a set of states, the characteristic
function [Cerny et al. 1986] of that set, and the set itself. We thus use Boolean
operators for set operations, implemented by Boolean operators on BDDs.

We use the notation lfp v.f(v) to indicate a least fixed-point of f , where f

is a formula and v is a propositional variable. The least fix-point of the formula
f(v) is any parameter b such that b = f(b), and, if c = f(c) for some c, then
b ⊆ c (see [McMillan 1994] for other details on this topic).

An invariant property3 P is checked by attempting to prove (or disprove) the
reachability of its complement T (T = ¬P) from S. We will use T to indicate the
target, or the failure, or the bad set of states.

2.2 SAT-Based Model Checking

For an overview on SAT solvers and a list of references the reader is referred to
the tutorials [Zhang and Malik 2002,Biere and Kunz 2002,Kautz and Selman
2003,Berre and Simon 2003].

SAT-based BMC considers only paths of bounded length n and builds a
propositional formula f that is satisfiable iff there is a counter-example (a path
from S to T) of the same length. For the above reason the technique works well
in falsification and partial verification. Full verification is usually achieved by
inductive proofs.
3 Or AG CTL property.

1696 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

SAT solvers generally operate on propositional formulas f specified in Con-
junctive Normal Form (CNF). This form is a two-level decomposition: The log-
ical AND of one or more clauses, each of which consists of the logical OR of one
or more literals. A literal is merely an instance of a variable or its complement.

In order to decide if f is satisfied, most solvers adopt variants of the basic
Davis-Putnam [Davis and Putnam 1960] recursive algorithm. At each recursive
call, the algorithm proceeds through the following three steps:

– Variable Decision: Assign a value to an unassigned variable, so that the
search space is recursively restricted.

– Boolean Constraint Propagation: Carry out all possible direct implications
due to the previous assignment.

– Conflict Analysis : Check for conflicting clauses, i.e., clauses whose literals
are all assigned the zero constant. In this phase, conflict clauses are added to
the clause database for future early detection (and pruning) of bad decisions
(variable assignments); backtrack is performed to properly re-start the search
with a new variable decision.

2.3 BDD-Based Model Checking

A standard BDD-based forward reachability analysis procedure is a breadth-first
visit of the state space that starts from FR = S and proceeds through a least
fix-point (lfp) iteration:

FR = lfp FR.(S ∨ (Img(TR, FR))

We indicate with FRi the set of states reached as far as the i-th iteration, and
with FR the array of sets until the fix-point, i.e., {FR0, FR1, . . . , FRn}, where
n is the sequential depth of the system. The method is based on the iterated
application of the image function Img; Img(TR, FR) computes the set of states
reachable from FR, by the model TR, in one single clock cycle.

As the target state set T may be reached before the fix-point, it is possible
to avoid a full computation of FR with on-the-fly tests for intersection with T.
Whenever an intersection with T is found, the FR array can be used to extract
a (single) counter-example trace.

CTL model checking procedures are often implemented as backward traver-
sals, which have a dual formulation, and compute the BR array in the backward
direction. More in detail, a backward traversal is easily expressed by swapping
the S and T sets, and changing the Img function with the PreImg one. The
PreImg(TR, BR) procedure computes the set of states from which BR is reached,
by the model TR, in one single clock cycle.

1697Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Approximate Traversals [Cho et al. 1996,Govindaraju and Dill 1998b] are a
popular way to extend the applicability of reachability analysis to larger circuits.
The approach is based on the approximate image (Img

+) operator, returning
overestimations of exact images:

Img+(TR, FRi) ⊇ Img(TR, FRi)

Notice that, although FR+ includes more states than FR, its BDD representa-
tion is usually much smaller, and many mutual interactions and dependences
among state variables disappear because of the approximation. Albeit approxi-
mate techniques are computationally cheaper and more scalable, they can pro-
vide sufficient but not necessary check, i.e., they can prove correctness but they
cannot disprove it:

– Whenever FR+ does not intersect the bad set of states, the property passes
because the system is “safe” even within more states than the ones actually
reached.

– Whenever there is an intersection between FR+ and the bad set of states it
is not possible to understand whether the intersection is due to the overap-
proximation or not.

3 Related Work

With the advent of SAT-based BMC tools a lot of researchers compared SAT-
based methods with more traditional BDD-based ones [Bjesse et al. 2001,McMil-
lan 2002]. As different researchers agree that the two approaches are essentially
complementary, a lot of recent work concentrates on dovetailing the two ap-
proaches in a loose or strict fashion. In this section, we summarize previous
research that is related to our approach.

3.1 Performing Satisfiability on BDDs

A few recent works performs satisfiability on BDDs or on mixed CNF/BDD rep-
resentations, rather than on pure CNF. The rationale for that choice is simple:
BDDs can be more compact, and they are more expressive, than an equiva-
lent set of clauses. As a consequence there is room for trading-off memory and
expressiveness.

In Franco et al. [Franco et al. 2003] BDDs, after a light pre-processing phase,
are transformed into SMURFs, i.e., State Machine Used to Represent Functions.
These SMURFs are essentially automata representing complete future informa-
tion about the variable selection process necessary to satisfy the BDD. The
search consists of extending partial assignments until either all SMURFs reach

1698 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

their end state, or until some contradiction arises among the partial assignments.
In the former case, a solution is found. In the latter case, a backtrack occurs.

In Damiano et al. [Damiano and Kukula 2003], the authors build BDDs of
moderate size starting from the original clauses. After that, they focus on BDD
reasoning to obtain a smarter implication/learning process than the one per-
formed by the SAT solver.

In Somenzi et al. [Jin and Somenzi 2004] the authors propose a SAT solver
accepting as inputs a combination of CNF clauses, BDDs, and And-Inverter-
Graphs [Kuehlmann et al. 2001]. Rather than converting all forms into one, the
tools works on all representations, transforming, when appropriate, parts of the
input from one of them to another.

3.2 Combining SAT and BDDs

Gupta et al. [Gupta et al. 2000,Gupta et al. 2001] perform BDD-based reacha-
bility analysis by using a SAT procedure within symbolic image computation.
They call their approach BDDs at SAT Leaves. More specifically, they use BDDs
to represent state sets and a CNF formula to represent the transition relation.
Symbolic images of a state set are computed by exhaustive SAT search of all
solutions within the space of primary inputs, present and next state variables.
However, rather than using SAT to enumerate each solution all the way down to
a leaf, the process switches to BDD-based computations at certain intermediate
points within the SAT decision tree. The switch is done as a trade-off between
space complexity of BDDs, and time complexity of full SAT enumeration. In a
sense, the approach can be regarded as SAT providing a disjunctive decompo-
sition for image computation into many sub-problems, each of which is handled
symbolically using BDDs.

In Gopalakrishnan et al. [Gopalakrishnan et al. 2003], the previously de-
scribed method is further developed with the aim of finding just one solution,
instead of all solutions. The authors propose a new heuristic for variable decision,
and an efficient implementation of the BDD section of the algorithm.

3.3 Learning from BDDs

Gupta et al. [Gupta et al. 2003a] propose an approach sharing similar goals with
the one we present here. In that work, the authors start from the CNF repre-
sentation of the problem. In order to improve the learning ability of the solver,
they build BDDs of limited logic around selected structural points, thus learning
useful information beyond the one usually gathered by conflict analysis. BDDs
are then transformed back to CNF clauses and fed to the solver with a strategy
similar to the one presented in Section 8.

1699Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Another work by Gupta et al. [Gupta et al. 2003b] may be considered as an
extension of the present work, specifically oriented to induction verification. On
one side, Gupta et al. use, as we do, overapproximate reachability analysis to
constrain the BMC search. On the other, they use overapproximate informa-
tion as an additional (non redundant) constraint for induction based unbounded
verification [Sheeran et al. 2000].

3.4 Computing Overapproximations with BDDs

A lot of researchers have exploited approximate BDD-based reachability [Cabodi
et al. 1994,Cho et al. 1996,Govindaraju and Dill 1998b] within techniques based
on approximate, exact, forward, and backward traversals [Govindaraju and Dill
1998a,Moon et al. 1998].

Govindaraju et al. [Govindaraju and Dill 1998a] check the mutual reachabil-
ity between initial and failure states, by iteratively combining overapproximate
forward and backward traversals. Each new traversal increases the accuracy of
the approximation. Whenever a forward or backward traversal reaches a fix-
point outside its target, initial and failure states are proved to be not mutually
reachable, and this in turn proves the property.

Moon et al. [Moon et al. 1998] concentrate on the idea of using an overapprox-
imation of the reachable state set to simplify exact verification while performing
Model Checking.

3.5 Comparison with the Related Work

Our work shares several ideas with previous work.
We use both BDD and SAT-tools to cope with their contrasting limits, but

we avoid a tight integration between them, thus enabling rapid prototyping and
experimentation.

We make an effort to trade-off memory for expressiveness using BDDs to
prune the search space. Our learning comes from an overapproximate symbolic
reachability analysis, while other methods used a static netlist BDD reasoning.

We guide the final SAT solver search with constraints derived in previous
cheaper and approximate searches performed with BDDs. Our method is exact,
also if it partially relies on an approximated strategy, and it ends with a SAT
solver call, rather than with a last BDD-based exact symbolic search.

As a final remark, notice that the work presented here is an extended and
completely revised version of [Cabodi et al. 2003]. The top-level algorithm has
been adapted to obtain a better tuning and trade-off between memory and time.
Low-level algorithms have also been improved. Experimental results have been
completely recollected, to add more detailed evidence on performance and com-
parison with various SAT solvers on a broader set of circuits.

1700 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

4 Our Methodology to Combine BDDs and SAT

In this section we briefly overview our methodology. An in-depth detailed anal-
ysis is presented in the following sections.

The approach we propose can be viewed:

– As a way to partition a verification task between a BDD and a SAT engine
(we perform a preliminary effort with BDDs, we conclude the task through
a SAT solver).

– As an optimization of a SAT-based BMC, by means of redundant information
learned by BDD pre-processing.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

(a)
S

(b)
S

(c)
S

+BR
+BR
1

T

TR
1

TR
2

... TR

T

...
FR+

2 FR
+1FR+

...
T

n

n

n

+BR
n−1

Figure 1: (a) Standard combinational unrolling for SAT-based BMC; (b) Ap-
proximate forward traversal from S to T; (c) Approximate backward traversal
from T to S. S indicates the initial state set, T the target state set, TR the
transition relation, FR+

i and BR+
i the overapproximate forward and backward

reachable state sets, respectively.

Fig. 1 shows the main flow of our methodology. Fig. 1 (a) shows a graphical
representation of standard SAT-based BMC. As introduced in Section 2, the goal
is to find a path of length n between the start state S and target state T on the
CNF representation of the problem. To produce this problem, a combinational
unrolling (of length n) of the transition relation TR is first generated. During
this phase we have to keep into account:

1701Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

– A proper variable relabeling for the TR variables, i.e., each time frame has
to be defined using different present and next state variables.

– A COI (Cone of Influence) reduction due to the property, i.e., only the logic
strictly necessary to define the property under check has to be considered.

After that, the expressions for S and T are added to the previous formulation
as CNF formula. Finally, the SAT-engine is run on the out-coming problem to
solve it.

Our basic idea is to help the SAT solver with information coming from a
BDD-based reachability analysis tool. The simplest approach performs an ap-
proximate forward breadth-first traversal, as the one represented in Fig. 1(b),
or a backward breadth-first traversal, as the one sketched in Fig. 1(c). A tighter
overapproximation is obtained with a forward-backward strategy, where forward
estimates of the reachable state set constrain backward traversals and vice-versa.
The result of this preliminary phase is an overestimate of the paths leading from
S to T, such that all possible real paths are included in the overapproximation.
Notice that, at this stage, we work with a BDD tool, and so each set of states is
represented by means of BDDs4.

Those BDDs contain redundant information representing constraints on the
input space of each time frame in the combinational unrolling. More specifically,
a constraint for the i-th time frame is already (and implicitly) present in the
original formulation of the BMC problem, but it is represented in terms of all
variables in all time frames of the combinational unrolling. Due to BDD pre-
processing (and variable quantifications in image/pre-image operations) a state
set provides constraints as a function of local state variables of time frame i.
The effect is an enhanced ability to early detect invalid variable assignments at
a given time frame, in order to better guide the search for a satisfying solution.

Fig. 2 depicts a state space interpretation of our pruning methodology. The
square box represents the overall state space of the model where the SAT solver
performs its search. Notice that the target of the SAT solver is to find one single
path from S to T within the set of all existing paths P, shown in gray.

In our approach, before running the SAT tool, we perform our symbolic
overestimated reachability analysis. We compute the overapproximate forward
FR+

n or backward BR+
n reachable state set or both of them (actually, as previously

stated, each estimate can be used to restrict the other estimate). These sets
overestimate P and are indicated in the figure by two dotted shapes. Their
intersection gives a tighter overestimation of P. The tighter the overestimation,
the greater the pruning effect of the space search we may theoretically have by
feeding it to the SAT solver.
4 Depending on the kind of BDD representation/decomposition used, which we do not

talk about, the state sets may be represented by monolithic, disjunctive or conjunc-
tive forms.

1702 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

+
n

BR

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

S
T

P

FRn
+

B
n

Figure 2: State Space Pruning Interpretation. Bn indicates the overall Boolean
state space for the model, S represents the initial state set, T the target state
set, P the set of paths from S to T, FR+

n and BR+
n the overapproximate forward

and backward reachable state sets, respectively.

To give a rough idea let us take the ISCAS’89 circuit s15850.1. It has 534
memory elements and, as a consequence, it has a total number of states equal
to 2534 = 5.62 · 10160. Cho et al. [Cho et al. 1996] report an estimated reachable
state set equal to 1.51·1078 for this circuit5. As a consequence, we can potentially
reduce the SAT solver’s search space from about 10160 to about 1078: For each
time frame we impose a state space restriction which otherwise the SAT solver
should imply from the initial state space S.

A minor contribution of applying approximate reachability analysis before
satisfiability analysis is to identify early terminations of the BMC procedure
saving computation time. In fact, whenever the overestimation of the reachable
state set does not intersect the target set of states T (or the initial one S, in the
backward direction) the property will pass. Those are the cases on which ap-
proximation works at its best and the hardest to be proved by the SAT engine
(as, at least theoretically, he state space has to be completely explored). Reach-
ability would then consist of a preliminary check within the overall verification
procedure. Moreover, the approximate search may also be useful to identify a
lower limit for the value of the bound n. To this respect, the paths found by the
overapproximation are always shorter or equal to the exact ones. This can avoid
useless searches with invalid values of n. As a consequence, the overapproxima-
tion reveals to be particularly useful for bugs with very long counter-examples
or holding properties [McMillan 2004].

5 This value was computed using an algorithm called TMBM. This algorithm mixes
the two algorithms, i.e., MBM and FBF, described in Section 6.

1703Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

5 Top-Level Algorithm

Fig. 3 describes our high-level algorithm, Bdd&SatVerification. The proce-
dure iterates through a cycle. Each iteration is characterized by an increment of
the BMC bound, and a growth of the effort to solve the problem. During each
iteration BDD and SAT operations are interleaved.

Bdd&SatVerification (C, S, T, timeth, memth)
TR← GenerateTR (C)
bound ← 0
while (LimitCheck (timeth, memth) = True)

R ← OverApproxFwdRA (TR, S, T, bound, timeth, memth)
if (R = ∅) then

return (Pass)
else

bound ← SetSize (R)
R ← OverApproxBwdRA (TR, S, T, R, bound, timeth, memth)
if (R �= ∅) then

Ω ← BmcClauses (C, S, T, bound)
̂Ω ← Bdd2Cnf (R, bound)

res ← SatCheck (Ω ∪ ̂Ω, timeth)
if (res = Fail) then

return (res)
bound ← bound + ∆bound

timeth ← timeth + ∆time

memth ← memth + ∆mem

return (Unknown)

Figure 3: Our BMC algorithm combining a SAT solver with BDDs information
for state traversal.

Function OverApproxFwdRA, introduced in Section 6.1, performs an over-
estimated forward reachability analysis. It looks for a set of paths, of the shortest
possible length, but not shorter than bound, connecting S to T. When this set
does not exist, the verification process ends up with a Pass result, without re-
sorting to the SAT solver engine. In the opposite case, the process moves forward
to the overestimated backward traversal phase, OverApproxBwdRA.

Function OverApproxBwdRA, introduced in Section 6.2, proceeds in the
backward direction to refine the previous set of paths R, i.e., the array of forward
reachable state sets FRi. If its search ends up with a valid array of state sets,
i.e., R is a proper cone connecting S to T (coming from refining the former R

array, FR, with the BR array) we proceed with the SAT solver search. In this
case we proceed through three steps.

In the first step, function BmcClauses, starting from the bound bound and

1704 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

the circuit C, generates the CNF problem Ω. It essentially duplicates the circuit
C a number of times equal to the bound. Different tools can be used for this
step, as we will outline in the experimental result section.

Then, in the second step, function Bdd2Cnf, setting out from the array
R, generates the CNF constrain ̂Ω, as will be described is Section 8. Here, the
starting point is to use all sets Ri to increment the original SAT problem on each
time frame. Nevertheless, we proceed heuristically (see Section 7) to reduce the
overhead in terms of added clauses and variables.

Finally, in the third step, SatCheck runs the SAT solver on the original CNF
problem Ω augmented with the learned clauses ̂Ω. Whenever the SAT solver
discovers that the property fails, the procedure terminates reporting this failure.
Otherwise, the algorithm proceeds to the next iteration, after the minimum
number of steps bound, the time threshold timeth, and the memory threshold
memoryth have been incremented.

Notice that the value of the bound is mainly driven by the forward reacha-
bility analysis phase to avoid useless and repeated experiments with increasing
value of the bound. The value ∆bound may be equal to 1 or larger in case the
user is not interested in finding the shortest possible counter-example. Moreover,
time and memory limits are checked within OverApproxFwdRA, OverAp-

proxBwdRA, SatCheck, and the main verification loop. When a limit is ex-
ceeded within OverApproxFwdRA or OverApproxBwdRA the reachable
state set collected up to that point is returned and used to constrain only the
“corresponding” part of the combinational unrolling. When a limit is encoun-
tered within the SatCheck function we simply try to increase the accuracy of
the reachable state phase. When a limit is encountered in the main cycle the
process is stopped returning “unknown” as a result.

As a final remark, it is possible to observe that for any iteration of the
main loop, except for the first one, the OverApproxFwdRA routine does not
necessarily have to perform full reachability from S to T. Usually, it is sufficient
to proceed toward T from the last set Rl (i.e., FRl) of the array R, where Rl

was found in the previous iteration. Full reachability may still be performed to
increase or to decrease the accuracy of previously performed visits.

6 Approximate Reachability Analysis

The approximate reachability analysis phase is very important as far as the SAT
search space simplification is concerned.

When the approximate traversal is more accurate and the sets of states
reached are closer to the exact ones, the SAT solver search space is potentially
reduced more drastically. This is motivated by the consideration that our es-
timates are directly added to each time frame and do not have to be directly

1705Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

derived from the initial state set by the SAT solver. Nevertheless, better ap-
proximate traversal accuracy implies larger BDDs representing the reached sets,
and the translation process of these BDDs into CNF formulas (see Section 8) is
more likely to introduce a larger amount of temporary variables and clauses. As
a consequence, there is a trade-off between the accuracy and the effectiveness
of the reachable state sets. Moreover, these factors are balanced by the cost of
computing the overestimations themselves.

From a general point of view, standard approximate reachability routines [Cho
et al. 1996] proceed in two main steps:

1. They perform a State Space Decomposition, i.e., they evaluate a partition of
the state variables of the model. Each partition corresponds to a Boolean
subspace, and to a sub-FSM of the original FSM.

2. Given the above partition, they calculate a super-set of the reachable state
of the model by performing separate traversal of the previously created sub-
FSMs.

Different strategies can be used to perform the separate traversals and to model
the interaction among them.

The Machine-by-Machine (MBM) approach processes each sub-FSM serially
and iteratively, i.e., sub-FSMs are treated one at a time during one entire least
fix-point computation. The order in which sub-FSMs are traversed is important
to obtain good performance: They are often treated in an event-driven fashion,
i.e., a sub-FSM is traversed again only when the reached set of one of its fanin
FSM’s has changed.

The Frame-by-Frame (FBF) approach handles all sub-FSMs in parallel, i.e.,
it performs a traversal step on each sub-machine. In the FBF algorithm, inter-
action between the sub-FSMs is more fine-grained, since the base time unit of
interaction is a time frame rather than an entire least fixed-point calculation of
a sub-FSM. As a consequence, FBF is usually more expensive but it results in
tighter estimate of the reachable state set.

In our framework we need the overapproximation of the reachable state set
at the same traversal level for all sub-machines. As a consequence we need a
variant of the original FBF algorithm.

Moreover, as we have an initial and a target sets of states, we may proceed
both in the forward and in the backward direction. As introduced in Section 5
we generalize this idea, see also [Govindaraju and Dill 1998a,Cabodi et al. 2002],
by adopting an iterative refinement process based on a sequence of alternate for-
ward and backward phases. This method can produce more accurate estimates,
and, in our framework, it can be accomplished with the appropriate (desired)
computational effort.

1706 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

In the sequel, we describe our approximate forward and backward reachability
analysis routines.

6.1 Algorithm for Forward Approximate Reachability

Fig. 4 shows our forward routine. More specifically, it is an overapproximate
visit (notice the use of the Img

+ function) proceeding in a breadth-first way.
The function may end because:

– The least fix-point is reached without intersection with the T set of states,
i.e., (New 	= ∅) is false. This means that there are no paths from S to T

within the overestimated set of reachable states, and, as a consequence, the
property will hold and Pass.

– There is an on-the-fly intersection between the explored state space and T,
i.e., ((FR+

l ∧ T) 	= ∅). In this case, the property is violated before the fix-
point and we can avoid the need to fully compute the overestimation of the
state space.

– The bound on the iteration count has been reached, i.e., l ≥ bound. This
condition identifies the lower admissible value for the SAT solver’s bound.

The set FR+ is returned by the procedure.

OverApproxFwdRA (TR, S, T, bound, timeth, memth)
l ← 0
FR+

l ← S
New ← S
while (New �= ∅)

if ((FR+
l ∧ T) �= ∅ AND l ≥ bound) then

return (FR+)
Next ← Img

+ (TR, FR+
l)

New ← Next ∧ ¬ FR+
l

l ← l + 1
FR+

l ← Next
return (∅)

Figure 4: Forward Approximate Reachability Analysis within BMC.

As already described in Section 5, OverApproxFwdRA does not always
have to perform full reachability from S to T. Anyhow, this possibility is not
indicated by the pseudocode for sake of simplicity.

As a final remark, notice that all BDD operations are scheduled with run-
time checks on memory and time limits (see also Section 5) even if this is not

1707Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

explicitly described by the pseudocode. The parameters timeth and memth are
implicitly used by all the BDD-based procedures. The run is stopped when limits
are exceeded. In this case the reachable state set collected up to that point is re-
turned and used to constrain only the “corresponding” part of the combinational
unrolling.

6.2 Algorithm for Backward Approximate Reachability

Fig. 5 shows the pseudocode of the backward procedure. It proceeds computing
reachable state sets BR+

i in the backward direction using function PreImg
+.

During the computation, we simplify the sets BR+
i by restricting the search with

the forward FR state sets. This operation is performed using cofactor based sim-
plification: The backward estimates have to be included in the forward estimates
and must have the most possible compact BDD representation. We also try to
force the procedure to perform a number of backward steps equal to the number
of steps performed in the forward direction. Whenever the set BR+

i becomes the
empty set the procedure terminates returning an empty set of states. Similarly
to function OverApproxFwdRA, the set BR+ is returned by the procedure,
and on-the-fly checks on memory and time are performed by all BDD-based
procedures.

OverApproxBwdRA (TR, S, T, FR+, l, timeth, memth)
BR+

l ← T ↓ FR+

i ← l
while (i > 0)

if (BR+
i = ∅) then

return (∅)
BR+

i−1 ← PreImg
+ (TR, BR+

i) ↓ FR+

i ← i − 1
return (BR+)

Figure 5: Backward Approximate Reachability Analysis within BMC.

Run-time checks on memory and time limits are performed and dealt with
as described in Section 6.1.

6.3 Approximate Image Computation

As indicated in Sections 6.1 and 6.2, our approximate traversal procedures rely
on an approximate image (Img

+) or pre-image (PreImg
+) computation. These

routines are characterized as follows.

1708 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

We perform an initial state space decomposition (see beginning of Section 6).
In this phase, we decide how to decompose the FSM into sub-FSMs, and in which
order to deal with them. Within each sub-FSM, we adopt a standard threshold-
based clustering and reordering technique [Ranjan et al. 1995], i.e., we start from
the next state functions of the sub-FSM, we build BDD clusters up to a certain
BDD size threshold, and we order the clusters using an heuristic based on the
support and the size of the BDD representing the clusters.

The initial state space decomposition (as well as the clusters) may be dy-
namically modified during the traversal process, depending on previous image
computations. In particular, we adopt a learning approach using two BDD size
thresholds to trim the computation effort. During each image computation of
each sub-FSM we record the maximum BDD size involved in the computation:

– Sub-FSMs that are easy to traverse, i.e., whose BDDs are smaller than the
first size threshold, are merged together.

– Sub-FSMs that are difficult to traverse, i.e., whose BDDs are larger than
the second size threshold, are further decomposed into two subsequent sub-
FSMs.

We found this methodology useful to correctly trim computational effort, espe-
cially within very deep traversal operations. We also use overlapping projections
as presented by Govindaraju et al. [Govindaraju and Dill 1998b]. This technique
is based on the idea of adopting not necessarily disjoint sub-FSMs, and it is very
useful to increase the accuracy of the estimate keeping the computational cost
under control.

7 Using Symbolic State-Set Information within the SAT
Solver

The overestimation computed in the previous section is used in a straightforward
way to prune the SAT solver’s search. The BDD representing each estimate R

(see Fig. 3), in a monolithic or decomposed way, is directly, i.e., time frame by
time frame, and incrementally added to the problem formulation as a further
set of CNF clauses. The simplest approach is to use all components Ri of R to
increment each time frame of the original SAT problem. Nevertheless, to reduce
the SAT solver’s overhead (in terms of added clauses and variables) we adopt
some further optimization heuristics. On one side, we know:

– The size of the original problem in terms of clauses and variables.

– How much each Ri differ from the previous one in terms of number of rep-
resented states.

1709Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

– How many clauses/variables each Ri would generate.

Given these data, we keep the added overhead below a certain threshold: We
add our constraints not on all time frames but only once every k time frames.
The value of k is selected heuristically using the above information.

A more complex approach consists in explicitly simplifying, e.g., using co-
factor based techniques, the circuit representation with each corresponding time
frame estimate. The final CNF problem would be generated using the simplified
time frame instances.

While this solution would possibly give better simplifications, it would be far
more expensive and applicable only up to medium sized verification instances.
For this reason, we rely on the efficiency of standard SAT solvers to obtain a
proper search pruning effect.

Notice that, in all the cases, the counter-example eventually obtained possi-
bly includes some temporary variables generated by the BDD-to-CNF transla-
tion process in addition to the variables usually present in the BMC problem.
As a consequence, we need to bring each counter-example back to the original
representation space, by quantifying out the temporary variables (see Section 8)
when counter-examples are computed.

8 Converting BDDs to CNF Formulas

In our framework it is particularly important to generate compact SAT formula,
i.e., to introduce as few clauses and intermediate variables as possible.

For this reason, given a BDD representing a function f in monolithic or
conjunctive form, we develop three possible ways to store it as a CNF formula.
We analyze them in the following three sections.

8.1 Single-Node-Cut Method

The first method, which we call Single-Node-Cut, models each BDD node, ex-
cept for the ones with both constant children, as a multiplexer. Fig. 6 shows
the strategy adopted. Each node, i.e., each multiplexer, Fig. 6(a) and (b), is
characterized by:

– Two data inputs: one for the “then” or 1 child t, and one for the “else” or 0
child e.

– A selection input, i.e., the node variable v.

– One output, i.e., the function value f (whose value is assigned to an addi-
tional CNF variable).

1710 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

t e

v

f

(a)

e

t
f

v

(b)

(¬f ∨ v ∨ e) ∧
(f ∨ v ∨ ¬e) ∧
(¬f ∨ ¬v ∨ t) ∧
(f ∨ ¬v ∨ ¬t)

(c)

Figure 6: BDD to CNF: Multiplexer Interpretation.

The final number of variables is equal to the number of original BDD variables
plus the number of internal nodes of the BDD. Fig. 6(c) shows the clauses ob-
tained representing a single multiplexor. Simplifications are possible when one
of the children is the terminal node6.

Fig. 7 shows the pseudocode used to generate this format. It is essentially a
recursive post-order visit of the BDD. Function PrintNodeAsCnf generates,
for the BDD node f , the CNF representation represented in Fig. 6(c).

SingleNodeCut (f)
if (IsConstant (f)) then

return
if (IsVisited (f)) then

return
SingleNodeCut (f.t)
SingleNodeCut (f.e)
SetVisited (f)
PrintNodeAsCnf (f)
return

Figure 7: Pseudocode for the Single-Node-Cut Method.

The following example shows how the Single-Node-Cut method works on a
small BDD.

Example 1. Fig. 8(a) represents a BDD with 4 nodes. BDD variables are named
after integer numbers ranging from 1 to 4. To translate this BDD into a CNF
formulation we insert a temporary variable for each node but the one with two
terminal children. The new variables are named 5, 6 and 7 and are indicated in
the square boxes. Procedure SingleNodeCut generates the CNF formulation
6 Notice that we represent BDDs using only one terminal node, i.e., the node 1, while

the other is obtained pointing to the previous terminal node with an inverted edge.

1711Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

as indicated in Fig. 8(b). Appropriate simplifications are applied to the general
case of Fig. 6(c) when one child of the node is the terminal node. For example,
for node 3 the child e is equal to 0. Then the CNF representation of Fig. 6(c)
becomes equal to

(¬f ∨ v ∨ 0) ∧ (f ∨ v ∨ 1) ∧ (¬f ∨ ¬v ∨ t) ∧ (f ∨ ¬v ∨ ¬t)

Keeping into account that

(¬f ∨ v) ∧ (¬f ∨ ¬v ∨ t) = (¬f ∨ v) ∧ (¬f ∨ t)

the formulation can be simplified to

(¬f ∨ v) ∧ (¬f ∨ t) ∧ (f ∨ ¬v ∨ ¬t)

which in turn gives

(¬5 ∨ 3) ∧ (¬5 ∨ 4) ∧ (5 ∨ ¬3 ∨ ¬4)

as in Fig. 8(b).

1

1

2

3

4

76

5

(a)

(node3) (¬5 ∨ 3) ∧
(¬5 ∨ 4) ∧
(5 ∨ ¬3 ∨ ¬4) ∧

(node2) (6 ∨ ¬2) ∧
(6 ∨ ¬5) ∧
(¬6 ∨ 2 ∨ 5) ∧

(node1) (7 ∨ 1 ∨ 5) ∧
(¬7 ∨ 1 ∨ ¬5) ∧
(7 ∨ ¬1 ∨ ¬6) ∧
(¬7 ∨ ¬1 ∨ 6) ∧

(f) (7)

(b)

Figure 8: BDD to CNF Translation: Single-Node-Cut Algorithm.

8.2 No-Cut Method

The No-Cut method creates clauses expressing (covering) the zeros of a function
f . This idea is motivated by the consideration that a CNF formulation is essen-
tially a product-of-sum, which in turn can be derived by expressing the off-set

1712 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

of f . Within the BDD for f , such clauses are found by following all the paths
from the root node to the constant node 0. Fig. 9 shows the pseudocode for this
operation. It is a recursive BDD visit from the root node to the terminal 0 node7.
As in the previous section, f.t indicates the “then” or 1 child of f , and f.e, the
“else” or 0 child. Once the terminal node 0 is reached, function PrintClause

prints all the literals in the set clause. clause is initially the empty set, and is
augmented with the variables selected when searching for a path to the terminal
node 0.

NoCut (f, clause)
if (IsConstantZero (f)) then

PrintClause (clause)
else

NoCut (f.t, clause ∪ ¬ f.v)
NoCut (f.e, clause ∪ f.v)

return

Figure 9: Pseudocode for the No-Cut Method.

The final number of CNF variables is equal to the number of BDD variables.

Example 2. Fig. 10 shows an application of function NoCut to the example used
in Fig. 8. In Fig. 10 (a) the three paths to the constant 08 are indicated on the
BDD as (p1), (p2) and (p3). Fig. 10(b) reports the corresponding clauses.

8.3 Auxiliary-Cut Method

The Auxiliary-Cut method is a trade-off between the previous two strategies. The
BDD is logically decomposed into sub-trees by selectively inserting cut-points.
Each cut point implies the insertion of a new CNF variable. As a consequence,
this method coincides with the No-Cut algorithm when no cut point is inserted,
and with the Single-Node-Cut method when a cut point is inserted for each BDD
node.

We experimented with two cut point selection strategies. In the first one, a
new CNF variable is inserted on shared nodes, i.e., BDD nodes which have more
than one incoming edge. This technique, reduces the total number of literals
7 The reader should remember that the value of the constant leaf reached in a BDD

depends on the number of negations found along the path from the root of the BDD
to the leaf itself. The value is 1 when the number of inverted edges is even, and 0
when is odd.

8 Or constant 1 through an odd number of inverted edges.

1713Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

1

1

2

3

4

(p1) (p2) (p3)

(a)

(p1) (1 ∨ ¬3 ∨ ¬4) ∧
(p2) (¬1 ∨ 2 ∨ ¬3 ∨ 4) ∧
(p3) (¬1 ∨ 2 ∨ 3)

(b)

Figure 10: BDD to CNF Translation: No-Cut Algorithm.

stored, but can produce clauses with many literals9. The second method tries
to avoid this drawback by introducing further cut points in addition to the
previously defined ones. The new cut points are used to break the length of each
path between two cut points to a maximum (user) selected value.

Fig. 11 shows the pseudocode for this procedure.
It proceeds in two phases. During the first phase, function GenerateCut

performs one or more in-depth visits of the BDD, and sets a flag on each BDD
node on which a cut point has to be inserted. When the first heuristic is used,
function GenerateCut simply counts the number of incoming edges for each
node, and sets the flag when this number is greater than 1. When the second
strategy is used, it firstly proceeds as in the previous case. After that, it measures
the length of each path between two cut points, and sets a flag on a BDD node
every time this value is larger than the selected threshold.

During the second phase, function AuxiliaryCutRecur, generates all the
clauses with one in-depth visit of the original BDD. For each cut point, deter-
mined in the previous phase, it implicitly decomposes the BDD into two BDDs.
Let us suppose that the BDD representing function f(x) has a cut point x̂ rep-
resenting subfunction g(x). Then f(x) can be decomposed as

f(x) = f(x, x̂) ∧ (x̂ ≡ g(x))

which expresses f(x) by augmenting its support with the cutting point variable
x̂, and states that this new variable should have the same value as subfunction
g(x). After that, the strategy relies on visiting both BDDs for f(x, x̂) and for
9 The number of literals is bound by the number of variables of the BDD, i.e., the

longest path from the root to the terminal node.

1714 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

AuxiliaryCut (f)
GenerateCut (f)
AuxiliaryCutRecur (f, ∅)
return

AuxiliaryCutRecur (f, clause)
if (IsConstantZero (f)) then

PrintClause (clause)
return

if (IsACut (f)) then
PrintClause (clause)
if (IsNotVisited (f)) then

ResetCut (f)
AuxiliaryCutRecur (f, ¬ f.cut)
AuxiliaryCutRecur (¬ f, f.cut)
SetCut (f)
SetVisited (f)

return
AuxiliaryCutRecur (f.t, clause ∪ ¬ f.v)
AuxiliaryCutRecur (f.e, clause ∪ f.v)
return

Figure 11: Pseudocode for the Auxiliary-Cut Method.

(x̂ ≡ g(x)), and storing them as clauses using the No-Cut strategy. The BDD rep-
resenting g(x) can be further decomposed recursively. Notice that the procedure
does not create any new BDD node. The BDDs for f(x, x̂) and (x̂ ≡ g(x)) are not
created as they are implicitly generated and visited during the depth-first visit of
f . Every time the function encounters a cut point x̂, i.e., procedure IsACut(f)
evaluates to true, it prints a clause with the PrintClause procedure. Visiting
f till the cut point is equivalent to visiting f(x, x̂). Once this is done, it recurs
on f and on ¬f . In the first case the clause set is initialized to ¬f.cut, and in
the second case to f.cut, where f.cut is the variable for the cut point x̂. These
two recursive calls implicitly generate (x̂ ≡ g(x)), i.e., (¬x̂ ∧ ¬g(x)) ∨ (x̂ ∧ g(x))

In the pseudocode, as in the previous sections, for each node f , f.t indicates
the “then” child, f.e the “else” child, f.v the BDD variable, and f.cut the CNF
(or cut point) variable of f .

Example 3. We start from the same BDD used in Fig. 8 (a). Let us suppose
function GenerateCut inserts a cut point on node 3, i.e., the only node with
two incoming edges. After that, the BDD is logically decomposed into two BDDs:

– The first one contains the auxiliary variable to replace the underlying func-
tion (the one starting at node 3). This BDD is represented in Fig. 12 (a)
where the auxiliary variable is named 5.

1715Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

1

1

2

5

(p1) (p2)

(a)

1

3

4

5

(p3) (p4) (p5)

(b)

(p1) (1 ∨ ¬5) ∧
(p2) (¬1 ∨ 2 ∨ 5) ∧
(p3) (5 ∨ ¬3 ∨ ¬4) ∧
(p4) (¬5 ∨ ¬3 ∨ 4) ∧
(p5) (¬5 ∨ 3)

(c)

Figure 12: BDD to CNF Translation: Auxiliary-Cut Algorithm.

– The second one, represented in Fig. 12 (b), is the XNOR of the auxiliary
variable just introduced with the BDD that this variable represents.

Both BDDs are visited using the No-Cut strategy to generate CNF clauses.
Notice again that neither the BDD in Fig. 12 (a) nor the BDD in Fig. 12 (b) are
built: To save memory and computation time the procedure does not produce
any new node, but we represent these BDDs to illustrate how the clauses are
generated.

8.4 Comparison of the Three Previously Described Methods

All the methods described in this section can be brought back to the basic idea
of possibly breaking the BDD through the use of additional cutting variables
and generating a single clause for each path between the root of the BDD, the
cutting variables and the terminal nodes. Such internal cutting variables are
added always (for each node), never or sometimes, respectively.

While the Single-Node-Cut method minimizes the length of the clauses pro-
duced, it also requires more CNF variables than the other two methods. On
the contrary, the No-Cut technique minimizes the number of CNF variables re-
quired, but, in the worst case, the number of clauses (and literals) produced is
exponential in the BDD size (in terms of number of nodes). The application of
this method is then limited to the cases in which the off-set of the represented
function f has a small cardinality10. The Auxiliary-Cut strategy is a trade-off
10 We define the cardinality of the off-set of a function f : Bn → B as he number of

points in the Boolean space Bn for which f is false.

1716 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

between the first two methods, and it is the one which often produces the more
compact CNF representation.

Example 4. Fig. 13 shows a final example of how our procedures work to generate
the DIMACS CNF format for satisfiability problems.

1

1

2

3

4

(a)

p cnf 7 11
-5 3 0
-5 4 0
5 -3 -4 0
6 -2 0
6 -5 0
-6 2 5 0
7 1 5 0
-7 1 -5 0
7 -1 -6 0
-7 -1 6 0
7 0

(b)

p cnf 4 3
1 -3 -4 0
-1 2 -3 4 0
-1 2 3 0

(c)

p cnf 5 5
-5 1 0
5 -1 2 0
-3 -4 5 0
3 -5 0
-3 4 -5 0

(d)

Figure 13: (a) BDD; (b) Single-Node-Cut format; (c) No-Cut format; (d)
Auxiliary-Cut format.

Fig. 13 (a) represents the same BDD used in all the previous examples.
Fig. 13 (b), (c) and (d) show the corresponding CNF representations generated
by our three methods. As in the standard DIMACS CNF format, the problem
line is denoted as:

p cnf < #variables > < #clauses >

where “p” denotes the problem line, “cnf” means that the file is in CNF format,
and < #variables > and < #clauses > indicate the total number of variables
used (4 is the minimum value as the BDD itself has 4 variables), and the total
number of clauses in the instance. This line must appear before any line de-
scribing a clause. CNF variables are named after integer numbers ranging from
1 to 4, to respect the format and have a 1-to-1 correspondence with the BDD
variables.

As we have already described the No-Cut method does not add any new
variable (and uses only the original 4 variables), the number of added variable
is equal to 3 (variables 5, 6 and 7) for the Single-Node-Cut method, and equal
to 1 (variable 5) for the Auxiliary-Cut method. In this last case, we simply add
a variable for each node with an incoming number of edges greater than two as
all the clauses are short enough.

1717Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

As a final remark notice that for this specific example the No-Cut approach
is the one which gives the most compact CNF representation but also the clause
with the largest number of literals (4).

9 Experimental Results

This section describes the experimental data gathered with our strategy and
four publicly available SAT solvers, namely Chaff [Moskewicz et al. 2001], Lim-

mat [Limmat], BerkMin [Goldberg and Novikov 2002], and Siege [Siege, Ryan
2004]. We start this section by describing our experimental setting. We move on
by reporting results related with the BDD-to-CNF translation, and the reacha-
bility analysis phase. Finally, we analyze the verification results.

9.1 Circuits, Properties and Experimental Setting

For our experiments, we start from Verilog or Blif netlists. From these source
files we generate the BMC-CNF formulation of the problem using three pub-
licly available tools (VIS [Brayton et al. 1996], NuSMV [Cimatti et al. 1999],
BMC [BMC]) and our home-made software. As far as our package is concerned
it is able to generate CNF formulas both from the original network of the circuit
and from its transition relation representation. The generated CNF problem is
stored as a standard DIMACS CNF file. All our experiments run on a 1.7 GHz
Pentium 4 Workstation with 1 GByte main memory, running RedHat Linux
7.1. We present results on both standard benchmarks, i.e., ISCAS’89 and the
ISCAS’89–addendum [Brglez et al. 1989], and industrial designs, i.e., the IBM
Formal Verification Benchmark Library [IBM Library].

The IBM verification benchmark suite includes 75 circuits in Blif format
with a size ranging from 95 to 917 memory elements. For each circuit only one
property is reported in the description. This property specifies that the single
output of the circuit has to be an identity. Among all BMC problems, we consider
the ones requiring more than 1000 seconds of CPU time.

For ISCAS’89 and ISCAS’89–addendum benchmarks we make a similar selec-
tion. In this case, invariant properties are generated with the strategy originally
adopted in [Cabodi et al. 2002]. Following this approach, target state sets T are
sets with increasing Hamming distance11 from the initial state set S.

Example 5. As an example, let us suppose to have a model with 5 state variables
(d0, d1, d2, d3, d4), and initial state S = (0, 0, 0, 0, 0). We have just one state with
Hamming distance 5 from S, i.e, (1, 1, 1, 1, 1), we have 6 states at Hamming
distance ≥ 4, i.e, (1, 1, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), . . ., (1, 1, 1, 1, 0), and
11 We compute the Hamming distance between two points p1 and p2 in the Boolean

space Bn, as the number of bits which assume a different value in p1 and p2.

1718 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

so on. Our invariant property requires the T states to be unreachable. As a
consequence, for the state (1, 1, 1, 1, 1), our invariant property is ¬(d1∧d2∧d3∧
d4 ∧ d5), while for the state (0, 1, 1, 1, 1) it is ¬(¬d1 ∧ d2∧ d3∧ d4 ∧ d5), and so
on.

Our experience is that the shorter the Hamming distance from the initial
state, the easier it is to falsify the property, whereas most properties generated
using high Hamming distances are proved correct (i.e., state space regions distant
from initial state are unreachable).

We adopted automatic invariant property generation for two reasons:

1. There is no standard set of properties, and no specific knowledge about the
functionality of the ISCAS benchmarks.

2. We aim at measuring the ability of a verifier to explore arbitrary properties
in the state space.

Notice that, albeit artificially generated properties may not be as meaningful
as designer given ones, this is a common way to cope with the lack of publicly
available and suitable benchmarks. For any given property we performed a COI
(Cone of Influence) reduction before starting the verification phase.

Tab. 1 contains the description of the circuits and the properties used. # SV

is the number of state variables in the model. For each circuit we checked different
properties Pi. All the properties selected are false properties, so that we are able
to report two separate results with two successive values of the bound: In the
first case the property is verified and it passes, while in the second one it is
always falsified and fails. The SAT section of the table reports the number of
clauses, variables, and literals of the SAT problem generated.

As far as the generation of the CNF formulation of the problem is concerned,
NuSMV and VIS produce similar results. BMC generates CNF files on average
20-30% more compact both in terms of clauses and (intermediate) variables.
Our tool is somehow in between and starting from the BDD representation of
the circuit can sometimes give some advantage. Tab. 2 reports some evidence on
that. More specifically, the four tools, i.e., VIS, NuSMV, BMC, and our home-
made generator, are used to generate the BMC problem of length 1 for the
property P1 of circuit s35932. Note that the size of the CNF formulation of the
BMC problem, grows practically linearly with the value of the bound as it can be
deduced by comparing the data of Tab. 2 with the corresponding one of Tab. 1.

As a final remark, notice that the BMC tool does not store the variable coding
used along each time frame. As we need this information to be congruent with the
data coming from our reachability analysis, we do not report further experiments
with the BMC tool and we always rely on the other three to generate the CNF
problem.

1719Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Model # SV Property Bound SAT Problem
Clauses # Vars # Lits
[×103] [×103] [×103]

s1512 57 P1 Pass 66 92 34 223
Fail 67 94 35 226

P2 Pass 130 181 68 439
Fail 131 183 68 442

P3 Pass 259 381 141 917
Fail 260 383 142 920

s9234 211 P1 Pass 80 414 148 1002
Fail 81 419 150 1015

P2 Pass 240 1190 427 2886
Fail 241 1195 429 2898

P3 Pass 240 1192 428 2890
Fail 241 1197 430 2902

s15850.1 534 P1 Pass 75 1057 387 2572
Fail 76 1071 391 2607

s13207.1 638 P1 Pass 55 465 188 1151
Fail 56 474 191 1172

P2 Pass 109 920 369 2278
Fail 110 929 372 2299

s35932 1728 P1 Pass 31 1495 537 3630
Fail 32 1543 554 3747

31 1 batch 2 123 P1 Pass 22 264 91 615
Pass 25 300 103 698

20 batch 148 P1 Pass 29 421 145 980
Fail 30 435 150 1014

13 batch 1 179 P1 Pass 20 718 242 1674
22 batch 191 P1 Pass 40 722 248 1681
11 batch 2 296 P1 Pass 35 866 297 2016
26 batch 657 P1 Pass 100 3283 1144 7637

Table 1: Analyzed Properties. # SV indicates the number of state variables in
the model.

Tool # Clauses # Vars # Lits File Size
[×103] [×103] [×103] [kB]

VIS 53 21 120 1127
NuSmv 53 21 129 1121
BMC 37 15 87 804
Our Tool 39 18 94 857

Table 2: Comparison of different tools used to generate the CNF formulation of
the BMC problem: Circuit s35932, property P1, bound 1.

9.2 BDD-to-CNF Transformation

In this section, we report some data regarding the BDD-to-CNF transformation
described previously. Tab. 3 reports data on circuit s35932 using BDDs repre-
senting its transition relation and its reachable state sets.

The DDDMP tool is used for all the experiments. It is both publicly avail-
able [Cabodi and Quer,Cabodi et al. 1996] and distributed within the Colorado
University Decision Diagram (CUDD) package.

Within Tab. 3 the meaning of the columns is the following. Column # Nodes

indicates the number of nodes of the BDD used as a starting point for the trans-

1720 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

BDDs CNF
Nodes Mem File Size D.M. # Clauses # Vars # Lits File Size

[kB] [kB] [×103] [×103] [×103] [kB]

1 4764 76 75 S 14 6 33 282
N 5 2 12 143
A 5 2 15 164

2 10039 161 163 S 37 13 105 794
N 20 3 120 733
A 20 7 62 504

3 75785 1213 159 S 231 78 551 3856
N ovf ovf ovf ovf
A 93 8 306 1864

4 339668 5435 461 S 1038 341 2471 18107
N ovf ovf ovf ovf
A 418 32 1364 8112

Table 3: Performance of the routine Bdd2Cnf for the next state functions and a
few reachable state sets of circuit s35932. D.M. represents the storing techniques:
“S” indicates the Single-Node-Cut, “N” the No-Cut, and “A” the Auxiliary-Cut
method.

formation. Mem reports the memory used by the CUDD package to represent
this BDD (considering only the space taken by the node of the BDD, and not
the extra-space necessary for other data structures, such as the computed ta-
bles, etc.). File Size indicates the space required to store the BDDs using the
binary (compressed) format available within the DDDMP package. These data
may give a better idea of the compactness/efficiency of the CNF format. D.M.

represents the method we used to store the BDDs as CNF formulas (“S” stands
for the Single-Node-Cut method, “N” for the No-Cut and “A” for the Auxiliary-
Cut). The subsequent columns report statistics (i.e., number of clauses, variables,
literals, and memory used) on the CNF representation of the BDD.

ovf indicates that the generated file, containing the CNF formulation of the
problem, was too large to be appropriately managed by the operating system
(i.e., was larger than 1 GBytes).

It is evident from the table that the Auxiliary-Cut method usually gives
the best performance in terms of CNF compactness. On the contrary the No-
Cut method has to be used with extreme care, even if it can produce compact
representation when the off-set of the function has a small cardinality.

9.3 Approximate Reachability Analysis

After the previous phase, we generate the set of approximate reachable state
sets for the circuit. For this operation we use both the VIS tool, and again a
home-made tool called FBV (Forward Backward Verifier). Albeit VIS implements
almost all the approximate traversal algorithms presented in the literature, we
need the overapproximation of the reachable state set at the same bound level

1721Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

for all sub-FSMs. Our tool, implemented on top of the Colorado University
Decision Diagram (CUDD) package, implements the approximation verification
method presented in Section 6. The different thresholds introduced during the
description of the algorithms are essentially selected by the user, although some
automatic tuning is dynamically performed (see for example Section 6.3).

Model Property Modified SAT+BDD Problem
D.M. # Clauses # Vars # Lits

[%] [%] [%]

s1512 P1 Pass A +21.7 +7.5 +72.1
Fail A +22.0 +7.6 +73.2

P2 Pass A +53.4 +20.0 +168.5
Fail A +53.4 +20.0 +169.4

P3 Pass A +115.0 +40.0 +317.7
Fail A +115.3 +40.0 +318.6

s9234 P1 Pass S +14.6 +13.4 +14.5
Fail S +14.6 +13.4 +14.5

P2 Pass S +3.8 +0.3 +21.7
Fail S +3.8 +0.3 +21.7

P3 Pass S +24.3 +0.5 +220.2
Fail S +24.2 +0.5 +219.9

s15850.1 P1 Pass A +2.0 +0.4 +13.0
Fail A +2.0 +0.4 +13.0

s13207.1 P1 Pass A +21.8 +5.4 +76.7
Fail A +21.8 +5.4 +76.6

P2 Pass A +21.2 +5.3 +74.5
Fail A +21.2 +5.3 +75.2

s35932 P1 Pass A +4.4 +1.0 +33.9
Fail A +4.3 +1.0 +33.2

31 1 batch 2 P1 Pass A +15.0 +6.0 +32.6
Pass A +13.4 +5.4 +29.1

20 batch P1 Pass A +0.6 +0.3 +1.1
Fail A +0.7 +0.3 +1.3

13 batch 1 P1 Pass A +1.3 +0.6 +2.7
22 batch P1 Pass A +1.4 +0.6 +2.7
11 batch 2 P1 Pass A +1.8 +0.8 +3.4
26 batch P1 Pass A +21.8 +20.8 +23.4

Table 4: Statistics for the produced SAT problems. D.M. represents the storing
techniques: “S” indicates the Single-Node-Cut, “N” the No-Cut, and “A” the
Auxiliary-Cut method. All datas indicate the percentage increment over the
original SAT problem formulation reported in Tab. 1.

Once we have generated the BDDs for the overapproximation, we convert
them into CNF following the methodology reported in Section 8, and we generate
the final problem with this new space restriction, as outline in Section 4. Tab. 4
reports statistics on the CNF problems generated in this way, i.e., it indicates the
size increase of the new CNF formulation over the size of the original problem
(reported in Tab. 1).

As previously described, we have to trade-off between the accuracy of the
result and its efficacy to prune the SAT solver search space. As a consequence,
we have to control the size of the out-coming CNF problem formulation. Tab. 4

1722 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

reports for each experiment the result that leads to the best trade-off. A more
sophisticated analysis of the impact of the accuracy of the estimate on the SAT
solver performance is reported in the following section. Notice that our strategy
works at its best also if we produce a modest (at least compared with conflict
analysis) increment in the number of clauses, varying from 2–3% to about 100%.
As a consequence, the increment in the clause database size is not a bottleneck of
the procedure. Moreover, as previously introduced, the strategy Auxiliary-Cut
usually gives the best performance and it is the strategy we use as a default.

9.4 SAT Solvers

We present here the core part of our experimental section, i.e, the results ob-
tained with Chaff (both MChaff and ZChaff), Limmat, BerkMin (version 561) and
Siege (version v4).

Chaff, by Moskewicz et al. [Moskewicz et al. 2001], is a complete DPLL de-
terministic solver. It is carefully engineered with non-chronological backtracking,
learning (clause recording), restarts, randomized branching heuristic and an in-
novative notion of heuristic learning (VSIDS).

Limmat, by Biere [Limmat], is a ZChaff–like SAT solver with an early detec-
tion of conflicts in the BCP queue, a constant time lookup of the other watched
literal, and an optimized ordering of decision variables and a robust code through
sophisticated test framework.

BerkMin, by Goldberg and Novikov [Goldberg and Novikov 2002], inherits
such features of Grasp, Sato, and Chaff as clause recording, fast BCP, restarts,
and conflict clause aging. At the same time BerkMin introduces a new decision
making procedure and a new management of the database of the conflict clauses.
One of its key novelties is that this database is organized as a chronologically
sorted stack, i.e., the algorithm always tries to satisfy clauses at the top and to
remove clauses at the bottom.

Siege, by Ryan [Siege,Ryan 2004], is a recent SAT solver which improved over
previous version using a more powerful resolution strategy [Berre and Simon
2003].

Tab. 5 reports runs with the Chaff SAT engine on the two problem instances,
i.e., the original problem formulation and the one generated by merging with
it the information coming from the reachability analysis phase. We use both
the MChaff and the ZChaff versions. On our verification instances there is no
clear winner among the two engines. As a consequence, to be conservative, we
always present results with the faster tool among the two on the original problem
instance. In all the cases Chaff is run with the default settings. In Tab. 5 # Decs

and # Confl. represent the total number of decisions taken and conflicts produced
by the SAT solver. Mem. indicates the maximum amount of memory (in MB)
necessary to complete the entire verification task. As the memory requirement of

1723Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Model Property Original SAT Problem Modified SAT+BDD Problem Speedup

Decs # Confl. Mem. Time [s] # Decs # Confl. Mem. Time [s]

[×103] [×103] [MB] Search [×103] [×103] [MB] Setup Search Total

s1512 P1 Pass 106 57 28 74 3 1 17 2 2 4 18.5
Fail 155 97 28 169 20 1 17 2 5 7 24.1

P2 Pass 566 318 85 899 157 73 51 5 104 109 8.3
Fail 707 415 84 1326 149 59 50 5 76 81 16.4

P3 Pass 3469 2018 172 11330 415 163 146 19 390 409 17.7
Fail 4502 2579 299 18677 609 230 97 19 603 622 30

s9234 P1 Pass 167 133 123 517 23 10 95 14 27 41 12.6
Fail 275 221 122 950 35 14 71 14 45 59 16.1

P2 Pass − − ovf − 353 221 186 74 1100 1174 ∞
Fail − − ovf − 924 172 125 67 600 667 ∞

P3 Pass − − ovf − 486 287 212 14 2818 2832 ∞
Fail − − ovf − 1996 1247 245 14 18465 18479 ∞

s15850.1 P1 Pass 25 20 175 184 8 6 143 53 35 88 2.1
Fail 475 120 140 1227 173 43 141 53 273 326 3.8

s13207.1 P1 Pass 22 11 55 22 24 16 74 54 53 107 0.4
Fail 641 83 46 375 758 35 59 54 116 170 2.2

P2 Pass 315 230 193 4287 98 51 133 96 176 272 15.8
Fail 640 358 158 3210 2348 109 115 96 432 528 6.1

s35932 P1 Pass 1 1 205 9 1 1 205 0 9 9 1
Fail 206 40 201 1156 119 25 181 175 760 935 1.2

31 1 batch 2 P1 Pass 460 239 156 3474 36 9 26 312 30 342 10.2
Pass 881 453 164 ovf 85 22 51 312 124 436 ∞

20 batch P1 Pass 204 56 99 653 206 53 101 61 698 759 0.9
Fail 396 125 106 1859 277 60 104 61 735 796 2.3

13 batch 1 P1 Pass 893 676 138 ovf 30 5 54 28 16 42 ∞
22 batch P1 Pass 1270 170 209 2641 962 109 185 424 1463 1887 1.4
11 batch 2 P1 Pass 684 83 160 1415 402 46 133 280 577 857 1.7
26 batch P1 Pass 2001 11 485 1831 1302 9 290 657 197 854 2.1

Table 5: Comparison between output statistics produced by Chaff for the original
CNF problem and the one incremented with symbolic BDD-based information.
Memory limit: 1 GBytes. Time limit: 8 hours for ISCAS’89 benchmarks, and
2 hours for the IBM Formal Verification Benchmarks Library. ovf indicates
(memory or time) overflow.

the symbolic reachability analysis phase is always smaller, these numbers always
coincides with the memory used by the SAT solver. Time indicates the CPU
time (in seconds) taken by the BDD, the SAT tools, or both. The Setup is the
one to perform the reachability analysis phase and the one to generate the new
problem formulation. As introduced in Section 5 one single BMC step includes
two steps of traversal, the first one forward and the second one backward. The
forward step is the more expensive one, and produces strong space restrictions.
The backward step appears to have a constraint effect which decreases as long
as the backward reachability analysis moves from T to S. It effects is then more
remarkable within the first 4–5 steps of the backward visits. We typically dedicate
from 70% to 90% of our traversal time to perform the forward analysis and the
remaining 10–30% for the backward phase. Speedup indicates the ratio between
the column Search Time of the SAT side of the table and the column Total Time

of the SAT+BDD side. Tab. 5 shows a reduction in terms of verification time
ranging from a factor of 2 to a factor of 30. Memory usage is also reduced.
Although BDD information increases the number of total literals by adding
temporary variables to the original CNF problem, also the number of decisions

1724 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

and conflicts is smaller in the SAT+BDD side of Tab. 5 than in the SAT side.

BDD SAT
Nodes Time # Clauses # Vars # Lits # Decs # Confl. Mem. Time
[×103] [sec] [%] [%] [%] [%] [%] [%] [%]

7 55 +12.9 +3.4 +19.2 +13.4 +29.2 +32.4 +39.4
8 80 +13.0 +3.4 +19.1 +11.2 +19.2 +26.3 +27.5
9 68 +17.1 +4.9 +28.7 +14.9 +11.4 +13.8 +19.8

15 80 +35.3 +11.2 +58.3 +10.7 +8.4 +6.2 +23.2
15 96 +21.2 +5.3 +74.5 0 0 0 0
16 101 +36.8 +11.7 +61.6 +9.2 +6.9 +6.3 +9.3
26 239 +40.7 +15.5 +52.3 +5.1 +3.3 +6.3 +10.3
71 434 +71.7 +22.0 +149.7 +11.0 +14.7 +2.9 +12.9
75 286 +50.0 +14.4 +92.7 +12.4 +22.3 +18.4 +16.4
29 411 +49.1 +15.1 +90.6 +15.9 +48.6 +16.7 +16.9
47 357 +55.3 +17.2 +108.9 +27.2 +38.9 +45.2 +35.4
47 362 +55.6 +17.4 +110.0 +47.4 +110.0 +22.9 +21.5
98 739 +144.8 +40.4 +410.1 +49.4 +90.1 +21.0 +29.1

Table 6: Dependency of the SAT solver’s results from the accuracy of the over-
estimated reachability analysis. Circuit s13207.1, property P2, Pass case. Datas
indicate the percentage increment over the approximation used in Tab. 5 and
reported in this table in italics.

Tab. 6 studies the impact of the accuracy of the reachable state on the size of
the CNF problem generated. We concentrate on circuit s13207.1 and property P2,
Pass case. We present data with increasing accuracy, and size, of the reachable
state set estimate. All the data are given as a percentage variation with respect
to the case reported within the SAT+BDD section of Tab. 5 and reported in
italics in this table.

For coarse estimates (top part of the table) the reachability analysis phase
tends to be useless, i.e., it does not help to prune the SAT solver’s search. For
precise estimates (bottom part of the table) it becomes inappropriate, i.e., too
expensive compared with the SAT solver’s costs. As a result, memory and time
performance degraded toward the top and the bottom of the table. For the
central part, i.e., not too coarse or too precise estimates, Tab. 6 indicates a quite
flat behavior.

We also tried to guide the SAT solver variable selection, in the Variable Deci-
sion phase, using the variable order adopted to represent BDDs during traversal.
This order includes all present and next variables (of a single time frame) of the
model. From it we heuristically deduce a variable order including all state and
auxiliary (generated during the BDD-to-CNF transformation) variables and feed
it to the SAT solver. Also in this case we had slight variations in the SAT engine
performances, in the order of about 10%. This conclusion seems somehow in
contrast with what other researchers discovered and it is possibly motivated by
our limited analysis. For this reason we do not report evidence on that.

1725Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

To run experiments with Limmat [Limmat], we slightly modified the tool in
the following way. As described in the previous sections, our final CNF problem
formulation is obtained by mixing the original BMC problem with information
coming from BDDs. This process implies the introduction of auxiliary or cut-
point variables, added while converting BDDs to CNF formulas (see Section 8).
With Limmat we discovered that any decision on cut-point variables, i.e., non-
original problem variables, has a wrong impact on the entire satisfiability process.
As a consequence, we forced the tool to use a variable order (for the decision
phase) in which cut point variables may only be implied and may never be
selected. This improved the performance of the tool on our benchmark. Limmat

proved to be sometimes faster and sometimes slower than Chaff, with no clear
winner among the two. For that reason we do not report any evidence with it.

Tables 7 and 8 report runs with BerkMin [Goldberg and Novikov 2002] (ver-
sion 561) and Siege [Siege,Ryan 2004] (version v4) respectively.

As these tools proved to be more efficient than the other two SAT solvers
used for our experiments, we report only the verification instances which still are
hard-enough to motivate the application of our technique. We do not report the
memory used by Siege as the tool does not report its exact memory usage, and
we did not have access to the source code. Anyhow, some rough measurements
indicate that Siege’s memory requirements appear to be similar to the ones ob-
tained with BerkMin. As far as the statistics reported in the table are concerned,
Siege seems to perform better than BerkMin on our set of experiments. It takes
fewer decisions, encounter fewer conflicts, and it is a little faster both on the
original SAT than on the modified SAT+BDD problem. For both the tools we
could reduce the verification time up to about a 15.6×.

Model Property Original SAT Problem Modified SAT+BDD Problem Speedup
Decs # Confl. Mem. Time [s] # Decs # Confl. Mem. Time [s]
[×103] [×103] [MB] Search [×103] [×103] [MB] Setup Search Total

s1512 P3 Pass 4635 464 188 2223 3449 244 168 19 741 760 2.9
Fail 4813 525 216 2795 3084 234 194 19 881 900 3.1

s9234 P2 Pass 1880 537 117 2989 364 48 96 74 253 327 9.1
Fail 2736 888 129 6348 501 88 102 67 339 406 15.6

P3 Pass 1545 398 197 1802 471 100 139 14 400 414 4.4
Fail 1795 473 216 2208 582 135 187 14 593 607 3.6

s13207.1 P2 Pass 234 145 102 345 217 115 95 76 114 190 1.8
Fail 246 168 119 295 196 106 99 76 98 174 1.7

Table 7: Comparison between output statistics produced by BerkMin for the
original CNF problem and the one incremented with symbolic BDD-based in-
formation. Memory limit 1 GBytes.

1726 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Model Property Original SAT Problem Modified SAT+BDD Problem Speedup
Decs # Confl. Time [s] # Decs # Confl. Time [s]
[×103] [×103] Search [×103] [×103] Setup Search Total

s1512 P3 Pass 2366 242 682 469 48 24 110 134 5.1
Fail 2292 235 641 895 101 24 244 268 2.4

s9234 P2 Pass 688 297 1164 290 30 8 92 100 11.6
Fail 659 309 917 356 88 9 214 223 4.1

P3 Pass 792 337 1226 494 166 45 470 515 2.4
Fail 538 212 558 490 164 45 444 489 1.1

s13207.1 P2 Pass 740 113 458 129 43 78 88 166 2.8
Fail 810 107 365 2131 63 78 302 380 1.0

Table 8: Comparison between output statistics produced by Siege for the original
CNF problem and the one incremented with symbolic BDD-based information.
Memory limit 1 GBytes.

10 Conclusions

In this paper we dovetail two of the most widely used techniques within formal
verification: BDD-based symbolic reachability analysis and SAT-based Bounded
Model Checking.

We proposed to exploit inexpensive BDD-based symbolic approximate for-
ward and/or backward reachability analysis to restrict the overall search space
of a SAT solver engine. We develop specific strategies to appropriately mix BDD
and SAT efforts, and to efficiently convert BDD-based symbolic state set repre-
sentations into SAT-oriented ones. We showed experimentally the potential of
the BDD-based symbolic reachability estimate to reduce the number of decisions
taken and conflicts discovered by four state-of-the-art SAT tools.

Experiments shows a reduction in the number of conflicts up to more than
a 100×. This reduction has a direct beneficial effect on the memory and time
used by the SAT-tool to solve the verification problem. We could reduce the
verification time up to a 30×, with an average speedup of about 8×.

References

[Berre and Simon 2003] D. Le Berre and L. Simon. Results from the SAT’03 SAT
Solver Competition. In Enrico Giunchiglia and Armando Tacchella, editors, The
Sixth International Conference on Theory and Applications of Satisfiability Testing,
volume 2919 of LNCS, S. Margherita Ligure - Portofino, Italy, May 2003. Springer-
Verlag.

[BMC] A. Biere. Bounded Model Checker: BMC, http://www-2.cs.cmu.edu/-
modelcheck/bmc.html/.

[Limmat] A. Biere. Limmat SAT Solver, http://www.inf.ethz.ch/personal/biere/-
projects/limmat/.

[Biere et al. 1999] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Sym-
bolic Model Checking using SAT procedures instead of BDDs. In Proc. 36th Design
Automat. Conf., pages 317–320, New Orleans, Louisiana, June 1999.

1727Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

[Biere and Kunz 2002] A. Biere and W. Kunz. SAT and ATPG: Boolean Engines for
Formal Hardware Verification. In Proc. Int’l Conf. on Computer-Aided Design, San
Jose, California, November 2002.

[Bjesse et al. 2001] P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an Al-
pha Microprocessor Using Satisfiability Solvers. In Gérard Berry, Hubert Comon,
and Alan Finkel, editors, Proc. Computer Aided Verification, volume 2102 of LNCS,
pages 454–464, Paris, France, July 2001. Springer-Verlag.

[Brglez et al. 1989] F. Brglez, D. Bryan, and K. Koźmiński. Combinatorial Profiles of
Sequential Benchmark Circuits. In Proc. IEEE ISCAS’89, pages 1929–1934, May
1989.

[Bryant 1986] R. E. Bryant. Graph–Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. on Computers, C–35(8):677–691, August 1986.

[Cabodi et al. 1994] G. Cabodi, P. Camurati, and S. Quer. Efficient State Space Prun-
ing in Symbolic Backward Traversal. In Proc. Int’l Conf. on Computer Design, pages
230–235, Cambridge, Massachussetts, October 1994.

[Cabodi et al. 1996] G. Cabodi, P. Camurati, and S. Quer. Improved Reachability
Analysis of Large Finite State Machine. In Proc. Int’l Conf. on Computer-Aided
Design, pages 354–360, San Jose, California, November 1996.

[Cabodi et al. 2002] G. Cabodi, P. Camurati, and S. Quer. Can BDDs compete with
SAT solvers on Bounded Model Checking? In Proc. 39th Design Automat. Conf.,
New Orleans, Louisiana, June 2002.

[Cabodi et al. 2003] G. Cabodi, S. Nocco, and S. Quer. Improving SAT-based
Bounded Model Checking by Means of BDD-based Approximate Traversals. In
Proc. Design Automation & Test in Europe Conf., pages 898–903, Munich, Ger-
many, March 2003.

[Cabodi and Quer] G. Cabodi and S. Quer. URL: http://staff.polito.it/-
{gianpiero.cabodi,stefano.quer}/.

[Cerny et al. 1986] E. Cerny and M. A. Marin. An approach to unified methodology
of combinational switching circuits. IEEE Trans. on Computers, C–26(8):745–756,
August 1986.

[Cho et al. 1996] H. Cho, G. D. Hatchel, E. Macii, B. Plessier, and F. Somenzi. Algo-
rithms for Approximate FSM Traversal Based on State Space Decomposition. IEEE
Trans. on Computer-Aided Design, 15(12):1465–1478, December 1996.

[Cimatti et al. 1999] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new Symbolic Model Verifyer. In Proc. Computer Aided Verification,
volume 1633 of LNCS, pages 495–499. Springer-Verlag, July 1999.

[Coudert et al. 1989] O. Coudert, C. Berthet, and J. C. Madre. Verification of Se-
quential Machines Using Boolean Function Vectors. In Proc. IFIP Int’l Workshop
on Applied Formal Methods for Correct VLSI Design, volume 1, pages 111–128,
November 1989.

[Damiano and Kukula 2003] R. Damiano and J. Kukula. Checking Satisfiability of a
Conjunction of BDDs. In Proc. 40th Design Automat. Conf., pages 818–823, Ana-
heim, CA, 2003.

[Davis and Putnam 1960] M. Davis and H. Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, 7:201–215, 1960.

[Brayton et al. 1996] R. K. Brayton et al. VIS. In Mandayam Srivas and Albert
Camilleri, editors, Proc. Formal Methods in Computer-Aided Design, volume 1166
of LNCS, pages 248–256, Palo Alto, California, November 1996. Springer-Verlag.

[Franco et al. 2003] J. Franco, M. Kouril, J. S. Schlipf, J. Ward, S. Weaver,
M. Dransfield, and W. M. Vanfleet. SBSAT: A State-based BDD-based Ap-
plications of Satisfiability Testing. In Proc. 6th International Conference on the
Theory and Application of Satisfiability Testing, pages 151–158, S. Margherita,
Italy, 2003.

[Goldberg and Novikov 2002] E. Goldberg and Y. Novikov. BerkMin: a Fast and Ro-
bust SAT-Solver. In Proc. Design Automation & Test in Europe Conf., pages 142–

1728 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

149, Paris, France, February 2002.
[Gopalakrishnan et al. 2003] S. Gopalakrishnan, V. Durairaj, and P. Kalla. Integrat-

ing CNF and BDD Based SAT Solvers. In IEEE International High-Level Design
Validation and Test Workshop (HLDVT’03), November 2003.

[Govindaraju and Dill 1998a] S. G. Govindaraju and D. L. Dill. Verification by Ap-
proximate Forward and Backward Reachability. In Proc. Int’l Conf. on Computer-
Aided Design, pages 366–370, San Jose, California, November 1998.

[Govindaraju and Dill 1998b] S. G. Govindaraju, D. L. Dill, A. Hu, and M. A.
Horowitz. Approximate Reachability Analysis with BDDs using Overlapping Pro-
jections. In Proc. 35th Design Automat. Conf., pages 451–456, San Francisco, Cal-
ifornia, June 1998.

[Gupta et al. 2003a] A. Gupta, M. Ganai, C. Wang, A. Yang, and P. Ashar. Learning
from BDDs in SAT-based Bounded Model Checking. In Proc. 40th Design Automat.
Conf., pages 824–829, Anaheim, CA, 2003.

[Gupta et al. 2003b] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Abstrac-
tion and BDDs Complement SAT–Based BMC in Diver. In Warren A. Hunt Jr. and
Fabio Somenzi, editors, Proc. Computer Aided Verification, volume 2725 of LNCS,
pages 206–209, Boulder, CO, USA, July 2003. Springer-Verlag.

[Gupta et al. 2000] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT–Based Image
Computation with Application in Reachability Analysis. In Proc. Formal Methods
in Computer-Aided Design, volume 1954 of LNCS, Austin, TX, USA, 2000.

[Gupta et al. 2001] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition–
Based Decision Heuristic for Image Computation using SAT and BDDs. In Proc.
Int’l Conf. on Computer-Aided Design, San Jose, California, November 2001.

[Jin and Somenzi 2004] H. Jin and F. Somenzi. CirCUs: A Hybrid Satisfiability
Solver. In The Seventh International Conference on Theory and Applications of
Satisfiability Testing, Vancouver, BC, Canada, May 2004.

[Kautz and Selman 2003] H. Kautz and B. Selman. Ten Challenges Redux: Recent
Progress in Propositional Reasoning and Search. In F. Rossi, editor, Principles and
Practice of Constraint Programming (CP 2003), volume 2833 of LNCS. Springer-
Verlag, September 2003.

[Kuehlmann et al. 2001] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based
Boolean Reasoning. In Proc. Design Automat. Conf., Las Vegas, Nevada, June 2001.

[IBM Library] IBM Formal Verification Benchmark Library.
http://www.haifa.il.ibm.com/projects/verification/rb homepage/fv-
benchmarks.html.

[McMillan 1994] K. McMillan. Symbolic Model Checking. Kluwer Academic, Boston,
Massechusset, 1994.

[McMillan 2002] K. L. McMillan. Applying SAT Methods in Unbounded Symbolic
Model Checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proc. Com-
puter Aided Verification, volume 2404 of LNCS, pages 250–264, Cophenagen, Den-
mark, 2002.

[McMillan 2004] K. L. McMillan. An Interpolating Theorem Prover. In Kurt Jensen
and Andreas Podelski, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 2988 of LNCS, pages 16–30, Barcelona, Spain, March 2004.
Springer-Verlag.

[Moon et al. 1998] I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan, and
C. Pixley. Approximate Reachability Don’t Cares for CTL Model Checking. In
Proc. Int’l Conf. on Computer-Aided Design, pages 351–358, San Jose, California,
November 1998.

[Moskewicz et al. 2001] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In Proc. 38th Design Automat. Conf.,
Las Vegas, Nevada, June 2001.

[Ranjan et al. 1995] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley.

1729Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

Efficient BDD Algorithms for FSM Synthesis and Verification. In Proc. Int’l Work-
shop on Logic Synthesis, Lake Tahoe, California, May 1995.

[Siege] L. Ryan. Siege SAT Solver, http://www.cs.sfu.ca/∼loryan/personal/.
[Ryan 2004] L. Ryan. Efficient Algorithms for Clause Learning SAT Solvers. Master’s

thesis, Simon Fraser University, February 2004.
[Sheeran et al. 2000] M. Sheeran, S. Singh, and G. St̊almarck. Checking Safety Prop-

erties Using Induction and SAT Solver. In W. A. Hunt and S. D. Johnson, editors,
Proc. Formal Methods in Computer-Aided Design, volume 1954 of LNCS, pages
108–125. Springer-Verlag, November 2000.

[Zhang and Malik 2002] L. Zhang and S. Malik. The Quest for Efficient Boolean Satis-
fiability Solvers. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proc. Com-
puter Aided Verification, volume 2404 of LNCS, pages 17–36, Cophenagen, Den-
mark, 2002.

1730 Cabodi G., Nocco S., Quer S.: Improving SAT-based Bounded Model Checking ...

