
Implementation-Design for the CoBa Belief

Change Logic Revision : 1.0

Sven Thiele <sthiele@rz.uni-potsdam.de>

� Preliminary Draft �

design.tex � May 30, 2005 at 13:48h
Read © Modi�ed ©

1

design.tex 30/05/2005 at 13:48 page 2 #0

1 Introduction

In this document I describe a Beliefchange-logic for CoBa its architectural
design the central classes with its interfaces, the semantics and some implemen-
tation details.

2 General Considerations

The following design of the CoBa -beliefchange-logic should provide a frame-
work of interfaces, open to further development, that gives the ability to dy-
namicly change the implementing classes by reusing most of the older ones. The
Interfaces evolves around the following basic requirements and ideas.

1. We want to provide an easy way to compute beliefchanges accordingly
to the CoBa -approach. The BeliefChangeScenario class provides an
minimal interface to set up an BeliefChangeScenario and compute the
resulting knowledgebases by hiding the implementation and the other used
classes from the user.

2. We need a representation of the logical sentences that allows us to do some
basic transformation operations and gives essential informations about the
logical sentence. The ISent objects are our represenation of the logical
sentences.

3. We have a stringbased repesentation of the logical sentences that need to
parsed and from that our ISent representation has to be created. Therefor
the SentenceParser is needed to create ISent objects from Strings.

4. We want to use a satis�ability library like sat4j to check our logical sen-
tences for consistency. The Checker class wraps the access the sat-library
and provides an interface for easy and fast checking the consistency of
logical sentences.

5. Where the beliefchange algorithm is based on �nding maximal consistent
equivalence sets, we need an easy way to create and access these equiv-
alences. The EquivalenceSet class has an interface that allows creating
equivalences and to provides needed informations about equivalence sets.

• • • � Preliminary Draft � May 30, 2005 � • • • 2:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 3 #0

3 Proposed Interfaces

The design presented here speci�es interfaces, it does not, or at least tries not
to, dictate an implementation. There are in�nitely many possible di�ering ways
to implement CoBa ensuring the qualities mentioned above. The following
sections present interfaces for the concepts CoBa deals with: logical sentences,
parsers, the set of equivalences and the sat checker. The interfaces are pre-
sented in IDL (Interface De�nition Language). There are no constructors in
the interfaces as these depend on a concrete implementation. However, in the
paragraphs accompanying an interface possible initializers are described.

3.1 Belief Change Scenario

The core of the CoBa -logic is the BeliefChangeScenario class it has to imple-
ment the actual CoBa -algorithm provide the setter methods for the compo-
nents of the concrete BeliefChangeScenario, additional setter methods to cali-
brate optional computation steps like the used search-algorithm, the used way
of merging and to set choice or sceptical change and last but not least a method
to start the CoBa -algorithm and return the resulting knowledgebase.

Listing 1: BeliefChangeScenario.idl
1 // Indicates that an logical sentence

// passed to the BeliefChangeScenario
3 // has syntactical Errors

exception SyntaxErrException {};
5

// Indicates that there are mutually inconsistent
7 // constraints

exception InconsistencyException {};
9

// BeliefChangeScenario represents a set of logical sentences that
11 // should be merged revised or contracted and it implements the

// change -algorithm that computes the resulting knowledgebase
13 interface BeliefChangeScenario

{
15

// Sets the knowledge bases of the BeliefChangeScenario to be the
17 // same as the Strings in the Vector K. If K is null or empty ,

// then the knowledge base is set to T by default.
19 // K is the Vector of knowledge bases represented as Strings.

// throws SyntaxErrException if one of the knowledge bases has
21 // syntactical errors.

void setKB(Vector K) throws SyntaxErrException
23

// Sets the revision -sentence in the BeliefChangeScenario to R.
25 // If R is null or empty , then the revision sentence is set to T

// by default.
27 // R is a string representation of the revision sentences.

// throws SyntaxErrException if the revision sentence has
29 // syntactical errors.

void setRevisor(String R) throws SyntaxErrException
31

// Sets the contraction sentences to be the negations of those in
33 // the Vector C.

// C is the Vector of contraction sentences , each represented as
35 // an String.

// throws SyntaxErrException if an contraction sentence is not
37 // syntactical correct.

• • • � Preliminary Draft � May 30, 2005 � • • • 3:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 4 #0

void setContractor(Vector C) throws SyntaxErrException
39

// Sets the entailment -based integrity constraints to ICe.
41 // ICe is a string representation of the entailment -based

// integrity constraints.
43 // throws SyntaxErrException if the EBIC is not

// syntactical correct.
45 void setEBIC(String ICe) throws SyntaxErrException

47 // Sets the consistency -based integrity constraints to those in
// the Vector ICc.

49 // ICc the Vector of consistency -based integrity constraints
// represented as Strings.

51 // throws SyntaxErrException if one of the integrity constraints
// has syntactical errors.

53 void setCBIC(Vector ICc) throws SyntaxErrException

55 // Sets the equivalence set search algorithm to algo .
// algo is a String value indicating which searchalgorithm is to

57 // be used to find the maximal equivalencesets.
boolean setAlgo(String algo)

59
// Sets the change type to choice change if isChoiceOn is true ,

61 // or to skeptical change otherwise.
// isChoiceOn is a boolean value indicating whether choice change

63 // is to be applied or not.
void setChoiceType(boolean isChoiceOn)

65
// Sets the merge type to projection merge if isProjOn is true ,

67 // or to default merge otherwise.
// isProjOn is a boolean value indicating whether

69 // projection -merge is to be applied or not.
void setProjMerge(boolean isProjOn)

71
// Checks if there are inconsistencies among the parameters of

this
73 // BeliefChangeScenario , executes this BeliefChangeScenario using

// the selected change type , search algorithm and merge type ,
75 // and finally returns the resultant knowledge base.

// throws an InconsistencyException if there are inconsistencies
77 // among the parameters of this BeliefChangeScenario.

// returns a Vector of the resultant knowledge bases.
79 Vector change () throws InconsistencyException

81 };

The BeliefChangeScenario implements the actual CoBa -algorithm and pro-
vides a minimal interface by hiding the other used classes of the beliefchange-
logic. To make clear how the BeliefChangeScenario works and how it uses the
other classes of the beliefchange-logic I will give an abstract description of its
lifecircle showing how this class should be used and how the implemented algo-
rithm works.

1. Create a BeliefChangeScenario object via a public constructor BeliefChangeScenario
()

2. Setup the components of the BeliefChangeScenario using the provided
setter methods

• BCS.setKB(Vector K);

• • • � Preliminary Draft � May 30, 2005 � • • • 4:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 5 #0

• BCS.setRevisor(String R);

• BCS.setContractor(Vector C);

• BCS.setCBIC(Vector ICc);

• BCS.setEBIC(String ICe);

Within these methods of the BeliefChangeScenario a SentenceParser is
used to create ISent objects from the String representation of the logical
sentences, these ISent objects are the internal represenation of logical
sentences on which we work. It may happen that synatctical maleformed
sentences are passed to these methods, in this case a SyntaxErrException
is thrown.

3. Calibrate the optional computation steps of the CoBa -algorithm

• BCS.setAlgo(String algo);

• BCS.setChoiceType(boolean ChoiceIsOn);

• BCS.setProjectionType(boolean ProjIsOn);

4. Start the CoBa -algorithm using the method change();

5. Check for inconsistent sentences of the BeliefChangeScenario. Within the
change() method at �rst a instance of the class Checker is used to test
if the components of the BeliefChangeScenario are mutually consistent if
not a InconsistencyException is thrown.

6. Next step is to create new renamed logical sentences based on the CoBa
-algorithm, again a SentenceParser is used to create the new sentences as
ISent objects.

7. Creating the equivalences. The CoBa -algorithm is based on �nding max-
imal sets of consistent equivalences. To create and manage these equiv-
alences an instance of the EquivalenceSet class is used. In this step the
following methods of the EquivalenceSet are used to create and store the
equivalences.

• EQSet.addEquivalences_NumberedtoPrimed(Collection c,int n);

• EQSet.addEquivalences_PrimedtoUnprimed(Collection c);

8. The EquivalenceSet also provides a logical sentences that allows to acti-
vate a equivalence by making a single atom true. To get this sentence
the method getEQPart() is called after all needed equivalences have been
created.

9. Initiate the Checker. For each logical sentence (There may exist more
than one because of mutually inconsistent contractors and consistency-
based integrity constraints.) that needs to be checked against the maximal
sets of equivalences a Checker ist created and initialized with the logical
sentence.

• C.init(ISent s);

• • • � Preliminary Draft � May 30, 2005 � • • • 5:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 6 #0

10. Search For maximal consistent sets of equivalences. The search-algorithm
implemented in the BeliefChangeScenario are walking systematical through
the searchspace, using BitSets to represent an equivalence set. The search-
algorithm is using the EquivalenceSet method getEQSetasVecInt(BitSet eqset
) to get a VecInt representation of a equivalence set. The VecInt is nu-
merical encoding of the equivalence set where each equivalence atom that
should be true is encoded as integer number. The VecInt is passed into
the check(VecInt v) method of the Checker to test the consistens.

11. After the maximal sets of equivalences have been found the resulting
knowledgebases can be created and returned.

3.2 ISent

ISent objects are the representation of the logical sentences. An ISent class
has to provide methods to get information about the type of the object if it
represents a atomic sentence, a disjunction, conjunction, implication, a tautol-
ogy or a contradiction, it must provide information about how deep the logical
sentence is nested and which atoms are used in this sentence. It also needs to
provide some basic transformation operations and a String representation of the
sentence.

Listing 2: ISent.idl
// ISent represents a logical sentence.

2 interface ISent
{

4 // Returns the type of this sentence.
// The method returns an int indicating the sentence type.

6 int getType ();

8 // Returns the depth (levels of nesting) of this sentence.
// The method returns an int indicating the depth of this

sentence.
10 int getDepth ();

12 // Returns a set consisting of the atoms of this sentence.
// The method returns a HashSet consisting of the atoms of this

sentence.
14 HashSet getAtoms ();

16 // Returns the string representation of this sentence.
String toString ()

18
// Returns an equivalent ISent sentence , in which , all the

implications have been
20 // replaced with disjunctions , and all the biconditionals with a

conjunction of two disjunctions.
ISent implicationsOut ();

22
// Returns an equivalent ISent sentence , in which the negation

signs appear only on the atoms.
24 ISent negationsIn ();

26 // Returns an equivalent ISent sentence , in which the outer
disjunction signs are moved inside.

ISent disjunctionsIn ();
28

• • • � Preliminary Draft � May 30, 2005 � • • • 6:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 7 #0

// Returns an equivalent ISent sentence , in which the outer
conjunction signs are moved inside.

30 ISent conjunctionsIn ();

32 };

3.3 SentenceParser

The SentenceParser class is used to create ISent objects from String repre-
sentations of logical sentences, it also has to check the syntax of the parsed
sentences.

Listing 3: SentenceParser.idl
// The SentenceParser is used to create ISent objects from string

representations.
2 interface SentenceParser

{
4 // Parses the string s and returns the corresonponding ISent

sentence.
// s is the string to be parsed as an ISent sentence.

6 // The method throws an SyntaxErrException if s is syntactically
malformed.

// The method returns the corresponding ISent sentence for s.
8 ISent parseString(String s) throws SyntaxErrException

10 };

3.4 Checker

The Checker is a wrapper for the actually used satis�ability library. A Checker
should be initialised with a logical sentence provide a method to check if this
sentence is consistent with a clause.

Listing 4: Checker.idl
// The Checker wraps the access the sat -library and provides an

interface
2 // for easy and fast checking the consistency of logical sentences.

interface Checker
4 {

// Initializes the Checker with the logical sentence s. The
sentence s is transformed into a cnf

6 // and the clauses are fed into the Solver.
// The parameter s represents the logical sentence that should be

checked against clauses.
8 void init(ISent s)

10 // With this method you can check if the logical sentence used to
initialize the checker is consistent with

// the clause represented by the VecInt v.
12 // The parameter v VecInt is a Datastructure from the SAT4J

Library and represents a logical clause a simple conjunction
of literals represented as Integer value.

// If a Atom should be true its integer value is in the VecInt
and if it should be false it negative IntegerValue is in the
VecInt.

14 // The returns true if the clause AND the initialization sentence
are satisfiable else false.

• • • � Preliminary Draft � May 30, 2005 � • • • 7:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 8 #0

boolean check(VecInt v)
16

};

3.5 EquivalenceSet

The EquivalenceSet class has an interface that allows creating equivalences and
to provides needed informations about the equivalence set. The class has to
provide the number of equivalences stored in the EquivalenceSet and a mapping
between the BitSet representation of a equivalence set and Vector of equiva-
lences.

Listing 5: EquivalenceSet.idl
1

interface EquivalenceSet
3 {

// Creates a set of equivalences from the strings in c with the
superscript n. For example ,

5 // given a c containing {p, q} and an int i, it creates a vector
of ISents {p^i=p',q^i=q '}.

// The parameter c represents the Collection of strings from
which to generate equivalences.

7 // The parameter n is an int indicating the superscript for the
generated equivalences.

void addEquivalences_NumberedtoPrimed(Collection c,int n)
9

// Creates a set of equivalences from the strings in c. For
example , given a c containing

11 // {p, q}, it creates a vector of ISents {p=p', q=q '}.
// The parameter c represents the Collection of strings from

which to generate equivalences.
13 void addEquivalences_PrimedtoUnprimed(Collection c)

15 // Returns the corresponding set of atoms for the BitSet bs. For
example , if a bit k in bs

// is set , then the returned set of atoms will contain the first
atoms of the equivalence indexed k.

17 // The parameter bs is the BitSet whose corresponding atoms are
to be returned.

// The method returns a Vector containing the corresponding
atoms for bs.

19 Vector getAtomsFromEQSet(BitSet bs)

21 // We want to identify a equivalence stored in this class by a
single atom. With this method a

// new logical sentence is created
23 // for each equivalence stored in this class there is a sentence

(EQ1 > p=p') the conjuction of all these sentence is what i
call EQPart of the

// logical formula that we like to check against EQSets and what
this method returns.

25 // The method returns the ISent representation of the conjunction
of all implications (newEQAtom > p=p')

// stored in this EquivalenceSet
27 ISent getEQPart ()

29 // Returns the corresponding set of equivalences for the BitSet
bs. For example , if a bit k in

// bs is set , then the returned set of equivalences will contain
the biconditional indexed k.

• • • � Preliminary Draft � May 30, 2005 � • • • 8:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 9 #0

31 // The parameter bs is the BitSet whose corresponding
equivalences are to be returned.

// The method returns a Vector containing the corresponding
equivalences for bs.

33 Vector getEQSet(BitSet bs)

35 // Returns the corresponding VecInt representation for the BitSet
bs. For example , if a bit k in bs

// is set , then the returned VecInt will contain the id of the
equivalence indexed k.

37 // The parameter bs is the BitSet whose corresponding VecInt is
to be returned.

// The method returns a VecInt containing the corresponding atom
ids for bs.

39 VecInt getEQSetasVecInt(BitSet bs)

41 // Returns the number of equivalences of this EquivalenceSet.
int getNumberOfEquivalences ()

43
};

• • • � Preliminary Draft � May 30, 2005 � • • • 9:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 10 #0

4 Implementation considerations

In this section the implementation of the above mentioned interfaces should be
discussed, with respect to the current state, further development and reuse of
of actually implementing classes.

With respect to maybe many implementations care must be taken to ensure
an implementation of the interfaces works with all of them. This means that all
implementations should work using only the de�ned interfaces and they should
reuse as much as possible the already de�ned classes. It is recommended to use
only a SentenceParser to create ISent objects and to use a single EquivalenceSet
to create and store all the equivalences. The implementations shall be de�ned
in the package beliefchangelogic.

An implementation for ISent should provide the methods equals() and
clone() and the toString() method should be used as standard for printing
in all classes.

4.1 BeliefChangeScenario

The BeliefChangeScenario is the central class it can be devided into 3 main
tasks, that are

1. to setup the logical formulas that in fact have to be checked against the
set of equivalences,

2. �nd the maximal sets of equivalences and

3. construct the resulting knowledgebase.

How the setup of the formulas that are checked against the set of equivalences
is done depends on whether there is projection merge or symetric merge switched
on. Depending on which setup process has been choosen the following things
may di�er, the formulas that are checked against the equivalence sets and the
set of equivalences it self. In the actually implementation those results of the
setup process are stored in attributes of the BeliefChangeScenario the instance
of the class EquivalenceSet and a Vector of Checker instances initialised with the
formulas which have to be checked against the equivalences. It seems that the
setup process does not have any further in�uence to the beliefchange process.
This gives thought to a further decomposition of the beliefchange process and
maybe should lead to an encapsulation of the setup process and de�ning a
interface that returns the above mentioned parameters. Actually there exist
two methods setupsymetic() and setupprojection() which need as input
the set of knowledgebases to merge a revision sentence and a set of contraction
sentences.

setupsymetric

• At �rst all the atoms are appear in more that one knowledgebase that
should be merged are stored in m_KBCommonAtoms.

• Then all atoms that appear in a knowledgebase to merge and also in the
revision or contraction sentence are stored in m_CommonAtoms.

• • • � Preliminary Draft � May 30, 2005 � • • • 10:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 11 #0

• Then the equivalences are created. For each knowledgebase that has to be
merged and for all the atoms that appear in this knowledgebase as well as
in m_KBCommonAtoms, the method addEquivalences_NumberedtoPrimed()
is called to create the equivalence (a'=a^n) where n is the number of the
knowledgebase.

• For all atoms in m_CommonAtoms the method addEquivalences_PrimedtoUnprimed()
is called to create the equivalences (a=a')

• Then we get the a logical sentence from the EquivalenceSet that allows to
make a equivalences true by choosing a single atom true. This sentences
is called EQ-part and is a conjuction of implications where so called EQ-
atom implies a equivalence like (EQ1 > (a'=a2)).
getEQPart();

• The next step is to create new renamed sentences from the knowledgebases
that have to be merged. For each knowledgebase a new renamed is created
where the atoms in m_CommonKBAtoms are replaced by atoms numbered
with index of the knowledgebase. For example knowledgebase 1 is repre-
sented by ((a&b)+c)) and m_CommonKBAtoms contains c the new sentence
is ((a&b)+c^1). This is done using the method primeString(String
s , Collection<String> c, int n) which breaks the logical sentences
represented by the String s into parts down to the atoms and if the atom
is contained in the Collection c adds the superscript n.
atom = atom+"^"+n;

• The remaining Atoms that are contained in m_CommonAtoms are replaced
by primed atoms following the same procedure but calling primeString()
with 0 as the integer value which causes that only a "'" is added. For
example the input sentence is the result of the former step ((a&b)+c^1)
and m_CommonAtoms contains c and a the result is ((a'&b)+c^1), be-
cause c could not be primed it has already been replaced by c^1 and only
a remains to be replaced by a'. The resulting sentences are stored in
m_KBNumbered.

• The setup for symetric merge also produces sentences that have only
been primed by calling primeString() with the original sentence and
m_CommonAtoms and 0. The resulting sentences are stored in m_KBPrimed.

• Then the sentences that need to be checked against the set of equivalences
are created. For symetricmerge these are for each contraction sentence, the
disjunction of the sentences in m_KBPrimed conjoined with the sentences in
m_KBNumbered conjoined with the revision sentence the EQ-Part and the
contraction sentence. For each contradiction sentence a Checker is created
and initialised with the appropriate sentence and the Checker objects are
stored in m_KBURevUCon.

• As the �nal result of the setup process we got the EquivalenceSet with all
equivalence we have to test and a set of Checker objects initialised with
the formulas we want to check against the set of equivalences.

• • • � Preliminary Draft � May 30, 2005 � • • • 11:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 12 #0

The next step the search for a set of maximal sets of equivalences consistent
with the formulas can also be encapsulated as there already are implemented
some di�erent search strategies. We have to distinguish two kinds of search
algorithms here

1. Search algorithms that are based on a maximality check and �nd one �rst
maximal set of equivalences and can then compute more on demand until
all sets are found.

2. Search algorithms that have to search the whole searchspace to check for
maximality and then have found all maximal sets.

To de�ne a common interface for both kind of search-algorithms this interface
would need iterator methods to access the maximal sets like getFirst() and
getNext() as well as a method to get the set of all maximal sets like getAll().
The current implementation has only search algorithms that have to search all
solutions and return the whole set, but in the further development of coba there
is a high probablity that some more will be implemented.

AllDetEq1 This search algorithm does an depth�rst search and spans an
binary searchtree, it performs maximality checks to determine the maximal
consistent sets and collects them.
Algorithm 1: AllDetEq1
Global: A set of knowledgebases K.
Input : Three sets of atoms C,D and E.
begin

if C = ∅ then
isMaximal:= false;
foreach k ∈ K do

if not Sat(k ∪ E ∪
∨

D) then
isMaximal:= true;
break;

if isMaximal then
Add2MaxConsistent(E);

return;

choose q ∈ C;
sat:= true;
foreach k ∈ K do

if not Sat(k ∪
⋃

E ∪ {q}) then
sat:= false;
break;

if sat then
AllDetEq1(C \ {q}, D, E ∪ {q});
AllDetEq1(C \ {q}, D ∪ {q}, E);

else
AllDetEq1(C \ {q},D, E);

end

• • • � Preliminary Draft � May 30, 2005 � • • • 12:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 13 #0

AllDetEq2_2 This search algorithm does an depth�rst search and spans an
asymetric searchtree it collects maximal consistent sets to avoid satchecks.
Algorithm 2: AllDetEq2_2
Global: A set of knowledgebases K.
Input : Two sets of atoms ActualEqs, and NottestetEqs, and the last

Atom added to ActualEqs lastadded.
begin

if ActualEqs ⊆ F for some F ∈ MaxConsistent then
/* ActualEqs is known to be consistent */
while NottestedEqs 6= ∅ do

choose p ∈ NottestedEqs;
NottestedEqs := NottestedEqs \ {p};
AllDetEq2_2(ActualEqs ∪ {p},NottestedEqs, p);

return;

/* ActualEqs have to be checked */
sat:= true;
foreach k ∈ Ks do

if not Sat(k ∪
⋃

ActualEqs) then
sat:= false;
break;

if sat then
if NottestedEqs = ∅ then

Add2MaxConsistent(ActualEqs);
while NottestedEqs 6= ∅ do

choose p ∈ NottestedEqs;
NottestedEqs := NottestedEqs \ {p};
AllDetEq2_2(ActualEqs ∪ {p},NottestedEqs, p);

else
if NottestedEqs 6= ∅ then

if not ActualEqs \ {lastadded} ⊆ F for some
F ∈ MaxConsistent then

/* remove last added Atom from ActualEqs and add
it the to maximal consistent */

Add2MaxConsistent(ActualEqs \ {lastadded})

end

AllDetEq3 This search algorithm does an depth�rst search and spans an
asymetric searchtree it collects maximal consistent sets.

• • • � Preliminary Draft � May 30, 2005 � • • • 13:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 14 #0

Algorithm 3: AllDetEq3
Global: A set of knowledgebases K.
Input : Two sets of atoms C, and E
begin

existbigger:= false;
while E 6= ∅ do

choose q ∈ E;
E := E \ {q};
sat:= true;
foreach k ∈ K do

if not Sat(k ∪
⋃

C ∪ {q}) then
sat:= false;
break;

if sat then
existbigger:= true;
AllDetEq3(C ∪ {q}, E);

else
increase heuristic value for q;

if checkForConsistentSuperSets(C ∪ E) then return;
if not existbigger then

Add2MaxConsistent(C);
end

AllDetEQ4

Heuristic Some of the current implemented searchalgorithms like AlldetEQ2_2
and AllDetEQ3 make use of a heuristic to improve search. The heuristic used
is as simple as e�ctive, for each atom a heuristic value is stored, this value is
initialy 0, if the atom is a de�nte cause for a con�ict (adding this atom causes
a inconsitent set) the heuristic value of this atom is increased. The heuristic
choose function always returns a atom with the highest heuristic value. By
applying this heuristic the searchalgorithm should �nd faster the minimal in-
consitent sets to cut the searchspace.

The third step the construction of the resulting sentence can start after the
search process has �nished and a set of solutions is provided. There are two
kind of construction methods implemented, the optimistic which chooses one
solution and creates a new sentence by renaming and the sceptical which uses
all solutions and returns a disjunction of the new renamed sentences.

conjoin_UnPrimedAndRevisor

• The input for the renaming is the conjuction of the numbered and primed
sentences in m_KBNumbered which is �rst unnumbered which means that
in the sentence each atom numbered with n for which an equivalence
(a'=a^n) in the selected solution existd is replaced by a'. If there is no
such equivalence for the numbered atom it is replaced by the negation of
its primed version ~a'. After this step no numbered atoms remain in the

• • • � Preliminary Draft � May 30, 2005 � • • • 14:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 15 #0

sentence, this has basically removed the con�icts between the knowledge-
bases to merge.

• The next renaming step is to unprime the remaining primed atoms. If
the unprimed version dont belong to m_CommonAtoms they can be simply
replaced by it's unprimed version, because they are only a results of the
unnumbering step and not cause to a con�ict with the revision sentence.
If the unprimed version belongs to m_CommonAtoms and an equivalence
(a=a') exists in the solution they are replaced by the unprimed version
a. If the unprimed version belongs to m_CommonAtoms but no equivalence
(a=a') exists in the solution it has to replaced by the negated unprimed
version ~a. After this step no more primed atoms exist in the sentence
and the con�ict to the revision sentence is solved.

• The next step is to removed the information from the contraction sentence
which means each atom a that belong to the m_CommonAtoms_Con_KB and
for this no equivalence (a=a') exist in the solution, has to be removed.
This is done by replacing these atoms with the tautology or the contra-
diction. For example we have the logical sentence ((a&b&c)+d) and the
set of atoms that have to be contracted is {a,d} we create for every pos-
sible interpretation of this set of atoms a new sentence and disjoin them
((F&b&c)+F)+((T&b&c)+F)+((F&b&c)+T)+((T&b&c)+T). In the resulting
sentence all the knowledge con�icting with the contractors are removed.

The BeliefChangeScenario returns as result a Vector of the resulting knowl-
edgebases.

4.2 ISent

ISent objects are a internal representation of the logical sentences in the coba-
framework. We want create all kind of logical sentences as ISent objects to deal
with them over a common set of methods. To provide this common interface
within the current implementation ISent is a abstract base class for di�erent
sub classes implementing the di�erent types of logical sentences, so ISent can
be seen as a collection of classes implementing all types of logical sentences.
This collection implementing ISent needs at �rst to provide methods to cre-
ate all kind of sentences as their are the constructor of an atomic sentence
Atom(String s) the methods to create negation makeNeg(ISent s), disjunc-
tion makeDis(Collection<ISent> c), conjuction makeConj(Collection<ISent>
c), implication makeImp(ISent s1, ISent s2) and equivalences makeBiImp(ISent
s1, ISent s2). There also exist implementation of the contradiction and the
tautology for those we dont need construction methods because they exist as
single static objects. In Fact there exist six di�ent classes implementing ISent

Atom is implementing the atomic sentences providing the Atom(String s)
constructor to create a atoms labeled with the String s. The clas Atom also
has register new created Atoms in the AtomRegistry and unregsiter them if the
object is destroyed.

Negation is implementing the negation of sentences and provides the con-
struction method makeNeg(ISent s).

• • • � Preliminary Draft � May 30, 2005 � • • • 15:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 16 #0

BinaryCompound is implementing implications and equivalences and pro-
vides the construction methods makeImp(ISent s1, ISent s2) and makeBiImp(ISent
s1, ISent s2).

MultipleCompound is implementing conjuctions and disjuctions of sentences
and provides the construction methods makeConj(Collection<ISent> c) and
makeDis(Collection<ISent> c).

Contradiction is implementing the aways false sentence and provides the
static attribute bottom representing the one existing contradiction.

Tautology is implementing the aways true sentence and provides the static
attribute top representing the one existing tautology.

All ISent objects should only be created via the SentenceParser which uses
the construction method of ISent and makes sure that the created sentences are
syntactical correct.

4.3 SentenceParser

The SentenceParser is used everywhere in the CoBa -framework to create ISent
objects from stringrepresentations in EquivalenceSet to create the equivalences
in BeliefchangeScenario to create the renamed sentences in the Checker to cre-
ate new sentences in CNF. The SentenceParser keeps track that no forbidden
symbols are used in the sentences and that the parenthesis are set correctly.

4.4 Checker

The Checker class is a wrapper for the satchecking engine we use, actually
the sat4j library. The Checker has to be initialised with an ISent object that
should be checked against several sets of atoms. Within this initialisation at �rst
a CNF-formula is created and fed into the solver provided by the sat library.
It may happen that this formula itself is a contradiction, what means that
no matter which sentences are added to this formula it always stays false. If
the formula is contradiction an attribute indicating this is set to true. The
check method uses the initialised solver to test it against a conjuction of atoms
representing a partial interpretation of the formula and returns true if it is
the subset of a model and false otherwise. If the attributes of Checker are
indicating that the formula is a contradiction it the sat check is skipped and
false is returned.

4.5 EquivalenceSet

The EquivalenceSet is the class that is used to create and manage the equiva-
lences between the di�erent knowledgebases. Two di�erent kind of equivalences
can be created, equivalences between normal atoms and primed atoms like (a ≡
a′) and equivalences between numbered atoms and primed atoms like (a2 ≡ a′).
These equivalences are created with the methods addEquivalences_PrimedtoUnprimed
(Collection<String> c) and addEquivalences_NumberedtoPrimed(Collection<String> c
,int n) which work basically this way.

• • • � Preliminary Draft � May 30, 2005 � • • • 16:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 17 #0

At �rst the new Atoms are created with the SentenceParser and stored in
the EquivalenceSet.

primedAtom = parseString(a+"'"); //a' the primed version of an atom.
numberedAtom = parseString(a+"^"+n); //a^2 the numbered version of an atom.
EQAtom = parseString("EQ"+k); //EQ1 a new atom (EQ-Atom).
Then the equivalences are created and stored.
parseString("("+a+"="+a+"')"); //(a=a') a equivalence to primed version of an

atom.
parseString("("+a+"'="+a+"^"+n+")"); //(a'=a^2) a equivalence between the primed

version of an atom and a numbered version of an atom.
At next a implication is created and stored that allows making an equivalence

true by choosing a single EQ-Atom true.
parseString("(EQ"+k+">("+a+"'="+a+"^"+n+"))"); //(EQ1 > (a'=a^2))
To use the feature of using EQ-Atoms to make an equivalence true in a

formula it is necessary to conjoin the formula with the sentence provided by
method getEQPart() of the EquivalenceSet which simply returns a conjunction
of all these stored implications.

• • • � Preliminary Draft � May 30, 2005 � • • • 17:#0 � ©R ©M

design.tex 30/05/2005 at 13:48 page 18 #0

This article was processed using the comments style on May 30,
2005.
There are 0 comments to be processed.

• • • � Preliminary Draft � May 30, 2005 � • • • 18:#0 � ©R ©M

