
Iterated Belief Change Implementation

Joel Faber
jfaber@cs.sfu.ca

School of Computing Science
Simon Fraser University

Burnaby, B.C.
Canada V5A 1S6

Abstract

We describe BE, a belief evolution solver for the modal action language
A2. The action language A2 is an epistemic extension of the action
language A. This action language extends previous epistemic extentions
of A by allowing erroneous initial beliefs and non-Markovian belief change.
We describe our implementation using an AGM revision operator called
the topological revision operator as described in (Hunter, 2006).

1 Introduction

The action language A2, first described in (Hunter, 2006), is an epistemic ex-
tension to the high level action language A. In this paper we present an imple-
mentation, named BE, of a belief evolution solver for a simplified version of the
A2 action language.

In section 2 we will briefly review the A2 action language. The general
algorithm will be presented in section 3. In section 4 we will present details of
the implementation using smodels. In section 5 we will discuss how to use the
program BE.

2 Action Language A2

In this section we review the action language A2 as described in (Hunter, 2006).
As A2 is an extension of the action description language A, we refer the reader
to (Gelfond and Lifschitz, 1998) for a definition of A. This section recapitulates
material taken from (Hunter, 2006).

2.1 Propositions

Let A be a fixed set of action symbols and let F be a fixed set of fluent symbols.

Definition 1 A proposition of A2 is an expression of the form

A causes φ if F1 ∧ · · · ∧ Fp

1

where A ∈ A, each Fi is a literal and φ is either a formula of the form 2ψ for
some non-modal formula ψ.

Since we are interested in an epistemic modality, it is natural to think of propo-
sitions of the form

O causes 2φ if F1 ∧ · · · ∧ Fp

as descriptions of sensing action effects. We use the terms sensing action and
non-sensing action to refer to actions with modal and non-modal effects, re-
spectively. The symbol O will range over sensing actions and the symbol A will
range over non-sensing actions. An action description is a set of propositions.
The semantics of A2, defined by associating a transition function ΦAD with ev-
ery action description AD, is intended specifically for belief change with respect
to a fixed AGM revision operator. . . .

2.2 World View

(Hunter, 2006) defines observation and action trajectories as the following.

Definition 2 An observation trajectory of length n is an n-tuple ᾱ = 〈α1, . . . , αn〉
where each αi ∈ 2S.

Definition 3 An action trajectory of length n is an n-tuple Ā = 〈A1, . . . , An〉
where each Ai ∈ A.

Definition 4 Let ᾱ = 〈α1, . . . , αn〉 be an observation trajectory and let Ā =
〈A1, . . . , An〉 be an action trajectory. We say that Ā is consistent with ᾱ if and
only if there is a belief trajectory 〈κ0, . . . , κn〉 such that, for all i,

1. κi ⊆ αi

2. κi = κi−1 �Ai−1.

If Ā is consistent with ᾱ, we write Ā||ᾱ.

Definition 5 A world view of length n is a pair W = 〈Ā, ᾱ〉, where ᾱ is an
observation trajectory and Ā is an action trajectory, each of length n. We say
W is consistent if Ā||ᾱ.

Definition 6 Let T be a deterministic transition system, let Ā = 〈A1, . . . , An〉
and let α be an observation. Then α−1(Ā) denotes the set of all w such that
there is a path from w to an element of α following the edges A1, . . . , An.

If a world view W is inconsistent we need to remove observations such that
we obtain a new world view that is consistent and contains the most reliable
observations. From (Hunter, 2006),

Definition 7 Let W = 〈Ā, ᾱ〉 be a world view of length n. Define τ(W) =
〈Ā, ᾱ′〉, where ᾱ′ = 〈α′

1, . . . , α
′

n〉 is defined by the following recursion.

• If α−1
n (Ā) 6= ∅ then α′

n = αn,
otherwise α′

n = 2F.

2

• For i < n, if

α−1

i (Āi) ∩
⋂

i<j

(α′

j)
−1(Āj) 6= ∅

then α′

i = αi,
otherwise α′

i = 2F.

3 Algorithm

It has been demonstrated that belief evolution under topological revision can
be reduced to finding shortest paths in an underlying transition system. This
subsection is a summary of the algorithm given in (Hunter, 2006).

If we consider action trajectories and observation trajectories of fixed finite
length, the procedure can be described as follows. Let Ā = 〈A1, . . . , An〉 be
an action trajectory of length n and let ᾱ = 〈α1, . . . , αn〉 be an observation
trajectory of length n.

1. Determine αPRE =
⋂

i α
−1

i (A1, . . . , Ai).

2. Let PATH denote the set of shortest paths from κ to αPRE .

3. Let κ0 be the set of terminal nodes on paths in PATH .

4. For i ≥ 1, κi = κ0 �A1 � · · · �Ai.

In step 1 we determine αPRE . If P = 〈v1, . . . , vn〉 is a path in the transition
function ΦAD such that each vi is a vertex of ΦAD, vi ∈ αi, and vi+1 is obtained
by executing Ai in state vi then v1 ∈ αPRE . Step 2 requires some mechanism to
find the set of shortest paths from κ to αPRE . Steps 3 and 4 are straightforward.

4 Implementation with Smodels

In this section we will discuss BE, a solver for the A2 action language. This
implementation uses smodelsAPI (Simons, 2000) but could be adapted to other
answer set solvers such as DVI.

4.1 Action Description

Let F denote a set of fluent symbols and let A denote a fixed set of action
symbols. An effect proposition is an expression of the form

A causes L if F

where A ∈ A and F ∈ F. An action description is a set of effect propositions.
A logic program τn(AD), where AD is an action description, has answer

sets that correspond to plans of length n. For each fluent F and i ≤ n the logic
program τn(AD) contains the atoms Fpos(i) and Fneg(i). For each action A

and i < n the logic program contains the atoms Apos(i) and Aneg(i). The logic
program τn(AD) is composed of the following rules:

3

1. if B is an action or fluent symbol, then for each i ≤ n when B is a fluent
symbol or each i < n when B is an action symbol, τn(AD) contains the
rule

⊥ ← Bpos(i), Bneg(i)

2. for every proposition in AD of the form

A causes F if G1 ∧ · · · ∧Gp ∧ ¬H1 ∧ · · · ∧ ¬Hq

and every i < n, τn(AD) contains the rules

F (i+ 1) ← A(i), G1pos(i), . . . , Gppos
(i),

H1neg(i), . . . , Hqneg
(i)

3. if B is an action symbol and i < n or if B is a fluent symbol and i = 0,
then τn(AD) contains the rules

Bneg(i)← not Bpos(i)

Bpos(i)← not Bneg(i)

4. for every fluent symbol F and i < n, τn(AD) contains

Fpos(i+ 1)← not Fneg(i+ 1), Fpos(i)

Fneg(i+ 1)← not Fpos(i+ 1), Fneg(i)

5. for every i < n, and every distinct action symbols A1 and A2, τn(AD)
contains the rules

A1neg(i)← A2pos(i).

The rules in (1) are to simulate classical negation because smodels only supports
negation as failure natively. Rules in (2) express the causal relationship between
the fluent F the action A and the preconditions G1, . . . , Gp,¬H1, . . . ,¬Hq .
Rules in (3) state that all actions can be true or false and all fluents can initially
be either true or false. Rules in (4) state that all fluents are inertial, and rules
in (5) state that no two actions occur at the same time.

Intuitively, a literal F is true at time i if an and only if Fpos(i) is in the
answer set. Likewise, a literal ¬F is true if and only if Fneg(i) is in the answer
set. Similarly, an action A is executed at time i if and only if Apos(i) is in the
answer set. For any action or fluent B, Bpos(i), called the positive atom of B at
time i, is in the answer set if and only if B is true at time i. Likewise, Bneg(i),
called the negative atom of B at time i, is in the answer set if and only if B is
false at time i.

4

κ α−1(A1, . . . , An) α−1(A1, . . . , An−1)

path of
length m

κ0

A1 κ1

κn
An

α−1(A1)

Figure 1: Visualizing Topological Revision

4.2 Extending τ
n
(AD)

We will extend τn(AD) to a new logic program τn,m(AD,K,W), where AD is
an action description, K is a set of initial beliefs and W is a world view of the
form 〈Ā, ᾱ〉. The answer sets of τn,m(AD,K,W) correspond to plans in the
action domain AD of length n+m with the following properties.

1. m is the length of the subpath between some state s that satisfies the
initial conditions K, and some state s′ ∈ α−1(A1, . . . , An),

2. n is the length of the world view W ,

3. K is satisfied at time 0,

4. Ai executes at time m+ i− 1 ,

5. αi is satisfied at time m+ i− 1 .

Figure 1 illustrates the answer sets of τn,m(AD,K,W) graphically. The fig-
ure shows a large box representing κ; these are the states that satisfy the initial
conditions K. The large box labeled α−1(A1, . . . , An) is the set of states that
can reach α by executing the actions A1, A2, . . . , An. The boxes representing
α−1(A1, . . . , An−1) and α−1(A1) have similar interpretations. The small circle
inside α−1(A1, . . . , An) represents the subset that is minimally distant from κ,
which, in the context of topological revision, means the elements that can be
reached from κ by a minimal path length.

4.2.1 Consistent with Initial Beliefs

Let K, the agent’s initial beliefs, be the conjunction of literals K1 ∧ · · · ∧Kp.
To ensure that property (3) is satisfied we include the rules Kipos(0) for each
Ki ∈ {K1,K2, . . . ,Kp}.

5

4.2.2 Consistent with Action Trajectory

Given an action trajectory Ā = 〈A1, A2, . . . , An〉 we need to add some rules
to τn,m(AD,K,W) to ensure that all stable models correspond to plans that
contain a subpath with edges A1, A2, . . . , An. This is enforced using the rules
Aipos(m+ i− 2) for every i ≤ n.

4.2.3 Consistent with Observation Trajectory

Given an observation trajectory ᾱ = 〈α1, α2, . . . , αn〉 we need to add some rules
to τn,m(AD,K,W) to ensure that all stable models correspond to plans that
are consistent with all the observations in ᾱ.

Observations are represented as well formed formulas using only conjunction,
disjunction and negation connectives. Let F be a formula in disjunctive normal
form that is equivalent to an observation αi. Let the atom F (m + i − 1) be
in the stable model when the formula F at time m + i − 1 is asserted to be
true. We also let the atoms Dj(m+ i− 1) represent the truth values of each of
the j disjuncts of F . Our strategy is not to have an atom that is equivalent to
the truth value of the formula but, rather to have the ability to assert that a
formula must be true to be part of an answer set. Models that do not satisfy
the formula will create an inconsistency and therefore will not be part of the
answer set. We can ensure that all stable models have true observations at the
appropriate time in the plan by adding the following rules to τn,m(AD,K,W)
for each disjuctive formula F equivalent to an observation αi:

1. for each disjunct Dj of F we add the rules

Dj(m+ i− 1) ← B1pos, . . . , Bkpos,

Bk+1neg , . . . , Bnneg ,

where each Bh is a conjunct of Dj

2. the rules

⊥← F (t), not D1(m+ i− 1), not D2(m+ i− 1), . . . , not Dk(m+ i− 1)

3. We assert that the formula must be true at time m+ i− 1

F (m+ i− 1)

4.3 Fallible Observations

If the world view W is inconsistent then the logic program τn,m(AD,K,W)
has no answer sets. From definition 7 we can develop an algorithm using an-
swer set programming to detect observations that are not consistent with newer
observations.

Let τn(AD,Wp) be a logic program where AD is an action description and
Wp = 〈Ā, 〈αp, α

′

p+1, . . . , α
′

n〉〉 is a world view such that αp is an observation.
Answer sets of τn(AD,Wp) correspond to plans of the action language AD of
length n with the following properties, shown graphically in figure 2.

6

α−1(A1) α−1(A2) α−1(Ap) αp

A1
Ap

Ap+1

An

α′

n α′

n−1
α′

p+1

Figure 2: Visualizing Consistency Check

1. Ai executes at time i.

2. αp is satisfied at time p.

3. α′

i is satisfied at time i for each i > p.

We can detect and remove inconsistent observations using the following al-
gorithm.

1. Set i = n

2. Determine whether τn(AD,Wp) has any valid answer sets.

3. If there are no valid answer sets, set α′

i = >.

4. Set i = i− 1 and goto 2 if i >= 0.

The action trajectory Ā is consistent with the observation trajectory ᾱ′ =
〈α′

1, . . . , α
′

n〉 and the logic program τn,m(AD,K,W ′), where W ′ = 〈Ā, ᾱ′〉, has
valid answer sets.

4.4 Belief Evolution

The solution to the logic program τn,m(AD,K,W ′) with minimal m is the so-
lution to belief evolution using topological revision. Given AD, K, and W ′ as
input we can find a solution minimal m using the following algorithm.

1. Set m = 0

2. Determine all answer sets to τn,m(AD,K,W ′).

3. Let PATH be the corresponding set of paths.

7

(a) If PATH = ∅, set m = m+ 1 and goto 2

(b) If PATH 6= ∅, then continue.

4. Let κi denote the set of states in PATH at time m+ i.

5. Return 〈κ0, κ1, . . . , κn〉.

5 Usage

In this section we will discuss how to use BE. BE can be obtained at The SFU
Computational Logic Lab’s website http://www.cs.sfu.ca/~cl/.

5.1 Input

BE reads all input from standard in. Strings that contain only alphanumeric
characters and the underscore (‘ ’) character are accepted as action and fluent
names.

BE uses the logical connectives ‘-’ to represent classical negation, ‘|’ to rep-
resent logical disjunction and ‘&’ for logical conjunction. A literal is defined as
a fluent symbol that, if negated, is immediately preceded by a negation symbol.
A conjunction of literals is represented as a sequence of one or more literals
connected with conjunction symbols.

A formula is similar to a conjunction of literals except it allows disjunctions
and parenthesis to enforce the preferred order of operation. Formulae must be
well formed or else an error message is printed and the program is terminated.
For example, the formula

(A ∧ ¬B ∧ ¬C) ∨ ¬(¬D ∧ E ∧ F)

should be represented in BE syntax as the following (sans quotes)

“(A & -B & -C) | -(-D & E & F)”.

An effect proposition of an action description AD is a statement of the form

A causes L,

where A is an action and L is a literal, or

A causes L if F,

where A and L are the same as above and F is a conjunction of literals. Effect
propositions are represented as a line of input of the form

“A causes L”

or

“A causes L if G1 &...& Gp”,

8

where G1...Gp are literals.
Command statements of the form

κ ◦ 〈〈A1, . . . , An〉, 〈α1, . . . , αn〉〉,

where κ is the set of all possible initial worlds, 〈A1, . . . , An〉 is an action trajec-
tory of ontic actions, and 〈α1, . . . , αn〉 is an observation trajectory, is represented
as a line of input of the form

“|K1 & ...& Km| o <<A1, ..., An>, <OBS1, ..., OBSn>>”.

Observations are represented as formulas. Only one command statement may
be given per program execution.

Whitespace, except for line breaks, is ignored.

5.2 Output

The type of output can be controlled by using command line arguments.

• -h Display help and exit.

• -p Display all paths.

• -t Display transition system.

• -k Display new knowledge set.

The default is -k. The arguments -p, -t, and -k can be used together to display
multiple type of output.

If there are no valid solutions to the problem (or the path length is greater
than 100), then the only output is a warning message telling the user than no
solution was found.

5.2.1 Display Paths

Each path, as illustrated in figure 1, are printed in the following format.

{State0} <> A1

{State1} <> A2

· · ·

{Staten+m−1} <> An+m

{Staten+m}

where each Statei is a comma separated list of fluents that are true in that state
it represents in the transition system at time i. Each path is separated by an
empty line.

5.2.2 Display Transition System

The transition system is printed in the form

{StartState} Action {EndState},

where StartState and EndState are comma separated list of fluents that are
true in that state it represents in the transition system.

9

5.2.3 Display New Knowledge Set

The new knowledge set is printed in the form

k0{

{k01}

{k02}

· · ·

}

· · ·

kn{

{kn1}

{kn2}

· · ·

}

where each kxi is a comma separated list of fluents that are true in the state it
represents.

6 Conclusion

We have presented an implementation of the A2 action language using answer
set planning. Our implementation makes use of a topological revision operator
as described in (Hunter, 2006). In future work we would like to generalized this
revision operator to provide support for more complex revision operators. For
example, one extension could be to minimize a path of weighted edges rather
than find a path of shortest length. This extension would subsume the current
implementation.

References

Michael Gelfond and Vladimir Lifschitz. Action languages. Linköping Elec-
tronic Articles in Computer and Information Science, 3(16), 1998. URL
http://www.ep.liu.se/ea/cis/1998/016/.

Aaron Hunter. Belief Change in the Presence of Actions and Observations: A
Transition System Approach. PhD thesis, Simon Fraser University, Burnaby,
B.C. Canada, July 2006.

Aaron Hunter and James P. Delgrande. Iterated Belief Change: A Transition
System Approach. The Proceedings of the International Joint Conferences on
Artificial Intelligence (IJCAI), page 460, 2005.

Patrik Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Otaniemi, Finland, 2000.

10

