
From CTL to Datalog

Foto Afrati
Dept. of Computer Science
N.T.U.A. 157 80 Zographou,

Athens, Greece

afrati@softlab.ntua.gr

Theodore Andronikos
Dept. of Computer Science
N.T.U.A. 157 80 Zographou,

Athens, Greece

thandron@softlab.ntua.gr

Vassia Pavlaki
Dept. of Computer Science
N.T.U.A. 157 80 Zographou,

Athens, Greece

vpaulaki@softlab.ntua.gr

Eugenie Foustoucos
Dept. of Computer Science

N.T.U.A.
157 80 Zographou, Athens,

Greece

eugenie@ermis.cs.ntua.gr

Irène Guessarian
Laboratory for Computer

Science,LIAFA
Université Paris 6, 4 Place

Jussieu, 75252 Paris Cedex 5

ig@liafa.jussieu.fr

ABSTRACT
We provide a translation from CTL to Datalog¬Succ. The transla-

tion has the following advantages: a) It is natural. b) It provides

intuition to the expressive power of CTL and its various frag-

ments. c) It uses a fragment of Datalog¬Succ which is close to the

expressive power of CTL.

Categories and Subject Descriptors

F.4 [Mathematical Logic and Formal Languages]: Mathematical

Logic—temporal logic;

I.2.3 [Deduction and Theorem Proving]—logic programming

General Terms

Theory, verification

Keywords: Temporal logic, Datalog, Verification

1. INTRODUCTION
This paper relates to Paris Kanellakis research on systems

verification and specification [14], [13], [12]. In [14], Paris
Kanellakis and his student Scott Smolka consider Milner’s
Calculus for Communicating Systems (CCS) and stress its
relation to the classical theory of regular expressions and
finite automata. Fundamental complexity questions about
CCS are answered in an elegant way. Basic notions of equiv-
alence in CCS are treated as refinements of the classical
notion of nondeterministic finite automata equivalence. Re-
search on model checking in the modal µ-calculus is pursued
by Scott Smolka in a paper in LICS94 [25] which Paris was
aware of and liked. In this last paper, the connection be-
tween modal µ-calculus and Datalog¬ is also observed. Re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCK50, June 8, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-604-8/03/0006 ...$5.00.

sults about the parallel complexity of Datalog¬ queries and
a reduction of ∧-free formulas of the alternation-free modal
µ-calculus to Datalog¬ is used to derive results about the
parallel computational complexity of this fragment of modal
µ-calculus. Interestingly, in the present paper, we present a
reduction of CTL (Computational Tree Logic) formulas to
Datalog¬ which is based on similar intuition as in [25]. CTL
is a branching time temporal logic which is used for specifi-
cation and verification of temporal properties of events [7].
We show here that the model checking problem of CTL is
reduced to the query evaluation problem of Datalog¬Succ.
Temporal logic in its most basic form corresponds to a

type of logic originally developed by philosophers ([22]).
Pnueli [19] was the first to propose the use of (linear) tempo-
ral logic as a language for reasoning about change over time
and describing nonterminating behavior. One of the most
significant developments in this area is the existence of al-
gorithmic methods for verifying temporal-logic properties of
finite state programs. The practical significance is derived
mainly from the fact that many synchronization and com-
munication protocols can be abstracted as finite-state pro-
grams. Finite-state programs can be modelled by transition
systems where each state can be characterized by a fixed
number of boolean atomic propositions. These systems are
known as finite propositional Kripke structures. The ques-
tion of checking whether the program has specific properties
is reduced to that of checking whether a temporal logic for-
mula holds on the Kripke structure that represents the pro-
gram (a.k.a. model checking). In defining temporal logics,
there are two possible views regarding the underlying nature
of time. One is that of linear time: at each moment there
is only one possible future (LTL Linear temporal Logic).
The other is that of branching time (treelike nature): at
each moment time may follow different paths which repre-
sent different possible futures ([8, 17]). The most prominent
examples of this kind are CTL (Computational Tree Logic),
CTL� (Full Branching Time Logic), and µ-calculus.
The translation of temporal logics to logic programming

has been investigated and related work concerning trans-
lation of CTL or µ-calculus into logic programming can
be found in [21, 5, 20]. In [5], the LMC project is pre-

72

sented which uses XSB, a tabled logic programming system
that extends Prolog-style SLD resolution with tabled res-
olution. Model checking has been proved to be closely re-
lated to database query evaluation. The idea is based on the
principle that Kripke structures can be viewed as relational
databases ([11]). In that perspective, the database query
language Datalog has inspired work in [10], where the lan-
guage Datalog LITE is introduced, obtained by extending
stratified Datalog with generalized literals. Datalog LITE
is shown to subsume temporal languages such as CTL and
the alternation-free µ-calculus. In fact, it is shown to have
the same expressive power as the alternation-free portion of
guarded fixed point logic.
The main result of the present work is a translation of

CTL to Datalog¬Succ i.e., Datalog with negation only on the
database predicates (EDB predicates) and with the succes-
sor built-in predicate. The advantage of our translation to
prior related work is that a) the translation is natural b) the
fragment of Datalog¬Succ that we use for the translation has
expressive power close to the expressive power of CTL. c) As
a consequence, it provides intuition into the expressiveness
of CTL and its fragments. Some of the ideas used in this
paper have been previously presented in our work [1].
The following two motivating examples show that, in some

cases, it is easy and straightforward to translate a CTL for-
mula into Datalog.

Example 1.1. This is the first motivating example for
our translation techniques. Consider the CTL formula: ϕ ≡
E©p. It says that, considering (1) a Kripke structure K,
which is given by a set of states, the transition relation R
on the states, and atomic propositions assigned to the states,
and (2) an initial state s0 of K, then, there exists a path
starting from s0 such that the next state (after s0) on this
path is assigned the atomic proposition p. We may view the
Kripke structure as a database D with unary EDB predicates
for the propositions (here EDB P is associated to proposition
p) and a binary EDB predicate R for the transition relation.
Now the following Datalog program says that if s0 is com-
puted in the answers of the query GE(©p), then there exists
a path in D starting from s0 which in one transition step
reaches a state where P is true.

• Gp(x)←− P (x)

• GE©p(x)←− R(x, y), Gp(y)

Whereas this is not a recursive program, when the formula
contains the “until” modality, recursion is needed as is the
case in the example that follows.

Example 1.2. Consider now the somewhat more complex
formula ϕ ≡ E©p ∧ E(qUt). The Datalog query that ex-
presses this formula is the following.

• Gp(x)←− P (x)

• GE©p(x)←− R(x, y), Gp(y)

• Gq(x)←− Q(x)

• Gt(x)←− T (x)

• GE(qUt)(x)←− T (x)

• GE(qUt)(x)←− Gq(x), R(x, y), GE(qUt)(y)

• GE©p∧E(qUt)(x)←− GE©p(x), GE(qUt)(x)

This Datalog query expresses what the CTL formula says,
i.e., that from s0 there exists a path that is assigned p on its
next state and there is also a path (different or the same)
such that it is assigned q along all its states up until it gets
to a state that is assigned t. The first two rules express
the CTL formula E©p the next three rules express the CTL
formula E(qUt) and the last rule together with the other five
express the CTL formula ϕ.

Notice that we use heavy subscripts in the predicates to
facilitate the easy connection between the program predicate
and the CTL formula this predicate expresses.

For our translation, the motivating observations are:

• The result in [24], [16] which proves that any CTL
formula can be equivalently written in a positive nor-
mal form such as all negations are pushed inside in the
atomic propositional symbols. The modalities that are
used to facilitate the rewriting in positive normal form

are A, E, U and Ũ (for detailed formal definitions see
the Definitions Section). In this paper we refer only to
CTL formulas in positive normal form.

• When a CTL formula ϕ in positive normal form does
not contain the universal quantifier, then a simple frag-
ment of Datalog¬ is sufficient to express ϕ. The two
examples above almost illustrate all the intuition ex-

cept a complication needed to express Ũ (for an ex-

ample containing Ũ, see Section 7).

However, Datalog¬ is not powerful enough to express CTL
because it cannot express the universal quantifier. Hence, we
need to extend it in order to capture the universal modality.
The extension we propose is the introduction of a variable
that ranges over another domain which is totally ordered
(e.g., the integers). This variable will serve the purpose of
counting the states in the Kripke structure, so that it ensures
that all states reachable from a certain state are considered
during an evaluation of the query on the Kripke structure.
This extension can be viewed as allowing the built-in pred-
icate Succ in Datalog¬, thus obtaining Datalog¬Succ.
In this paragraph we explain what we mean by translation.

Suppose we are given a CTL formula ϕ and a Kripke struc-
ture K and we want to check whether ϕ holds in K. Then we
reduce this problem to the problem: Given a Datalog¬Succ

query and relations on the EDB predicates (structure D)
find whether a certain element is an answer to the query in
D. That is, we transform K into D with a special element
s0 (the root of the structure) and ϕ into a program Π such
that ϕ holds in K iff s0 is an answer to the query of Π on D.
Using a variant of Datalog to express temporal logics is

beneficial for the following reasons:

1. Datalog¬ is a declarative query language with clear
semantics.

2. It has polynomial data complexity, i.e., fixed Datalog¬

programs can be evaluated in polynomial time over the
input databases.

3. Datalog¬ is suited for main-memory databases as well
as for databases stored on disk. Sophisticated query-
optimization techniques (magic-sets for instance) [2]
for secondary storage access have been developed and
implemented [3].

73

A corollary of our main result is that any CTL formula in
normal form that does not use the universal quantifier can
be translated in Datalog¬ such as all IDB predicates are
either unary or binary, which however essentially express
transitive closure. Another corollary is that any CTL for-
mula in normal form that does not use either the universal
operator or the Ũ modality can be translated in monadic
Datalog¬, i.e., it uses only unary predicates in the head of
all rules. These corollaries also help to get intuition into the
expressiveness of CTL as delineate the expressiveness of its
various fragments.
The rest of the paper is organized as follows. Section 2

contains the formal definition of CTL. Sections 3 contains
the formal definition of Datalog¬Succ. Section 4 defines tem-
poral Kripke structures and explains how they can be viewed
as relational databases. Section 5 presents the formalism of
our translation and discusses the notion of equivalence be-
tween state and path CTL formulas and Datalog queries.
Section 6 gives the translation rules and then proves the
main result of this paper (Theorem 6.1). Section 7 gives
more examples to help the reader see the intuition of the
more complicated parts of the translation and Section 8 dis-
cusses possible future research directions.

2. BASIC DEFINITIONS

2.1 Syntax
In CTL we encounter two kinds of formulas: state and

path formulas. CTL (Computational Tree Logic) express
properties along a tree-like flow of time.
We use AP to denote the countable (and sometimes finite)

set of atomic propositions: p0, . . . , pi,

Definition 2.1. The set of CTL state formulas, denoted
simply CTL, is the smallest set of formulas such that:

• Atomic propositions, negations of atomic propositions,
� and ⊥ are CTL state formulas,

• If ϕ and ψ are CTL state formulas, then (ϕ ∨ ψ) and
(ϕ ∧ ψ) are CTL state formulas, and

• If ϕ is a path formula, then Eϕ and Aϕ are CTL
state formulas.

Definition 2.2. The set of CTL path formulas is the
smallest set of formulas such that if ϕ and ψ are state for-

mulas, then ©ϕ, (ϕUψ) and (ϕŨψ) are CTL path formulas.

From now on, when we refer to CTL formulas without fur-
ther clarification, we mean state formulas.
As usual one can define the following abbreviations:

• ♦ϕ ≡ �Uϕ (“eventually”),

• �ϕ ≡ ¬♦¬ϕ (“always”),

It should be noted here that many authors use another
range of symbols for these modalities: X instead of ©, F
instead of ♦, and G instead of �.
A CTL formula in which negations are applied only to

atomic propositions is in positive normal form. In the
next Section we show why every CTL formula can be trans-
formed into normal form, as we have stated in the introduc-
tion.

2.2 Semantics
The semantics of CTL are defined in terms of temporal

Kripke structures.

Definition 2.3. A temporal Kripke structure K for
AP is a tuple 〈W,R, s0,V〉 where:

• W is the set of states,

• R ⊆ W ×W is the total1 accessibility relation (i.e.,
∀s∃tR(s, t)),

• s0 ∈W is the initial state, and

• V : W −→ 2AP is a valuation that determines which
atomic propositions are true at each state.

Definition 2.4. A path π of K is an infinite sequence
s0, s1, s2, . . . of states of W , such that R(si, si+1), i ≥ 0. We
also use the notational convention πi = si, si+1, si+2,

K is, in general, a directed labelled graph with node set
W , arc set R and labelling function V. K need no be a
tree; however, it can be viewed as an W -labelled tree, which
results by unwinding K from the initial state s0 (see [7] for
details).
The truth value of CTL formulas is defined in terms of

Kripke structures. The symbolism K, s |= ϕ means that “in
structure K formula ϕ is true at state s” and the symbolism
K, π |= ϕ means that “in structure K formula ϕ is true of
path π”.

Definition 2.5. We define recursively the meaning of |=.
If ϕ is a state formula, then:

• |= � and �|= ⊥,

• K, s |= p ⇐⇒ p ∈ V(s), for an atomic proposition
p ∈ AP ,

• K, s |= ϕ ∨ ψ ⇐⇒ K, s |= ϕ or K, s |= ψ,

• K, s |= ϕ ∧ ψ ⇐⇒ K, s |= ϕ and K, s |= ψ,

• K, s |= Eϕ⇐⇒ there exists a path π = s0, s1, . . ., with
initial state s = s0, such that K, π |= ϕ, and

• K, s |= Aϕ ⇐⇒ for every path π = s0, s1, . . ., with
initial state s = s0 it holds that K, π |= ϕ.

If ϕ is a path formula, then:

• K, π |=©ϕ⇐⇒ K, π1 |= ϕ,

• K, π |= ϕUψ ⇐⇒ there exists i ≥ 0 such that K, πi |=
ψ and for all j, 0 ≤ j < i, K, πj |= ϕ, and

• K, π |= ϕŨψ ⇐⇒ for all i ≥ 0 such that K, πi �|= ψ
there exists j, 0 ≤ j < i, such that K, πj |= ϕ.

From the above Definition 2.5 we can see that:

π |= ¬(ϕŨψ)⇔ π |= ¬ϕU¬ψ (1)

or, equivalently,

π |= ¬(ϕUψ)⇔ π |= ¬ϕŨ¬ψ (2)

1The reason for this requirement is discussed in Section 4.

74

One can think of ϕŨψ as saying that “either ψ always
holds along π, or the first occurrence of ¬ψ is strictly pre-
ceded by an occurrence of ϕ”. This modality is needed for
transforming any CTL formula into an equivalent one in

positive normal form. Actually, Ũ was introduced by Vardi
in [24], [16] precisely for this reason. Hence, our assump-
tion that every CTL formula is in positive normal form is
justified.

3. DATALOG

Definition 3.1 ([23]). A Datalog program Π is a fi-
nite set of function-free Horn clauses, called rules, of the
form:

G(x1, . . . , xn)←− H1(y1,1, . . . , y1,n1), . . . , Hk(yk,1, . . . , yk,nk)

where:

• x1, . . . , xn are variables,

• yi,j’s are either variables or constants,

• G is a predicate, called the head of the rule, and

• The H1(y1,1, . . . , y1,n1), . . . , Hk(yk,1, . . . , yk,nk) are
predicates that make the body of the rule.

- IDB (Intensional database predicates) are called the predi-
cates which are defined by the logical rules. This means that
they can appear either in the head of one or more rules or
in the body.
-EDB (Extensional database predicates) are called the pred-
icates whose relation is stored in the database. An EDB
predicate can only appear the body of rules.
- A pair (Π, G) consisting of a Datalog program Π together
with one of its IDB predicates G called goal predicate, de-
fines a query.
- Datalog programs are built from atomic formulas, which
are predicate symbols with a list of arguments, e.g., P (A1,
. . . , An), where P is a predicate symbol. Each predicate
symbol is associated with a particular number of arguments
that it takes.
- A Datalog program Π is said to be monadic if all the pred-
icates occurring in the heads of the rules have arity one.
- For any database D over relations that correspond to the
EDB predicates, G(D) is the set of ground facts about G
which can be deduced from D by applications of the rules
in Π. The bottom up evaluation that we use later, is an
algorithm that initializes the IDB predicates to be empty
and repeatedly apply the rules to add tuples to the IDB
predicates, until no new tuples can be added [23].
- Datalog¬ extends Datalog by allowing negation in the
EDB predicates only.
- Datalog¬Succ extends Datalog¬ by allowing to use in the
body an interpreted predicate Succ(X,Y) meaning that Y
is the successor of X (assuming that X,Y take values from
a totally ordered domain). The semantics are the same. In
this paper, we use the equivalent notationX+1 for Succ and
we also assume that we are given the number of elements in
the domain denoted by cmax.

4. FINITE KRIPKE STRUCTURES AS RE-
LATIONAL DATABASES

In this section we explain how finite Kripke structures
can be viewed as relational databases in a natural way and,
therefore, can be studied in a Datalog setting.

Definition 4.1. Let AP be a finite set {p0, . . . , pr} of
atomic propositions and assume that K = 〈W,R, s0,V〉 is
a finite Kripke structure for AP . To K corresponds the fi-
nite relational database DK = 〈W,R, s0, P0, . . . , Pr,TRUE,
FALSE〉 defined as follows:

• W is the set of states W ,

• R is the accessibility relation R,

• s0 is the initial state,

• Pi = {s ∈ W | pi ∈ V(s)} contains the states at which
pi is true (0 ≤ i ≤ r),

• TRUE =W (TRUE corresponds to �), and

• FALSE = ∅ (FALSE corresponds to ⊥).
Note: For convenience and clarity, in Section 6 (where we

give the translation rules), we use predicates TRUE and
TRUE. However, these can be easily removed as follows:
a) The rules that contain predicate False are deleted and
b) The predicate True is simply deleted and the rest of the
rule is retained.
We must point out that in Kripke structures the set of

states W can be infinite. Indeed Definition 2.3 is general
enough to allow W to have any cardinality. However, in
relational databases the universe W is finite. This is the
reason why we have defined the above transformation only
for finite Kripke structures. This restriction in turn poses
another complication. In CTL we are dealing with infinite
computation paths, which means that in order to ensure that
the accessibility relation R is meaningful, we must ensure
that R is total ([16]):

∀x∃y R(x, y) (3)

Notice that every path π = s0, s1, s2, . . . of K gives rise to
the path π = s0, s1, s2, . . . , where R(si, si+1), i ≥ 0, in DK.
Recall from section 2 that K has the form of a directed

labelled graph. The fact that K is finite implies that every
node of the graph has a finite branching degree. In other
words for every x ∈ W there exist k (for some k ∈ N that,
of course, depends on x) distinct elements y0, . . . , yk−1 of
W such that R(x, y0), . . . , R(x, yk−1). We may assume that
in the temporal Kripke structure K there is an implicit lin-
ear order among the successors (i.e., the children) of a node
(viz., from the leftmost child to the right-most). This lin-
ear order among the successors of any state can be captured
by introducing the relations S0, . . . , Sn−1 (n is the maxi-
mum branching degree of K) in DK. These relations serve
as a refinement of the “unordered” accessibility relation R,
i.e., R =

⋃n−1
i=0 Si. Hence, for every node x with k succes-

sors we may write S0(x, y0), . . . , Sk−1(x, yk−1), instead of
R(x, y0), . . . , R(x, yk−1), meaning that y0, . . . , yk−1 are the
first, . . . , kth child of x, respectively.
To simplify the translation of CTL formulas to Datalog

programs, which will be presented in section 6, we shall
assume that K has branching degree (at most) two and we
shall use the relations S0 and S1 instead of R.

75

5. CTL FORMULAS VS. RELATIONAL
QUERIES

In this section we explain how we view the Datalog pro-
grams that correspond to CTL formulas. State formulas are
evaluated on a state; it is easy to see that this poses no prob-
lem for Datalog because Datalog predicates are evaluated on
tuples. In this particular case the tuple is unary and corre-
sponds to a state. For path formulas however we have to be
more careful; path formulas are evaluated over a path, but a
Datalog predicate cannot be evaluated on a path. However,
CTL state formulas are built up from existentially or uni-
versally quantified path formulas. This reasoning leads us
to not actually define a Datalog program for a path formula
ϕ, but for two state formulas: one for Eϕ and one for Aϕ.
Specifically, the correspondence between CTL formulas

and Datalog programs is as follows:

• To every CTL state formula ϕ corresponds a Datalog
program Πϕ with unary goal predicate Gϕ.

• To every CTL path formula ϕ correspond two Dat-
alog programs; the existential ΠE

ϕ with unary goal

predicate GE
ϕ , and the universal ΠA

ϕ with unary goal

predicate GA
ϕ .

The reason we construct two additional programs for ev-
ery path formula ϕ is the following: ΠE

ϕ will be used in the
construction of the Datalog program for the formula Eϕ and
ΠA

ϕ will be used in the construction of the Datalog program
for the formula Aϕ. We shall prove that this translation
maintains equivalence between CTL formulas and Datalog
programs, in the following sense:
(1) If ϕ is a state formula, then:

K, s |= ϕ⇔ s ∈ Gϕ(DK) (4)

(2) If ϕ is a path formula, then there are two separate cases:{
K, π |= ϕ for a π = s0, . . .⇔ s0 ∈ GE

ϕ(DK)
K, π |= ϕ for every π = s0, . . .⇔ s0 ∈ GA

ϕ (DK)

}
(5)

6. TRANSLATING CTL INTO DATALOG

6.1 Translation rules
In this section, we show how to translate CTL formu-

las into Datalog programs for temporal Kripke structures
with branching degree (at most) two. We view such Kripke
structures as being described by the two relations S0 and
S1; S0(x, y) (S1(x, y)) expressing that y is the left (right)
child of x2. In this translation we use Datalog with nega-
tion applied only to EDB predicates, and with the successor
built-in predicates.
Notice that the relation S0(x, y) is total because of (3),

which expresses the totality of R. However, the relation
S1(x, y) may not be defined for every state x.
Let π = s0, s1, s2, . . . be a path in DK; then:

S0(si, si+1) or S1(si, si+1), for every i ≥ 0. (6)

For each CTL state formula ϕ we construct a Datalog
program Πϕ with unary goal predicate Gϕ and for each CTL

2Our results can be extended to temporal Kripke structures
of bounded branching degree.

path formula ϕ we construct two Datalog programs, ΠE
ϕ with

unary goal predicate GE
ϕ and ΠA

ϕ with unary goal predicate

GA
ϕ . This is done recursively as follows:

Definition 6.1. Let ϕ be a CTL state formula. Then:
(1) If ϕ ≡ p or ϕ ≡ ¬p, where p ∈ AP , or ϕ ≡ � or ϕ ≡ ⊥,
the corresponding programs are

• Πϕ : Gϕ(x)←− P (x),

• Πϕ : Gϕ(x)←− ¬P (x)

• Πϕ : Gϕ(x)←− TRUE(x), and

• Πϕ : Gϕ(x)←− FALSE(x)

(2) If ϕ ≡ ψ1 ∨ ψ2 or ϕ ≡ ψ1 ∧ ψ2, then

• Πϕ :




Gϕ(x)←− Gψ1(x)
Gϕ(x)←− Gψ2(x)
Πψ1

Πψ2

• Πϕ :




Gϕ(x)←− Gψ1(x), Gψ2(x)
Πψ1

Πψ2

where (Πψ1 , Gψ1) and (Πψ2 , Gψ2) are the programs and goals
that correspond to formulas ψ1 and ψ2 respectively.

(3) If ϕ ≡ Eψ, where ψ is a path formula, the program is

• Πϕ :

{
Gϕ(x)←− GE

ψ(x)
ΠE

ψ

(4) If ϕ ≡ Aψ, where ψ is a path formula, the program is

• Πϕ :

{
Gϕ(x)←− GA

ψ (x)
ΠA

ψ

Definition 6.2. Suppose now that ϕ is a path formula.
(1) If ϕ ≡ ©ψ, where ψ is a state formula, then the exis-
tential and universal programs are

• ΠE
ϕ :




GE
ϕ(x)←− S0(x, y), Gψ(y)

GE
ϕ(x)←− S1(x, y), Gψ(y)

Πψ

• ΠA
ϕ :




GA
ϕ (x)←− S0(x, y),¬S1(x, z), Gψ(y)

GA
ϕ (x)←− S0(x, y), S1(x, z), Gψ(y), Gψ(z)

Πψ

(2) If ϕ ≡ ψ1Uψ2, where ψ1 and ψ2 are state formulas, the
existential and universal programs are

• ΠE
ϕ :




GE
ϕ(x)←− Gψ2(x)

GE
ϕ(x)←− Gψ1(x), S0(x, y), G

E
ϕ(y)

GE
ϕ(x)←− Gψ1(x), S1(x, y), G

E
ϕ(y)

Πψ1

Πψ2

• ΠA
ϕ :




GA
ϕ (x)←− Gψ2(x)

GA
ϕ (x)←− Gψ1(x), S0(x, y),¬S1(x, z), G

A
ϕ (y)

GA
ϕ (x)←− Gψ1(x), S0(x, y), S1(x, z), G

A
ϕ (y),

GA
ϕ (z)

Πψ1

Πψ2

(3) If ϕ ≡ ψ1Ũψ2 (ψ1 and ψ2 are state formulas), the exis-
tential and universal programs are

76

• ΠE
ϕ :




GE
ϕ(x)←− Gψ1(x), Gψ2(x)

GE
ϕ(x)←− TCψ2(x, x)

GE
ϕ(x)←− Gψ2(x), S0(x, y), G

E
ϕ(y)

GE
ϕ(x)←− Gψ2(x), S1(x, y), G

E
ϕ(y)

TCψ2(x, y)←− Gψ2(x), S0(x, y), Gψ2(y)
TCψ2(x, y)←− Gψ2(x), S1(x, y), Gψ2(y)
TCψ2(x, z)←− Gψ2(x), S0(x, y), TCψ2(y, z)
TCψ2(x, y)←− Gψ2(x), S1(x, y), TCψ2(y, z)
Πψ1

Πψ2

• ΠA
ϕ :




GA
ϕ (x)←− Gψ1(x), Gψ2(x)

GA
ϕ (x)←− Gψ2(x), S0(x, y),¬S1(x, z), G

A
ϕ (y)

GA
ϕ (x)←− Gψ2(x), S0(x, y), S1(x, z), G

A
ϕ (y),

GA
ϕ (z)

GA
ϕ (x)←− PLψ2(x, cmax)

PLψ2(x, n)←− Gψ2(x), S0(x, y),¬S1(x, z),
PLψ2(y, n− 1), n ≤ cmax

PLψ2(x, n)←− Gψ2(x), S0(x, y), S1(x, z),
PLψ2(y, n− 1),
PLψ2(z, n− 1), n ≤ cmax

PLψ2(x, n)←− Gψ2(x), S0(x, y), S1(x, z),
GA

ϕ (y), PLψ2(z, n− 1),
n ≤ cmax

PLψ2(x, n)←− Gψ2(x), S0(x, y), S1(x, z),
PLψ2(y, n− 1), GA

ϕ (z),
n ≤ cmax

PLψ2(x, 1)←− Gψ2(x), S0(x, y),¬S1(x, z),
Gψ2(y)

PLψ2(x, 1)←− Gψ2(x), S0(x, y), S1(x, z),
Gψ2(y), Gψ2(z)

Πψ1

Πψ2

In the program ΠA
ϕ , the constant cmax is equal to the cardi-

nality |W | of the temporal Kripke structure K.

6.2 Useful facts

Definition 6.3. Let K = 〈W,R, s0,V〉 be a Kripke struc-
ture with branching degree at most two, let ϕ ≡ ψ1Uψ2 and
let K, π |= ϕ for every path π with initial state s (possibly
s �= s0). We define the U unwinding of K from s, denoted
T ϕ

s , as the least subset of W × N for which the following
hold:

1. (s, 0) ∈ T ϕ
s , and

2. If (s, n) ∈ T ϕ
s , R(s, t), K, s |= ψ1 ∧ ¬ψ2 and K, t |=

ψ1 ∨ ψ2, then (t, n+ 1) ∈ T ϕ
s .

Definition 6.4. Let K = 〈W,R, s0,V〉 be a finite Kripke

structure with branching degree at most two, let ϕ ≡ ψ1Ũψ2

and let K, π |= ϕ for every path π with initial state s (possibly

s �= s0). We define the Ũ unwinding of K from s, denoted
T ϕ

s , as the least subset of W × N for which the following
hold:

1. (s, 0) ∈ T ϕ
s , and

2. If (s, n) ∈ T ϕ
s , n < |W | − 1, R(s, t), K, s |= ψ2 ∧ ¬ψ1

and K, t |= ψ2, then (t, n+ 1) ∈ T ϕ
s .

A trivial consequence of the fact that our finite Kripke
structures have branching degree two is that every state in

DK has either a left child but not a right child, or both a
left and a right child. We fix the following notation: given a
state s0 of DK, its left child will be denoted sL

1 and its right
child (if it exists) will be denoted sR

1 .
We state now without proof four easy lemmata that we

are going to use extensively in the proof of the main result.

Lemma 6.1. Let K = 〈W,R, s0,V〉 be a finite Kripke struc-
ture and let s0, . . . , si, . . . , sn be a finite path in K (or in
DK), where |W | = n. Then, there exists a state s such that
si = sj = s.

Lemma 6.2. Let K = 〈W,R, s0,V〉 be a Kripke struc-
ture with branching degree at most two, let ϕ ≡ ψ1Uψ2,
let K, π |= ϕ for every path π with initial state s0 and let T ϕ

s

be the U unwinding of K from s0. Then the following hold:

1. T ϕ
s is a finite tree with branching degree at most two.

2. If (s, n) is a leaf of T ϕ
s , then K, s |= ψ2.

3. If (s, n) is an internal node of T ϕ
s , then K, s |= ψ1 ∧

¬ψ2.

Lemma 6.3. Let K = 〈W,R, s0,V〉 be a finite Kripke struc-

ture with branching degree at most two, let ϕ ≡ ψ1Ũψ2, let
K, π |= ϕ for every path π with initial state s0 and let T ϕ

s be

the Ũ unwinding of K from s0. The following hold:

1. T ϕ
s is a finite tree of height at most |W | − 1 that has

branching degree at most two.

2. If (s, n) is a leaf of T ϕ
s , then either

(a) K, s |= ψ1 ∧ ψ2, or

(b) n = |W | − 1, K, s |= ¬ψ1 ∧ψ2 and for every child
t of s (in DK) K, t |= ψ2.

3. If (s, n) is an internal node of T ϕ
s , then n < |W | − 1

and K, s |= ¬ψ1 ∧ ψ2.

The IDB predicate TCψ2(x, y) of Definition 6.2 captures
the notion of a path from state x to state y, such that ψ2

holds at every state along this path. Therefore, TCψ2(x, x)
asserts the existence of a cycle with the property that ψ2

holds at every state of this cycle. All these are formalized
in the following Lemma.

Lemma 6.4.

1. Let s0, . . . , sn be a finite path in DK such that s0 =
sn = s and Gψ2(si), for every i, 0 ≤ i ≤ n. Then
predicate TCψ2(s, s) is true.

2. Let TCψ2(s, s) hold. Then, there exists a finite path
s0, . . . , sn in DK such that s0 = sn = s and Gψ2(si),
for every i, 0 ≤ i ≤ n.

6.3 The main result
We are ready now to prove the main result.

Theorem 6.1. Let AP be a finite set of atomic propo-
sitions, let K = 〈W,R, s0,V〉 be a finite Kripke structure
for AP and let DK be the corresponding relational database.
Then, the following hold:
(1) If ϕ is a state formula

K, s |= ϕ⇔ s ∈ Gϕ(DK) (7)

77

(2) If ϕ is a path formula{
K, π |= ϕ for a π = s0, . . .⇔ s0 ∈ GE

ϕ(DK)
K, π |= ϕ for every π = s0, . . .⇔ s0 ∈ GA

ϕ (DK)

}
(8)

We shall prove that (7) and (8) hold by simultaneous induc-
tion on the structure of the formula ϕ. To make the proof
more readable we consider the two directions separately. We
begin by considering the ⇒ direction.
Proof (⇒)
Let us consider a state formula ϕ. We must examine the
following cases:

1. If ϕ ≡ p or ϕ ≡ ¬p, where p ∈ AP , then the cor-
responding programs are those of Definition 6.1.(1).
Trivially, then:

• K, s |= p ⇒ p ∈ V (s) ⇒ P (s) is a ground fact of
DK ⇒ s ∈ Gϕ(DK), and

• K, s |= ¬p ⇒ p �∈ V (s) ⇒ P (s) is not a ground
fact of DK ⇒ s ∈ Gϕ(DK)

2. If ϕ ≡ ψ1 ∨ψ2 or ϕ ≡ ψ1 ∧ψ2, then the corresponding
programs are shown in Definition 6.1.(2). Again, the
following hold:

• K, s |= ϕ ⇒ K, s |= ψ1 or K, s |= ψ2 ⇒ (by
the inductive hypothesis) s ∈ Gψ1(DK) or s ∈
Gψ2(DK) ⇒ s ∈ Gψ1(DK) ∪ Gψ2(DK) ⇒ s ∈
Gϕ(DK)

• K, s |= ϕ ⇒ K, s |= ψ1 and K, s |= ψ2 ⇒ (by
the inductive hypothesis) s ∈ Gψ1(DK) and s ∈
Gψ2(DK) ⇒ s ∈ Gψ1(DK) ∩ Gψ2(DK) ⇒ s ∈
Gϕ(DK)

3. If ϕ ≡ Eψ, where ψ is a path formula, then the corre-
sponding program is that of Definition 6.1.(3).

• K, s |= Eψ ⇒ there exists a path π = s0, s1, . . .
with initial state s0 = s, such that K, π |= ψ ⇒
(by the inductive hypothesis) s ∈ GE

ψ(DK)⇒ s ∈
Gϕ(DK)

4. If ϕ ≡ Aψ, where ψ is a path formula, then the corre-
sponding program is that of Definition 6.1.(4).

• K, s |= Aψ ⇒ for every path π = s0, s1, . . . with
initial state s0 = s, we have K, π |= ψ ⇒ (by
the inductive hypothesis) s ∈ GA

ψ (DK) ⇒ s ∈
Gϕ(DK)

Let us consider now the more interesting case of path for-
mulas; let ϕ be a CTL path formula.

1. If ϕ ≡ ©ψ, where ψ is a state formula, then the corre-
sponding existential and universal programs are shown
in Definition 6.2.(1).

• The existential case:
Let us assume that K, π |= ϕ for some path π =
s0, s1, s2, . . . with initial state s0. From (6) we
know that either S0(s0, s1) or S1(s0, s1) holds.
Now K, π |= ϕ for the path π = s0, s1, s2, . . .⇒
K, π1 |= ψ for the path π1 = s1, s2, . . . ⇒ K, s1 |=
ψ (because ψ is a state formula)⇒ (by the induc-
tive hypothesis) s1 ∈ Gψ(DK). From ΠE

ϕ , by com-
bining Gψ(s1) with one of S0(s0, s1) or S1(s0, s1),
we immediately derive GE

ϕ(s0) and, thus, s0 ∈
GE

ϕ(DK).

• The universal case:
Let’s assume now that K, π |= ϕ for every path
π = s0, s1, s2, ... with initial state s0. It is conve-
nient to distinguish two cases:
(a) s0 has a left child sL

1 , but not a right child.
In this caseK, π |= ϕ for every path π = s0, s1, s2,
. . . with initial state s0 ⇒ K, π1,L |= ψ for every
path π1,L = sL

1 , s2, . . . with initial state sL
1 ⇒

K, sL
1 |= ψ (because ψ is a state formula) ⇒ (by

the inductive hypothesis) sL
1 ∈ Gψ(DK). More-

over, in this case S0(s0, s
L
1), ¬S1(s0, x) are true

and, therefore, evaluation of the first rule of ΠA
ϕ

gives GA
ϕ (s0) ←− S0(s0, s

L
1),¬S1(s0, x), Gψ(s

L
1)

⇒ s0 ∈ GA
ϕ (DK).

(b) s0 has both a left child sL
1 and a right

child sR
1 . Then K, π |= ϕ for every path π =

s0, s1, s2, . . . with initial state s0 ⇒ K, π1,L |=
ψ for every path π1,L = sL

1 , s
L
2 , . . . with initial

state sL
1 and K, π1,R |= ψ for every path π1,R =

sR
1 , s

R
2 , . . . with initial state sR

1 ⇒ K, sL
1 |= ψ

and K, sR
1 |= ψ (because ψ is a state formula) ⇒

(by the inductive hypothesis) sL
1 , s

R
1 ∈ Gψ(DK).

Moreover, in this case S0(s0, s
L
1), S1(s0, s

R
1) are

true and, therefore, evaluation of the second rule
of ΠA

ϕ gives GA
ϕ (s0) ←− S0(s0, s

L
1), S1(s0, s

R
1),

Gψ(s
L
1), Gψ(s

R
1) ⇒ s0 ∈ GA

ϕ (DK).

2. If ϕ ≡ ψ1Uψ2, where ψ1 and ψ2 are state formulas,
then the corresponding existential and universal pro-
grams are those of Definition 6.2.(2).

• The existential case:
Suppose that K, π |= ϕ where the path π is s0, s1,
s2, We have to examine two cases:
(a) K, π |= ψ2 for the path π = s0, s1, s2, . . . ⇒
K, s0 |= ψ2 (because ψ2 is a state formula) ⇒
(by the inductive hypothesis) s0 ∈ Gψ2(DK) ⇒
GE

ϕ(s0) (from the first rule GE
ϕ(x) ←− Gψ2(x) of

ΠE
ϕ) ⇒ s0 ∈ GE

ϕ(DK).
(b) K, πi |= ψ2 for the path πi = si, si+1, si+2,
. . . and K, πj |= ψ1 for πj = sj , sj+1, sj+2, . . .
(0 ≤ j ≤ i − 1) ⇒ K, si |= ψ2 and K, sj |= ψ1

(0 ≤ j ≤ i− 1) (because ψ1 and ψ2 are state for-
mulas) ⇒ si ∈ Gψ2(DK) and sj ∈ Gψ1(DK) (0 ≤
j ≤ i − 1) (by the inductive hypothesis). From
(6) we know that for every r, 0 ≤ r < i, at least
one of S0(sr, sr+1) or S1(sr, sr+1) holds. From
the first rule GE

ϕ(x) ←− Gψ2(x) of Π
E
ϕ we derive

that GE
ϕ(si). Successive applications of the sec-

ond (GE
ϕ(sr)←−Gψ1(sr), S0(sr, sr+1), G

E
ϕ(sr+1))

and third rule (GE
ϕ(sr)←− Gψ1(sr), S1(sr, sr+1),

GE
ϕ(sr+1)) of ΠE

ϕ for every r, 0 ≤ r < i, yield

GE
ϕ(si−1), G

E
ϕ(si−2), . . . , G

E
ϕ(s1), G

E
ϕ(s0). Thus,

s0 ∈ GE
ϕ(DK).

• The universal case:
Let us assume now that K, π |= ϕ for every path
π = s0, s1, s2, . . . with initial state s0. Consider
the U unwinding T ϕ

s0 of K from s0 and let (t0, r)
be any node of T ϕ

s0 ; we shall prove that t0 ∈
GA

ϕ (DK). This property of T ϕ
s0 indeed implies the

required result because (s0, 0) is a node (specifi-
cally the root) of T ϕ

s0 and, thus, s0 ∈ GA
ϕ (DK). To

78

prove it, let Lt0 = (t0, r), (t1, r+1), . . . , (tn, r+n)
be the longest path from (t0, r) to a leaf (tn, r+n)
of T ϕ

s0 . We use induction on the length n of the
path Lt0 .
(a) If n = 0, then node (t0, r) itself is a leaf.
From Lemma 6.2 we know that K, t0 |= ψ2 and by
the inductive hypothesis (pertaining to formula
ψ2) we get that t0 ∈ Gψ2(DK). Then, from rule
GA

ϕ (x)←− Gψ2(x) of Π
A
ϕ , we derive that G

A
ϕ (t0).

(b) We show now that the claim holds for paths
of length n + 1, assuming that it holds for paths
of length n. In this case node (t0, r) is an inter-
nal node of T ϕ

s0 . From Lemma 6.2 we know that
K, t0 |= ψ1 and by the inductive hypothesis (per-
taining to formula ψ1) we get that t0 ∈ Gψ1(DK).
We focus on the case where node (t0, r) has ex-
actly two successors (tL1 , r + 1) and (tR1 , r + 1) in
T ϕ

s0 (the case where (t0, r) has only one successor
is identical). Since Lt0 has length n+1, then both
LtL

1
and LtR

1
have length at most n. Hence, by the

inductive hypothesis with respect to the length
of the paths LtL

1
and LtR

1
, we get that tL1 and

tR1 ∈ GA
ϕ (DK). So Gψ1(t0), S0(t0, t

L
1), S1(t0, t

R
1),

GA
ϕ (t

L
1) and GA

ϕ (t
R
1) are true and, therefore, the

third rule of ΠA
ϕ gives that GA

ϕ (t0) ←− Gψ1(t0),

S0(t0, t
L
1), S1(t0, t

R
1), G

A
ϕ (t

L
1), G

A
ϕ (t

R
1). Thus, t0 ∈

GA
ϕ (DK).

3. If ϕ ≡ ψ1Ũψ2, where ψ1 and ψ2 are state formulas,
then the corresponding existential and universal pro-
grams are shown in Definition 6.2.(3).

• The existential case:
Suppose that K, π |= ϕ where the path π is s0, s1,
s2, We must consider two cases:
(a) K, πi |= ψ1 ∧ ψ2 for the path πi = si, si+1,
si+2, . . . and K, πj |= ψ2 for πj = sj , sj+1, sj+2,
. . . (0 ≤ j ≤ i − 1) ⇒ K, si |= ψ1 ∧ ψ2 and
K, sj |= ψ2 (0 ≤ j ≤ i − 1) (because ψ1 and
ψ2 are state formulas) ⇒ si ∈ Gψ1(DK) and sj ∈
Gψ2(DK) (0 ≤ j ≤ i) (by the inductive hypothe-
sis). From (6) we know that for every r, 0 ≤ r < i,
at least one of S0(sr, sr+1) or S1(sr, sr+1) holds.
From rule GE

ϕ(x) ←− Gψ1(x), Gψ2(x) of Π
E
ϕ we

derive that GE
ϕ(si). Successive applications of the

other two rules of the program ΠE
ϕ (i.e., GE

ϕ(sr)

←− Gψ2(sr), S0(sr, sr+1), G
E
ϕ(sr+1) and GE

ϕ(sr)

←− Gψ2(sr), S1(sr, sr+1), G
E
ϕ(sr+1)) for every r,

0 ≤ r < i, yield GE
ϕ(si−1), G

E
ϕ(si−2), . . . , G

E
ϕ(s1),

GE
ϕ(s0). Thus, s0 ∈ GE

ϕ(DK).
(b) K, πi |= ψ2 for the path πi = si, si+1, si+2,
. . . , for every i ≥ 0. This implies that K, si |= ψ2,
for every i ≥ 0, and (by the inductive hypoth-
esis) that si ∈ Gψ2(DK), for every i ≥ 0. Let
s0, s1, s2, . . . , sn be an initial segment of π, where
n = |W |. From Lemma 6.1 we know that in
the aforementioned sequence there exists a state
s such that s = sk = sl, 0 ≤ k < l ≤ n. Then
Lemma 6.4.(1) implies that sk ∈ TCψ2(DK). From
(6) we know that for every r, 0 ≤ r < k, at least
one of S0(sr, sr+1) or S1(sr, sr+1) holds. From
ruleGE

ϕ(x)←− TCψ2(x, x) we derive thatG
E
ϕ(sk).

Successive applications of the third (GE
ϕ(sr) ←−

Gψ2(sr), S0(sr, sr+1), G
E
ϕ(sr+1)) or the fourth

(GE
ϕ(sr)←−Gψ2(sr), S1(sr, sr+1), G

E
ϕ(sr+1)) rule

of ΠE
ϕ for every r, 0 ≤ r < k, yield GE

ϕ(si−1),

GE
ϕ(si−2), . . . , G

E
ϕ(s1), G

E
ϕ(s0). Accordingly, s0 ∈

GE
ϕ(DK).

• The universal case:
Let us assume now that K, π |= ϕ for every path
π = s0, s1, s2, . . . with initial state s0. Consider

the Ũ unwinding T ϕ
s0 of K from s0 and let (t0, r)

be any node of T ϕ
s0 . We shall prove that either

GA
ϕ (t0) or PLψ2(t0, |W | − r) hold. This prop-

erty of the nodes of T ϕ
s0 ensures that for the root

(s0, 0) it must be the case that s0 ∈ GA
ϕ (DK) (re-

call the universal program in Definition 6.2.(3)).
To prove this property, let Lt0 = (t0, r), (t1, r+1),
. . . , (tn, r+n) be the longest path from (t0, r) to
a leaf (tn, r + n) of T ϕ

s0 . We are going to use in-
duction on the length n of the path Lt0 .
(a) If n = 0, then node (t0, r) itself is a leaf.
We may assume that node t0 has exactly two suc-
cessors tL1 and tR1 in DK because the case where
t0 has only one successor can be tackled in the
same way. From Lemma 6.3 we know that there
are two cases regarding t0: (1) K, t0 |= ψ1 ∧ ψ2;
in this case the inductive hypothesis (with re-
spect to ψ1 and ψ2) gives that t0 ∈ Gψ1(DK)
and t0 ∈ Gψ2(DK) and from the first rule of
ΠA

ϕ we derive that GA
ϕ (t0). (2) r = |W | − 1,

K, t0 |= ¬ψ1∧ψ2 and K, tL1 |= ψ2 and K, tR1 |= ψ2.
The inductive hypothesis with respect to ψ2 gives
that t0 ∈ Gψ2(DK), tL1 ∈ Gψ2(DK) and tR1 ∈
Gψ2(DK). Using rule PLψ2(t0, 1) ←− Gψ2(t0),
S0(t0, t

L
1), S1(t0, t

R
1), Gψ2(t

L
1), Gψ2(t

R
1) of Π

A
ϕ we

conclude that PLψ2(t0, 1) holds.
(b) We prove now that the claim holds for paths
of length n + 1, assuming that it holds for paths
of length n. In this case node (t0, r) is an in-
ternal node of T ϕ

s0 . ¿From Lemma 6.3 we know
that r < |W | − 1 and K, t0 |= ¬ψ1 ∧ ψ2 and by
the inductive hypothesis (pertaining to ψ2) we get
that t0 ∈ Gψ2(DK). We examine the case where
node (t0, r) has exactly two successors (tL1 , r+ 1)
and (tR1 , r + 1) in T ϕ

s0 , where r + 1 < |W |. In

this case S0(t0, t
L
1), S1(t0, t

R
1) are true. Since Lt0

has length n + 1, then both LtL
1
and LtR

1
have

length at most n. Hence, by the inductive hy-
pothesis (regarding the path length), we get that
GA

ϕ (t
L
1) or PLψ2(t

L
1 , |W | − r − 1) and GA

ϕ (t
R
1) or

PLψ2(t
R
1 , |W | − r − 1). If GA

ϕ (t
L
1) and GA

ϕ (t
R
1)

are true, then the third rule of ΠA
ϕ (GA

ϕ (x) ←−
Gψ2(x), S0(x, y), S1(x, z), G

A
ϕ (y), G

A
ϕ (z)) implies

that GA
ϕ (t0) also holds. If PLψ2(t

L
1 , |W | − r − 1)

and PLψ2(t
R
1 , |W | − r − 1) are true, then using

the sixth rule of ΠA
ϕ (PLψ2(x, n) ←− Gψ2(x),

S0(x, y), S1(x, z), PLψ2(y, n−1), PLψ2(z, n−1),
n ≤ |W |) we conclude that PLψ2(t0, |W |−r) also
holds. In the remaining two cases the seventh and
eighth rule imply that PLψ2(t0, |W | − r).

We have, thus, proved that for the node (s0, 0)
one of GA

ϕ (s0) or PLψ2(s0, |W |) holds. If we as-

79

sume that PLψ2(s0, |W |) holds, then the fourth
rule of ΠA

ϕ implies that GA
ϕ (s0). Hence, in any

case, s0 ∈ GA
ϕ (DK).

We complete now the proof of (7) and (8) by considering
the opposite direction.
Proof (⇐)
First we consider the case where ϕ is a state formula.

1. If ϕ ≡ p or ϕ ≡ ¬p, where p ∈ AP , then the cor-
responding programs are those of Definition 6.1.(1).
Trivially, then:

• s ∈ Gϕ(DK) ⇒ P (s) is a ground fact of DK ⇒
p ∈ V (s)⇒ K, s |= p, and

• s ∈ Gϕ(DK)⇒ P (s) is not a ground fact ofDK ⇒
p �∈ V (s)⇒ K, s |= ¬p

2. If ϕ ≡ ψ1 ∨ψ2 or ϕ ≡ ψ1 ∧ψ2, then the corresponding
programs are shown in Definition 6.1.(2). Again, the
following hold:

• s ∈ Gϕ(DK) ⇒ s ∈ Gψ1(DK) ∪ Gψ2(DK) ⇒ s ∈
Gψ1(DK) or s ∈ Gψ2(DK) ⇒ (by the inductive
hypothesis) K, s |= ψ1 or K, s |= ψ2 ⇒ K, s |= ϕ.

• s ∈ Gϕ(DK) ⇒ s ∈ Gψ1(DK) ∩ Gψ2(DK) ⇒ s ∈
Gψ1(DK) and s ∈ Gψ2(DK) ⇒ (by the inductive
hypothesis) K, s |= ψ1 and K, s |= ψ2 ⇒ K, s |= ϕ.

3. If ϕ ≡ Eψ, where ψ is a path formula, then the corre-
sponding program is depicted in Definition 6.1.(3).

• s ∈ Gϕ(DK)⇒ s ∈ GE
ψ(DK)⇒ (by the inductive

hypothesis) there exists a path π = s0, s1, . . . with
initial state s0 = s, such that K, π |= ψ ⇒ K, s |=
Eψ

4. If ϕ ≡ Aψ, where ψ is a path formula, then the corre-
sponding program that of Definition 6.1.(4).

• s ∈ Gϕ(DK)⇒ s ∈ GA
ψ (DK)⇒ (by the inductive

hypothesis) for every path π = s0, s1, . . . with ini-
tial state s0 = s, we have K, π |= ψ ⇒ K, s |= Aψ

Now we consider the case where ϕ is a CTL path formula.

1. If ϕ ≡ ©ψ, where ψ is a state formula, then the corre-
sponding existential and universal programs are shown
in 6.2.(1).

• The existential case:
Let us assume that s0 ∈ GE

ϕ(DK). From the rules

of the program ΠE
ϕ we see that there exists a s1

such that Gψ(s1) holds and also one of S0(s0, s1)
or S1(s0, s1) holds. By the inductive hypothesis
we get K, s1 |= ψ (ψ is a state formula). Let
π = s0, s1, s2, . . . be any path with initial state
s0 and second state s1. Clearly, then K, π1 |= ψ
for the path π1 = s1, s2, . . . and K, π |= ϕ for the
path π = s0, s1, s2,

• The universal case:
Suppose now that s0 ∈ GA

ϕ (DK). It is convenient
to distinguish two cases:
(a) s0 has a left successor s

L
1 but not a right suc-

cessor inDK; in this case S0(s0, s
L
1) and ¬S1(s0, x)

are true. From the first rule of ΠA
ϕ we see that

Gψ(s
L
1) holds. By the inductive hypothesis we

get K, sL
1 |= ψ (ψ is a state formula). Let π =

s0, s1, s2, . . . be an arbitrary path with initial state
s0. The fact that s0 has a left successor sL

1 but
not a right successor implies that sL

1 is the sec-
ond state of every such path. Suppose that there
exists a path π = s0, s

L
1 , s2, . . . with initial state

s0 such that K, π �|= ϕ. Trivially then K, π1 �|= ψ,
where π1 = sL

1 , s2, . . ., which in turn implies that
K, sL

1 �|= ψ, which is absurd.
(b) s0 has both a left successor sL

1 and a right
successor sR

1 in DK; in this case S0(s0, s
L
1) and

S1(s0, s
R
1) are true. From the second rule of ΠA

ϕ

we see that Gψ(s
L
1) and Gψ(s

R
1) hold. By the in-

ductive hypothesis we get K, sL
1 |= ψ and K, sR

1 |=
ψ (ψ is a state formula). Let π = s0, s1, s2, . . . be
an arbitrary path with initial state s0. The fact
that s0 has both a left successor sL

1 and a right
successor sR

1 implies that either sL
1 or sR

1 is the
second state of every such path. Suppose that
there exists a path π = s0, s1, s2, . . . with initial
state s0 such that K, π �|= ϕ. If that were the case,
then K, π1 �|= ψ, where π1 = s1, s2, But
s1 = sL

1 or s1 = sR
1 , which means that K, sL

1 �|= ψ
or K, sR

1 �|= ψ, either of which contradicts the in-
ductive hypothesis.

2. If ϕ ≡ ψ1Uψ2, where ψ1 and ψ2 are state formulas,
then the corresponding corresponding existential and
universal programs are these of Definition 6.2.(2).

• The existential case:
Suppose that s0 ∈ GE

ϕ(DK). From the rules of the

program ΠE
ϕ we see that there exists a si (possibly

si = s0) such that Gψ2(si) holds. Further, there
exists a sequence of states s0, s1, . . . , si such that
for every r (0 ≤ r < i), Gψ1(sr) holds and at
least one of S0(sr, sr+1) or S1(sr, sr+1) is true.
By the inductive hypothesis we get K, si |= ψ2

and K, sj |= ψ1 (0 ≤ j ≤ i−1) (because ψ1 and ψ2

are state formulas). Let π = s0, s1, s2, . . . , si, . . .
be any path with initial segment s0, s1, . . . , si.
Clearly, then K, πi |= ψ2 and K, πj |= ψ1 (0 ≤
j ≤ i− 1), i.e., K, π |= ϕ.

• The universal case:
Let us assume now that s0 ∈ GA

ϕ (DK). Let us de-
fine GA

ϕ (DK, n) to be the set of ground facts for

GA
ϕ that have been computed in the first n rounds

of the evaluation of program ΠA
ϕ

3. We shall prove

that for every t ∈ GA
ϕ (DK, n), K, π |= ϕ for every

path π = t0, t1, t2, . . . with initial state t0 = t.
We use induction on the number of rounds n.
(a) If n = 1, then t appears in GA

ϕ (DK) due to
the first rule of ΠA

ϕ , i.e., t ∈ Gψ2(DK). By the
inductive hypothesis with respect to ψ2 we get
that K, t |= ψ2 (recall that ψ2 is a state formula),
which trivially implies that K, π |= ϕ for every
path π = t0, t1, t2, . . . with initial state t0 = t.
(b) We show now that the claim holds for n+1,
assuming that it holds for n. We examine only

3For a detailed treatment of the bottom-up evaluation of
Datalog programs see [23].

80

the case where node t has exactly two succes-
sors tL and tR, since the case where t has only
one successor is identical. Without loss of gen-
erality we may assume that t first appeared in
GA

ϕ (DK, n+1) during round n+1. This must have
happened due to the third rule of ΠA

ϕ : G
A
ϕ (x)←−

Gψ1(x), S0(x, y), S1(x, z), G
A
ϕ (y), G

A
ϕ (z). This

implies that t ∈ Gψ1(DK) and both tL and tR

belong to GA
ϕ (DK, n). Hence, by invoking the in-

ductive hypothesis with respect to the number of
rounds, we get that K, t |= ψ1, K, π |= ϕ for every
path π1,L = tL1 , t

L
2 , . . . with initial state tL1 = tL

and K, π |= ϕ for every path π1,R = tR1 , t
R
2 , . . .

with initial state tR1 = tR. By combining all
these, we conclude that K, π |= ϕ for every path
π = t0, t1, t2, . . . with initial state t0 = t.

The bottom-up evaluation of Datalog programs
guarantees that there exists n ∈ N such that
GA

ϕ (DK, n) = GA
ϕ (DK, r) for every r > n, i.e.,

GA
ϕ (DK) = GA

ϕ (DK, n).

3. If ϕ ≡ ψ1Ũψ2, where ψ1 and ψ2 are state formulas,
then the corresponding existential and universal pro-
grams are shown in Definition 6.2.(3).

• The existential case:
Let us assume that s0 ∈ GE

ϕ(DK). Let us define

GE
ϕ(DK, n) to be the set of ground facts for GE

ϕ

that have been computed in the first n rounds of
the evaluation of program ΠE

ϕ . We shall prove

that for every t ∈ GE
ϕ(DK, n), there exists a path

π = t0, t1, t2, . . . with initial state t0 = t, such
that K, π |= ϕ. We use induction on the number
of rounds n.
(a) If n = 1, then t appears in GA

ϕ (DK) due to
either the first rule, i.e., t ∈ Gψ1(DK)∩Gψ2(DK),
or to the second rule, i.e., t ∈ TCψ2(DK). In the
first case, the inductive hypothesis pertaining to
ψ1 and ψ2, implies that K, t |= ψ1 ∧ ψ2, which
immediately implies that K, π |= ϕ for any path
π = t0, t1, t2, . . . with initial state t0 = t. In the
second case, we use Lemma 6.4.(2), which asserts
the existence of a finite sequence t0, t1, . . . , tk of
states, such that t0 = tk = t and K, tj |= ψ2, 0 ≤
j ≤ k. Consider the path π = (t0, t1, . . . , tk)

ω; for
this path we have K, π |= ϕ.
(b) We show now that the claim holds for n+1,
assuming that it holds for n. We focus on the case
where node t has exactly two successors tL and tR

(the case where t has only one successor is simi-
lar). We may further assume that t first appeared
in GA

ϕ (DK, n + 1) during round n + 1. This can
only have occurred because of the third or fourth
rule of ΠE

ϕ . Then t ∈ Gψ2(DK) and at least one of
tL and tR belongs to GE

ϕ(DK, n). Without loss of

generality, we assume that tL ∈ GA
ϕ (DK, n). By

the inductive hypothesis, we know that K, tL |=
ψ2 and that there exists a path π1 = t1, t2, . . .
with initial state t1 = tL, such that K, π1 |= ϕ.
Immediately then we conclude that K, π |= ϕ, for
the path π = t0, t1, t2, . . . with t0 = t.

The bottom-up evaluation of Datalog programs
guarantees that there exists n ∈ N such that

GA
ϕ (DK, n) = GA

ϕ (DK, r) for every r > n, i.e.,

GA
ϕ (DK) = GA

ϕ (DK, n).

• The universal case:
Let us suppose now that s0 ∈ GA

ϕ (DK). Let us

define GA
ϕ (DK, k) to be the set of ground facts for

GA
ϕ that have been computed after k rounds of the

evaluation of program ΠA
ϕ . We shall prove with

simultaneous induction on the number of rounds
k two things:
(1) Let s ∈ GA

ϕ (DK, k) and let π = s0, s1, . . . be
an arbitrary path with initial state s0 = s; then

K, π |= ψ1Ũψ2

(2) Let PLψ2(t, k) hold (here of course k ≤
|W |) and let - = t0, t1, . . . , tk, . . . be an arbi-
trary path with initial state t0 = t; then either

K, - |= ψ1Ũψ2 or K, tj |= ψ2, for 0 ≤ j ≤ k.
(a) If k = 1, then s appears in GA

ϕ (DK) due
to the first rule4 of ΠA

ϕ , i.e., s ∈ Gψ1(DK) ∩
Gψ2(DK). Hence, K, π |= ψ1Ũψ2, where π =
s0, s1, . . . is any path with initial state s0 = s.
Similarly, PLψ2(t, 1) can only be derived by the
ninth or tenth rule of ΠA

ϕ . In any case, these rules
imply that for every path π = t0, t1, . . . with ini-
tial state t0 = t we have that K, t0 |= ψ2 and
K, t1 |= ψ2.
(b) We show now that the claim holds for k+1,
assuming that it holds for k. We consider the case
where states s and t have exactly two successors
sL, sR and tL, tR, respectively.
(i) Initially, we shall consider the case where
k + 1 ≤ |W |.
We may assume that s first appeared inGA

ϕ (DK,
k + 1) during round k + 1; then s must have
appeared because of the third rule GA

ϕ (x) ←−
Gψ2(x), S0(x, y), S1(x, z), G

A
ϕ (y), G

A
ϕ (z). Hence,

s ∈ Gψ2(DK) and both of sL and sR belong to
GA

ϕ (DK, k). It is important to stress that in this
case, s cannot arise from an application of the
fourth rule of ΠA

ϕ because the first time this may
happen is at round |W |+1. Hence, by the induc-
tive hypothesis, we get that K, s |= ψ2, K, π1,L |=
ϕ for every path π1,L = sL

1 , s
L
2 , . . . with initial

state sL
1 = sL and K, π1,R |= ϕ for every path

π1,R = sR
1 , s

R
2 , . . . with initial state sR

1 = tR ⇒
K, π |= ϕ for every path π = s0, s1, s2, . . . with
initial state s0 = s.

Moreover, if PLψ2(t, k + 1) holds, then one of
the following must also hold:
- PLψ2(t

L, k) and PLψ2(t
R, k),

- GA
ϕ (t

L) and PLψ2(t
R, k), or

- PLψ2(t
L, k) and GA

ϕ (t
R).

Thus, by the inductive hypothesis, we know
that:
- K, t |= ψ2, and
- for every path -1,L = tL1 , t

L
2 , . . . , t

L
k+1, . . . with

initial state tL1 = tL either K, -1,L |= ϕ or K, tLj |=
ψ2 (1 ≤ j ≤ k + 1), and
- for every path -1,R = tR1 , t

R
2 , . . . , t

R
k+1, . . . with

4We assume of course that |W | > 1 because the case where
|W | = 1, that is the database contains only one element, is
trivial.

81

initial state tR1 = tR either K, -1,R |= ϕ or K, tRj |=
ψ2 (1 ≤ j ≤ k + 1).

Taking all these into account, we conclude that
for every path - = t0, t1, t2, . . . , tk+1, . . . with
initial state t0 = t either K, - |= ϕ or K, tj |= ψ2

(0 ≤ j ≤ k + 1).
(ii) Finally, we examine the case where k+1 >
|W |.
In this case, s may belong to GA

ϕ (DK, k + 1)

either due to the third rule (GA
ϕ (x) ←− Gψ2(x),

S0(x, y), S1(x, z), G
A
ϕ (y), G

A
ϕ (z)) or due to the

fourth rule (GA
ϕ (x) ←− PLψ2(x, cmax)). If it

is due to the third rule, then s ∈ Gψ2(DK) and
both of sL and sR belong to GA

ϕ (DK, k), and the
proof is the same as above. So we suppose that
s is due to the fourth rule, i.e., PLψ2(s, |W |) is
true. As we have already proved, this implies
that given any path π = s0, s1, s2, . . . , s|W |, . . .
with initial state s0 = s, either K, π |= ψ1Ũψ2 or
K, sj |= ψ2, for 0 ≤ j ≤ |W |. In order to arrive
at a contradiction, let us assume that there exists
a path - = s0, s1, s2, . . . with initial state s0 = s

such that K, - �|= ψ1Ũψ2 ⇒ K, - |= ¬(ψ1Ũψ2)
⇒ K, - |= ¬ψ1U¬ψ2 ⇒ K, -j |= ¬ψ2, for -

j =
sj , sj+1, sj+2, We examine the case where
j > |W | (if j ≤ |W |, then a contradiction is im-
mediate). Consider the initial segment s0, s1, s2,
. . . , s|W |, . . . , sj of -; from Lemma 6.1 we get
that in the aforementioned sequence there exists
a state s′ such that s′ = sk = sl, 0 ≤ k <
l ≤ j. So we can get the sorter initial segment
s0, . . . , sk−1, sl, sl+1, . . . , sj . Now if the number
of states in this new initial segment is less than or
equal to |W |, we stop; otherwise we keep applying
the same technique until we reduce sufficiently the
length of the initial segment. So, we can eventu-
ally produce an initial segment t0, . . . , tm, where
t0 = s, tm = sj and m ≤ |W |. But this contra-
dicts the inductive hypothesis.

The bottom-up evaluation of Datalog programs
guarantees that there exists n ∈ N such that
GA

ϕ (DK, n) = GA
ϕ (DK, r) for every r > n, i.e.,

GA
ϕ (DK) = GA

ϕ (DK, n).

7. EXAMPLES
In this section, we give two more examples to illustrate

the more complicated features of our translation.

Example 7.1. Let us consider a following formula that

contains the modality Ũ in an existential context, such as

ϕ ≡ E©p ∧ E(qŨr). The Datalog program Πϕ that corre-
sponds to ϕ can be constructed in four easy steps:

1. The programs that correspond to the state formulas p, q
and r are:

• Πp : Gp(x)←− P (x)

• Πq : Gq(x)←− Q(x)

• Πr : Gr(x)←− R(x)

2. The existential programs ΠE
©p and ΠE

(qŨr)
are:

•




(1) : GE
©p(x)←− S0(x, y), Gp(y)

(2) : GE
©p(x)←− S1(x, y), Gp(y)

(3) : Gp(x)←− P (x)

•




(1) : GE
(qŨr)

(x)←− Gq(x), Gr(x)

(2) : GE
(qŨr)

(x)←− TCr(x, x)

(3) : GE
(qŨr)

(x)←− Gr(x), S0(x, y), G
E
(qŨr)

(y)

(4) : GE
(qŨr)

(x)←− Gr(x), S1(x, y), G
E
(qŨr)

(y)

(5) : TCr(x, y)←− Gr(x), S0(x, y), Gr(x)
(6) : TCr(x, y)←− Gr(x), S1(x, y), Gr(x)
(7) : TCr(x, y)←− Gr(x), S0(x, y), TCr(x)
(8) : TCr(x, y)←− Gr(x), S1(x, y), TCr(x)
(9) : Gq(x)←− Q(x)
(10) : Gr(x)←− R(x)

3. The programs for the state formulas E©p and E(qŨr)
are ΠE©p and ΠE(qŨr) respectively:

•




(1) : GE©p(x)←− GE
©p(x)

(2) : GE
©p(x)←− S0(x, y), Gp(y)

(3) : GE
©p(x)←− S1(x, y), Gp(y)

(4) : Gp(x)←− P (x)

•




(1) : GE(qŨr)(x)←− GE
(qŨr)

(x)

(2) : GE
(qŨr)

(x)←− Gq(x), Gr(x)

(3) : GE
(qŨr)

(x)←− TCr(x, x)

(4) : GE
(qŨr)

(x)←− Gr(x), S0(x, y), G
E
(qŨr)

(y)

(5) : GE
(qŨr)

(x)←− Gr(x), S1(x, y), G
E
(qŨr)

(y)

(6) : TCr(x, y)←− Gr(x), S0(x, y), Gr(x)
(7) : TCr(x, y)←− Gr(x), S1(x, y), Gr(x)
(8) : TCr(x, y)←− Gr(x), S0(x, y), TCr(x)
(9) : TCr(x, y)←− Gr(x), S1(x, y), TCr(x)
(10) : Gq(x)←− Q(x)
(11) : Gr(x)←− R(x)

4. Finally, the program ΠE©p∧E(qŨr) for the state for-

mula E©p ∧ E(qŨr) is:

•




(1) : GE©p∧E(qŨr)(x)←− GE©p(x)(x),

GE(qŨr)(x)

(2) : GE©p(x)←− GE
©p(x)

(3) : GE
©p(x)←− S0(x, y), Gp(y)

(4) : GE
©p(x)←− S1(x, y), Gp(y)

(5) : Gp(x)←− P (x)
(6) : GE(qŨr)(x)←− GE

(qŨr)
(x)

(7) : GE
(qŨr)

(x)←− Gq(x), Gr(x)

(8) : GE
(qŨr)

(x)←− TCr(x, x)

(9) : GE
(qŨr)

(x)←− Gr(x), S0(x, y), G
E
(qŨr)

(y)

(10) : GE
(qŨr)

(x)←− Gr(x), S1(x, y), G
E
(qŨr)

(y)

(11) : TCr(x, y)←− Gr(x), S0(x, y), Gr(x)
(12) : TCr(x, y)←− Gr(x), S1(x, y), Gr(x)
(13) : TCr(x, y)←− Gr(x), S0(x, y), TCr(x)
(14) : TCr(x, y)←− Gr(x), S1(x, y), TCr(x)
(15) : Gq(x)←− Q(x)
(16) : Gr(x)←− R(x) �

Example 7.2. Let us consider a following formula that

contains the modality Ũ in a universal context, such as ϕ ≡
A©p ∧ A(qŨr). The Datalog program Πϕ that corresponds
to ϕ can be constructed in four easy steps:

82

1. The programs that correspond to the state formulas p, q
and r are the following:

• Πp : Gp(x)←− P (x)

• Πq : Gq(x)←− Q(x)

• Πr : Gr(x)←− R(x)

2. The universal programs ΠA
©p and ΠA

(qŨr)
are:

•




(1) : GA
©p(x)←− S0(x, y),¬S1(x, z), Gp(y)

(2) : GA
©p(x)←− S0(x, y), S1(x, z), Gp(y), Gp(z)

(3) : Gp(x)←− P (x)

•




(1) : GA
(qŨr)

(x)←− Gq(x), Gr(x)

(2) : GA
(qŨr)

(x)←− Gr(x), S0(x, y),¬S1(x, z),

GA
(qŨr)

(y)

(3) : GA
(qŨr)

(x)←− Gr(x), S0(x, y), S1(x, z),

GA
(qŨr)

(y), GA
(qŨr)

(z)

(4) : GA
qŨr

(x)←− PLr(x, cmax)

(5) : PLr(x, n)←− Gr(x), S0(x, y),¬S1(x, z),
PLr(y, n− 1), n ≤ cmax

(6) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), PLr(z, n− 1), n ≤ cmax

(7) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
GA

(qŨr)
(y), PLr(z, n− 1), n ≤ cmax

(8) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), GA

(qŨr)
(z), n ≤ cmax

(9) : PLr(x, 1)←− Gr(x), S0(x, y),¬S1(x, z),
Gr(y)

(10) : PLr(x, 1)←− Gr(x), S0(x, y), S1(x, z),
Gr(y), Gr(z)

(11) : Gq(x)←− Q(x)
(12) : Gr(x)←− R(x)

3. The programs for the state formulas A©p and A(qŨr)
are ΠA©p and ΠA(qŨr) respectively:

•




(1) : GA©p(x)←− GA
©p(x)

(2) : GA
©p(x)←− S0(x, y),¬S1(x, z), Gp(y)

(3) : GA
©p(x)←− S0(x, y), S1(x, z), Gp(y), Gp(z)

(4) : Gp(x)←− P (x)

•




(1) : GA(qŨr)(x)←− GA
(qŨr)

(x)

(2) : GA
(qŨr)

(x)←− Gq(x), Gr(x)

(3) : GA
(qŨr)

(x)←− Gr(x), S0(x, y),¬S1(x, z),

GA
(qŨr)

(y)

(4) : GA
(qŨr)

(x)←− Gr(x), S0(x, y), S1(x, z),

GA
(qŨr)

(y), GA
(qŨr)

(z)

(5) : GA
qŨr

(x)←− PLr(x, cmax)

(6) : PLr(x, n)←− Gr(x), S0(x, y),¬S1(x, z),
PLr(y, n− 1), n ≤ cmax

(7) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), PLr(z, n− 1), n ≤ cmax

(8) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
GA

(qŨr)
(y), PLr(z, n− 1), n ≤ cmax

(9) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), GA

(qŨr)
(z), n ≤ cmax

(10) : PLr(x, 1)←− Gr(x), S0(x, y),¬S1(x, z),
Gr(y)

(11) : PLr(x, 1)←− Gr(x), S0(x, y), S1(x, z),
Gr(y), Gr(z)

(12) : Gq(x)←− Q(x)
(13) : Gr(x)←− R(x)

4. Finally, the program ΠA©p∧A(qŨr) for the state for-

mula A©p ∧ A(qŨr) is:

•




(1) : GA(©p)∧A(qŨr)(x)←− GA(©p)(x),

GA(qŨr)(x)

(2) : GA©p(x)←− GA
©p(x)

(3) : GA
©p(x)←− S0(x, y),¬S1(x, z), Gp(y)

(4) : GA
©p(x)←− S0(x, y), S1(x, z), Gp(y), Gp(z)

(5) : Gp(x)←− P (x)
(6) : GA(qŨr)(x)←− GA

(qŨr)
(x)

(7) : GA
(qŨr)

(x)←− Gq(x), Gr(x)

(8) : GA
(qŨr)

(x)←− Gr(x), S0(x, y),¬S1(x, z),

GA
(qŨr)

(y)

(9) : GA
(qŨr)

(x)←− Gr(x), S0(x, y), S1(x, z),

GA
(qŨr)

(y), GA
(qŨr)

(z)

(10) : GA
qŨr

(x)←− PLr(x, cmax)

(11) : PLr(x, n)←− Gr(x), S0(x, y),¬S1(x, z),
PLr(y, n− 1), n ≤ cmax

(12) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), PLr(z, n− 1), n ≤ cmax

(13) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
GA

(qŨr)
(y), PLr(z, n− 1), n ≤ cmax

(14) : PLr(x, n)←− Gr(x), S0(x, y), S1(x, z),
PLr(y, n− 1), GA

(qŨr)
(z), n ≤ cmax

(15) : PLr(x, 1)←− Gr(x), S0(x, y),¬S1(x, z),
Gr(y)

(16) : PLr(x, 1)←− Gr(x), S0(x, y), S1(x, z),
Gr(y), Gr(z)

(17) : Gq(x)←− Q(x)
(18) : Gr(x)←− R(x) �

8. CONCLUSION AND FUTURE WORK
One of the most important problems for temporal log-

ics is the computational complexity of model checking. It
is known that, for CTL, model checking algorithms run in
time O(nm) ([4]), where n is the size of the model and m

83

the length of the formula. We do not try to make any state-
ment on the computational complexity of our language how-
ever, as we believe that essentially we only use a fragment
of Datalog¬Succ which can be syntactically characterized so
that it has exactly the expressive power of CTL. We are cur-
rently working on this direction. Hence the computational
complexity of query evaluation for this fragment is expected
to be the same as the model checking complexity of CTL.
However, it is an interesting exercise to prove directly the
computational complexity of this fragment of Datalog¬Succ.
In future work we plan to extend our approach to CTL�.

CTL is a proper fragment of CTL� and is less expressive.
CTL� was firstly defined ([6], [8]) as a means that would
allow a more careful examination of the differences between
branching and linear time temporal logic. More recently
[18] has shown that CTL� has the same expressive power
as the class of bisimulation invariant properties expressible
in monadic path logic. In [15, 9] CTL� is translated in
the modal µ-calculus and in [11] CTL� is translated in the
fragment of the transitive closure logic FO(TC), with two
variables.
The logic CTL� combines both branching-time and linear

time operators ([8]). A path quantifier E (for some path) or
A (for all paths) can prefix an assertion built from the set
of atomic proposition using the usual Boolean connectives

and the temporal operators© (next time), U (until) and Ũ
(duality of until). There are two types of formulas in CTL�.
The state formulas whose satisfaction is related to a specific
state and path formulas whose satisfaction is related to a
specific path. Therefore, CTL� state formulas are defined
as follows:

• All atomic propositions, � and ⊥ are CTL� state for-
mulas,

• If ϕ and ψ are CTL� state formulas, then ¬ϕ, (ϕ ∧
ψ), (ϕ ∨ ψ) are also CTL� state formulas, and

• If ϕ is a path formula, then Aϕ and Eϕ are CTL�

state formulas.

The CTL� path formulas are defined to be:

• A state formula is a path formula,

• If ϕ and ψ are CTL� path formulas, then ¬ϕ, (ϕ ∧
ψ), (ϕ ∨ ψ) are also CTL� path formulas, and

• If ϕ and ψ are path formulas, then ©ϕ, (ϕUψ) and

(ϕŨψ) are CTL� path formulas.

The logic CTL� consists of the set of state formulas gener-
ated by the above rules. The logic CTL is a restricted subset

of CTL�. In CTL the temporal operators©, U and Ũ must
be immediately preceded by a path quantifier. Formally, it
is the subset of CTL� obtained by restricting the path for-

mulas to be ©ψ, ψUϕ, or ψŨϕ where ψ and ϕ are CTL
state formulas.

Acknowledgements
We thank Scott Smolka for providing useful input and com-
ments. We also thank Alex Shvartsman for helping out with
the format.

9. REFERENCES
[1] F. Afrati, T. Andronikos, E. Foustoucos, and
I. Guessarian. Ctl et al. vs. monadic inf-datalog. In Int.
Workshop on Logic and Complexity in Computer Science
LCCS 2001, France, pages 17–36, 2001.

[2] F. Bancilhon and R. Ramakrishnan. An amateur’s
introduction to recursive query processing strategies. In
Proc. ACM Conf. on Management of Data, Washington,
pages 16–52.

[3] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases. Springer-Verlag, 1990.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent systems
using temporal logic specifications. In ACM TOPLAS,8,
pages 244–263, 1986.

[5] B. Cui, Y. Dong, X. Du, K. Kumar, C. Ramakrishnan,
I. Ramakrishnan, A. Roychoudhury, S. A. Smolka, and
D. Warren. Logic programming and model checking. In
PLAP/ALP’98, volume 1490, pages 1–20. LNCS,
Springer.

[6] E.A.Emerson and A.P.Sistla. Deciding full branching
time logic. Information and Control, 61(3):175–201,
1984.

[7] E. A. Emerson. Temporal and modal logic. Handbook of
Theoretical Computer Science, MIT Press, 1990.

[8] E. A. Emerson and J. Halpern. Sometimes and not
never revisited: On branching versus linear time.
33(1):151–178, 1986.

[9] E. A. Emerson and C. Lei. Efficient model checking in
fragments of the propositional µ-calculus. In In Proc. of
1rst Symposium on Logic in Computer Science, pages
267–278, 1986.

[10] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE:
Temporal versus deductive reasoning in verification. In
J. Minker, editor, Workshop on Logic-Based Artificial
Intelligence, Washington, DC, June 14–16, 1999,
College Park, Maryland, 1999. Computer Science
Department, University of Maryland.
citeseer.nj.nec.com/gottlob98datalog.html.

[11] N. Immermann and M. Vardi. Model checking and
transitive-closure logic. In CAV’97, volume 1254, pages
291–302. LNCS, Springer, 1997.
citeseer.nj.nec.com/immerman97model.html.

[12] P. Kanellakis and S. Smolka. Ccs expressions, finite
state processes, and three problems of equivalence. In
Proceedings, 2nd Annual ACM Symposium on Principles
of Distributed Computing, Montreal, Canada, pages
228–240, 1983.

[13] P. Kanellakis and S. Smolka. On the analysis of
cooperation and antagonism in networks of
communicating processes. Algorithmica 3, pages
421–450, 1988.

[14] P. Kanellakis and S. Smolka. Ccs expressions, finite
state processes and three problems of equivalence.
Information and Computation, 86:43–68, 1990.

[15] D. Kozen. Results on the propositional µ-calculus.
Theoretical Computer Science, 27:333–354, 1983.

[16] O. Kupferman, M. Y. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.
citeseer.nj.nec.com/kupferman98automatatheoretic.html.

[17] L. Lamport. Sometimes is sometimes “not never”-on

84

the temporal logic of programs. In In Proc. 7th ACM
Symposium on Principles of programming languages,
pages 174–185, 1980.

[18] F. Moller and A. Rabinovich. On the expressive power
of ctl∗. In In Proc. LICS’99, Trento, Italy, 1999.

[19] A. Pnueli. The temporal logic of programs. In In Proc.
18th IEEE Symposium on Foundation of Computer
Science, pages 46–57, 1977.

[20] A. Podelski, W. Charatonik, and M. Muller. Set-based
analysis of reactive infinite-state systems. In TACAS’98.
LNCS, Springer, 1998. citeseer.nj.nec.com/58196.html.

[21] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V.
Ramakrishnan, S. A. Smolka, T. Swift, and D. S.
Warren. Efficient model checking using tabled resolution.
In Computer Aided Verification (CAV’97), volume 1254,
pages 143–154. LNCS, Springer, 1997.
citeseer.nj.nec.com/ramakrishna97efficient.html.

[22] N. Rescher and A. Urquhart. Temporal logic.
Springer-Verlag, New York, 1971.

[23] J. Ullman. Database and Knowledge-Base Systems,
Volumes I and II. Computer Science Press, 1989.

[24] M. Vardi. An Automata-Theoretic approach to linear
temporal logic. Logics for Concurrency: Structure versus
Automata, volume 1043 of Lecture Notes in Computer
Science, pp. 238-266, Springer-Verlag, Berlin, 1996.

[25] S. Zhang, S. Smolka, and O. Sokolsky. On the parallel
complexity of model checking in the modal mu-calculus.
In Proceedings of Ninth Annual IEEE Symposium on
Logic in Computer Science, London, pages 154–163,
1994.

85

