
Notes on H.264 Codec

Integer Transform and Quantization

Let X be a 4*4 matrix to be encoded, and Y the encoded data. The forward
Integer Transform and quantization are done according to:

Y = round ([Cf]×[X]×[Cf
T] · Mf/(215)).

Here, the symbol “×” denotes normal matrix multiplication, while the
symbol “·” denotes element-by-element multiplication. Cf is the 4*4
integer transform matrix:

.
Mf is a 4*4 matrix for quantization generated form m, which is a 6*3
matrix (see Table I). For 0<QP<6, we have:

.

For QP >= 6, we replace each element m(QP, n) in the above matrix with
m(QP%6, n)/2floor(QP/6). By configuring QP, different quantization results
can be achieved. The quantization is followed by a scaling step, which
right shifts all quantized coefficients by 15 bits.

Inverse Integer Transform and De-Quantization

The inverse Integer Transform and de-quantization process is similar to
its forward peer. Let Z be the decoded data, we have:

Z = round ([Ci
T]×[Y ·Vi]×[Ci] /(26)).

Here Y is the encoded data obtained from the previous step, Ci is the
inverse Integer Transform matrix:

.
Vi is the de-quantization table, which can be generated from v (see Table
I). For 0<QP<6, we have:

.

For QP >= 6, we replace each element v(QP, n) in the above matrix with
v(QP%6, n)*2floor(QP/6). The de-quantization is also followed by a scaling
step, which right shifts all restored value by 6 bits.

Table I: The value of m and v.

Note 1: Please refer to [1] for more information.

Note 2: The integer transform (forward and inverse) is separated into
two 1-D transform by using the flow graphs described in [2]. Thereby no
multiplication is needed (only addition and shift).

[1] White Paper: 4x4 Transform and Quantization in H.264/AVC,
H264_4x4_transform_whitepaper_Nov10.pdf
[2] Henrique S. Malvar, et. al., Low-Complexity Transform and Quantization in H.264/AVC,
IEEE Transactions on Circuits and Systems for Video Technology, 2003

