Notes on H.264 Codec

Integer Transform and Quantization

Let X be a 4*4 matrix to be encoded, and Y the encoded data. The forward
Integer Transform and quantization are done according to:

Y = round ([GIx[X]x[C/] - M/ (2)).

“w_n”n

Here, the symbol “x” denotes normal matrix multiplication, while the
symbol “” denotes element-by-element multiplication. (;is the 4*4
integer transform matrix:

11 1 1
c .21 -1-2
1 -1 -1 1
1 -2 2 -1

M;is a 4*4 matrix for quantization generated form m, which is a 6*3
matrix (see Table I). For 0<QP<6, we have:

\m(QP,0) m{QP,2) m(QP,0) m(QP,2)
MF - m(QF,2) m(QP,1}) m{Qr,2} m(QF,1)
\m(QP,0) m(QP,2) miQP,0) m(QP,2)

|m(@P,2) m(QP,1) m(QP,2) miQP,1)|

For QP >= 6, we replace each element m(QP, n) in the above matrix with
m(QP%6, n)/2"%°"@*/9) By configuring QP, different quantization results
can be achieved. The quantization is followed by a scaling step, which
right shifts all quantized coefficients by 15 bits.

Inverse Integer Transform and De-Quantization

The inverse Integer Transform and de-quantization process is similar to
its forward peer. Let Z be the decoded data, we have:

Z =round ([C/" [x[Y -Vi]x[C;] /(2%).

Here Y is the encoded data obtained from the previous step, C;is the
inverse Integer Transform matrix:

[1 1 1 1

2 -1 1 -2
Viis the de-quantization table, which can be generated from v (see Table
[). For 0<QP<6, we have:

\vV(@P,0) v(QP,2) v(QP,0) w(GQP,2)
w(Q@P,2) v(QP,1) v(QP,2) w(QP,1)

\vV(@P,0) v(QP,2) v(QP,0) w(GP,2)
V(@P,2) w(@P,1) v(QP,2) w(QP.1)|

For QP >= 6, we replace each element v(QP, n) in the above matrix with
v(QP%6, n)*2M°r(@/8) The de-quantization is also followed by a scaling
step, which right shifts all restored value by 6 bits.

Table I: The value of m and v.

Qp v (r, 0): v (r, 1): v (r, 2): m (r, 0): m (r, 1): m (r,2)
Vi Vi Remaining | My M; Remaining
positions positions positions positions
(0,0), (1,1), Vi (0,0), (1,1), My
(0,2}, (1,3), positions (0,27, (1,3), positions
(2,0}, (3,1), (2,0}, (3,1},

(2,2) (3.3) (2,2) (3.3)

0 10 16 13 13107 5243 8066

1 11 18 14 11916 4560 7490

2 13 20 16 10082 4194 6554

3 14 23 18 Q362 3647 5825

4 16 25 20 8192 3355 5243

5 18 29 23 7282 2893 4559

Note 1: Please refer to [1] for more information.

Note 2: The integer transform (forward and inverse) is separated into
two 1-D transform by using the flow graphs described in [2]. Thereby no
multiplication is needed (only addition and shift).

[1] White Paper: 4x4 Transform and Quantization in H.264/AVC,

H264 4x4 transform whitepaper Nov10.pdf

[2] Henrique S. Malvar, et. al., Low-Complexity Transform and Quantization in H.264/AVC,
IEEE Transactions on Circuits and Systems for Video Technology, 2003

