

Notes on H.264 Codec

Integer Transform and Quantization

Let X be a $4*4$ matrix to be encoded, and Y the encoded data. The forward Integer Transform and quantization are done according to:

$$Y = \text{round} ([C_f] \times [X] \times [C_f^T] \cdot M_f / (2^{15})).$$

Here, the symbol “ \times ” denotes normal matrix multiplication, while the symbol “ \cdot ” denotes element-by-element multiplication. C_f is the $4*4$ integer transform matrix:

$$C_f = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}.$$

M_f is a $4*4$ matrix for quantization generated from m , which is a $6*3$ matrix (see Table I). For $0 < QP < 6$, we have:

$$M_f = \begin{bmatrix} m(QP, 0) & m(QP, 2) & m(QP, 0) & m(QP, 2) \\ m(QP, 2) & m(QP, 1) & m(QP, 2) & m(QP, 1) \\ m(QP, 0) & m(QP, 2) & m(QP, 0) & m(QP, 2) \\ m(QP, 2) & m(QP, 1) & m(QP, 2) & m(QP, 1) \end{bmatrix}.$$

For $QP \geq 6$, we replace each element $m(QP, n)$ in the above matrix with $m(QP \% 6, n) / 2^{\text{floor}(QP/6)}$. By configuring QP , different quantization results can be achieved. The quantization is followed by a scaling step, which right shifts all quantized coefficients by 15 bits.

Inverse Integer Transform and De-Quantization

The inverse Integer Transform and de-quantization process is similar to its forward peer. Let Z be the decoded data, we have:

$$Z = \text{round} ([C_i^T] \times [Y \cdot V_i] \times [C_i] / (2^6)).$$

Here Y is the encoded data obtained from the previous step, C_i is the inverse Integer Transform matrix:

$$C_i = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1/2 & -1/2 & -1 \\ 1 & -1 & -1 & 1 \\ 1/2 & -1 & 1 & -1/2 \end{bmatrix}$$

V_i is the de-quantization table, which can be generated from v (see Table I). For $0 < QP < 6$, we have:

$$V_i = \begin{bmatrix} v(QP, 0) & v(QP, 2) & v(QP, 0) & v(QP, 2) \\ v(QP, 2) & v(QP, 1) & v(QP, 2) & v(QP, 1) \\ v(QP, 0) & v(QP, 2) & v(QP, 0) & v(QP, 2) \\ v(QP, 2) & v(QP, 1) & v(QP, 2) & v(QP, 1) \end{bmatrix}$$

For $QP \geq 6$, we replace each element $v(QP, n)$ in the above matrix with $v(QP \% 6, n) * 2^{\text{floor}(QP/6)}$. The de-quantization is also followed by a scaling step, which right shifts all restored value by 6 bits.

Table I: The value of m and v.

QP	$v(r, 0):$	$v(r, 1):$	$v(r, 2):$	$m(r, 0):$	$m(r, 1):$	$m(r, 2):$
	$\mathbf{v_i}$ positions (0,0), (0,2), (2,0), (2,2)	$\mathbf{v_i}$ positions (1,1), (1,3), (3,1), (3,3)	Remaining $\mathbf{v_i}$ positions	$\mathbf{M_f}$ positions (0,0), (0,2), (2,0), (2,2)	$\mathbf{M_f}$ positions (1,1), (1,3), (3,1), (3,3)	Remaining $\mathbf{M_f}$ positions
0	10	16	13	13107	5243	8066
1	11	18	14	11916	4660	7490
2	13	20	16	10082	4194	6554
3	14	23	18	9362	3647	5825
4	16	25	20	8192	3355	5243
5	18	29	23	7282	2893	4559

Note 1: Please refer to [1] for more information.

Note 2: The integer transform (forward and inverse) is separated into two 1-D transform by using the flow graphs described in [2]. Thereby no multiplication is needed (only addition and shift).

[1] White Paper: 4x4 Transform and Quantization in H.264/AVC,
[H264 4x4 transform whitepaper Nov10.pdf](#)

[2] Henrique S. Malvar, et. al., Low-Complexity Transform and Quantization in H.264/AVC,
 IEEE Transactions on Circuits and Systems for Video Technology, 2003