CMPT 886

Stream Merging Algorithms

Akiko Campbell
Presentation -1
Summer/2004

Agenda

- Background
- Basic Mechanism
- Performance Comparisons
- Representative Algorithms
- Fibonacci Tree Algorithm
- Dyadic Tree Algorithm
- Extension
- Conclusion

Background

- What is Stream Merging?
- Technique to deliver media in multiple streams, using multicast and client buffers.
- Basic Idea
- Medium: partitioned into equally-sized units.
- Server: sends each client a "Client Receive Program".
- Clients: pre-receive and store data in buffers.
- Streams: terminated asap.
- Objective
- Reduce server bandwidth by having clients receive two or more streams simultaneously and terminate streams as soon as there are no needs for them.

Background

- Properties

- On-line
- Zero Delay
- Receive-Two Model
- Client Buffer size: up to half the medium

Background

- Stream Merging Models

- Merge Tree Based Model
- Fibonacci Tree Algorithm
- Dyadic Tree Algorithm
- 2-dyadic
- ϕ-dyadic
- Event-Driven Model

Basic Mechanism

- Idea
- Client C_{1} arrives at time t_{1} and requests a video of duration L.
- Client C_{0} is currently playing the same video from stream S_{0} that began at time $t_{0}<t_{1}$.
- C_{1} missed the first $\Delta=t_{1}-t_{0}$ time units.
- C_{1} receives Δ from S_{1}.
- At the same time, C_{1} receives $L-\Delta$ from S_{0}.
- Terminate S_{1} after Δ time units (Stream Merge).

Basic Mechanism

- Concrete Merge Diagram

Basic Mechanism

- Total Data Capacity Required
- Sum all stream lengths
- Example:
- $S_{0}=10$ for C_{0}
- $S_{1}=5$ for C_{1}
- $S_{2}=2$ for C_{2}
- $S_{3}=1$ for C_{3}
- Total Capacity = 18

Basic Mechanism

- Merge Tree
- Alternative to Concrete Merge Diagram.
- Each node is labeled with client's arrival time.
- Root: full stream length
- Example:
- C_{1} arrived at time 1
- C_{2} arrived at time 2
- C_{3} arrived at time 3
- C_{4} arrived at time 5

Basic Mechanism

- Merge Tree
- Client C_{x} receives from stream started at times t_{x} and its parent $p\left(t_{x}\right)$.
- Stream started at t_{x} terminates.
- C_{x} continues to receive from $p\left(t_{x}\right)$ and
 grandparent $g\left(t_{x}\right)$.

Basic Mechanism

- Merge Tree: Determining performance...

Total Data Capacity Required = Sum of All Stream Lengths

- Length of a Stream: $l(x)$

Non-leaf: $\quad l(x)=2 z(x)-x-p(x)$
Leaf: $\quad l(x)=\boldsymbol{x}-\boldsymbol{p}(x)$

- Where
- $p(x)=$ parent of node x
- $z(x)=$ the latest node in the sub-tree rooted at x

Performance Comparisons

- How to Merge?
- Merge decisions affect performance...
- Example Scenario
- Medium Length: 20
- Arrival Times: $t=[0,4,5,6,9]$
- Total Capacity?
- Fibonacci: 44
- 2-dyadic: 42
- ϕ-dyadic: 40

Performance Comparisons

- Fibonacci: 44

- l(Root): 20
- $\Sigma l($ Non Leaf): 12 2*9-6-0
- $\Sigma l($ Leaf): 12
$(4-0)+(5-0)+(9-6)$
- Total Capacity: 44

Performance Comparisons

- 2-dyadic: 42

- l(Root): 20
- $\sum l($ Non Leaf): 18
$(2 * 5-4-0)+(2 * 9-6-0)$
- $\sum l($ Leaf $): 4$

$$
(5-4)+(9-6)
$$

- Total Capacity: 42

Performance Comparisons

- ϕ-dyadic: 40

- l(Root): 20
- $\sum l($ Non Leaf $): 8$
$2 * 6-4-0$
- $\sum l$ (Leaf): 12
$(5-4)+(6-4)+(9-0)$
- Total Capacity: 40

Performance Comparisons

- Shape of the tree determines the algorithm performance...
- What does the tree shape signify?
- Merge Decisions.
- Policy for creating Client Receive Program.
- How are the Tree Shapes determined?

Representative Algorithms

- Merge Tree Based Models
- Fibonacci Tree Algorithm - worst case analysis
- Dyadic Algorithm - average case analysis

Representative Algorithms

- Fibonacci vs. Dyadic
- Common:
- Based on Merge Trees.
- Stream lengths can change at any time.
- No change in Client Receive Program.
- Heuristically start a new root.
- Difference:
- Policy for creating Client Receive Program.

Represcntaive algorithins

Fibonacci Tree Algorithm

- Fibonacci Tree Refresher: formal definition

A Fibonacci tree is a variety of binary tree restricted to have a special structure, which is defined recursively as:

- The empty tree is a Fibonacci tree of order 0.
- A tree with a single node is a Fibonacci tree of order 1.
- For n > 1, a Fibonacci tree of order n consists of a root node, a left subtree that is a Fibonacci tree of order n-1, and a right subtree that is a Fibonacci tree of order n-2.

Representative Algorithms Fibonacci Tree Algorithm

- Fibonacci Tree Refresher: Examples

Fibonacei Tere of ondec D:

Fibonacei Tee of order L:

Fibonacei Twe of onder 3:

Fibonacei Tree of ondec 4:

Fibonacei Tre of order 2 :

Representative Algorithms Fibonacci Tree Algorithm

- Fibonacci Tree properties
- Infinite
- Preorder

Representative Algorithms Fibonacci Tree Algorithm

- What to do with the new arrival...
- Add to an existing tree?
- Root of a new tree?
- Start Rule
- Client C_{n} arrives at t_{n}
- Medium Length: L
- Forest: F
- t_{m} : root of the last tree in \boldsymbol{F}_{n-1}
- If $\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{m}>L / 2: \mathrm{t}_{\mathrm{n}} \rightarrow$ new root

Fibonacci Tree Algorithm

- Start Rule Example
- Medium Length: 20
- Client arrival times: $[00,4,5,6,9,11,19]$
- Distance $\left(t_{n}-t_{m}\right)$:
- $t[0]: \rightarrow$ create a tree T_{0}
- $t[4,5,6,9]:(4-0) \ldots(9-0)<20 / 2 \rightarrow$ add to T_{0}
- $t[11]:(11-0)>20 / 2 \rightarrow$ new tree T_{11}
- $t[19]:(19-11)<20 / 2 \rightarrow$ add to T_{11}

Representative Algorithms Fibonacci Tree Algorithm

- Start Rule Example

Fibonacci Forest \boldsymbol{F}

- Create T_{0}.
- Create T_{11} and connect with T_{0}.
- Merging Rules
- Basic Merging Rule
- Nearest Fit Rule
- Best Fit Rule

Fibonacci Tree Algorithm

- Merging Rules: Basic Merging Rule
- Node to connect to: which node can be the parent of the new root?
- Parameters
- New root: t_{n}
- Merge Tree: \boldsymbol{F}_{n-1}
- $t_{n}+\boldsymbol{F}_{n-1} \rightarrow \boldsymbol{F}_{n}$
- Right Frontier of $\boldsymbol{F}_{n-1}: t_{1}=$ node $_{0}, \ldots$, node $_{i}, \ldots$, node $_{k}=t_{n-1}$
- node $_{i}$ on Right Frontier of $\boldsymbol{F}_{n-1} \rightarrow$ parent of t_{n}

Representiative Algonthms

Fibonacci Tree Algorithm

- Merging Rules: Basic Merging Rule Not all nodes eligible parents...
- $S_{i}=$ Stream started at node i_{i}
- $S_{i}(i>0)$ terminated before t_{n} ?
- S_{i} terminates at $t_{i}+l\left(S_{i}\right)$.
$-l\left(S_{i}\right)=2 t_{k}-t_{i}-t_{i-1} \rightarrow t_{i}+l\left(S_{i}\right)=t_{i}+\left(2 t_{k}-t_{i}-t_{i-1}\right)$
$=2 t_{k}-t_{i-1}$
- node $_{i}$ to be a parent...
- $t_{n} \leq 2 t_{k}-t_{i-1}$

Representative Algorithms Fibonacci Tree Algorithm

- Merging Rules: Basic Merging Rule Right Frontier of $\boldsymbol{F}_{n-1}: t_{1}=$ node $_{0}, \ldots$, node $_{i}, \ldots$, node $_{k}=t_{n-1}$
- node $_{i}: i=0$

$$
\square \boldsymbol{F}_{n}=\boldsymbol{F}^{0}{ }_{n-1}
$$

- node $_{i}: i>0$

$$
-\boldsymbol{F}_{n}=\boldsymbol{F}_{n-1}^{i}\left(t_{n} \leq 2 t_{n-1}-t_{i-1}\right)
$$

Fibonacci Tree Algorithm

- Merging Rules: Basic Merging Rule
- Basic Merging Rule
- Property of the candidate parent.
- But not how to pick a parent...
\rightarrow Nearest Fit Rule
Best Fit Rule

Fibonacci Tree Algorithm

- Merging Rules: Nearest Fit Rule
- Pick a parent closest to the new arrival.
- node e_{i} : the parent of t_{n} where i is as large as possible.

Right Frontier of $\boldsymbol{T}_{\mathrm{n}-1}: t_{1}=$ node $_{0}, \ldots$, node $_{i}, \ldots$, node $_{k}=t_{n-1}$
\rightarrow Pick largest $i(1 \leq i \leq k)$ s.t. $t_{n} \leq 2 t_{n-1}-t_{i-1}$

Representative Algorithms Fibonacci Tree Algorithm

- Merging Rules: Best Fit Rule
- Pick a parent which minimizes the merge cost Mcost of the resulting tree.
- Merge Cost of tree F

$$
M \operatorname{cost}(F)=\sum_{x \in\{F \text {-root }\}} l(x)
$$

Fibonacci Tree Algorithm

- Building a Merge Tree: COST
- $\boldsymbol{O}\left(n^{2}\right) \leftarrow$ Dynamic Programming + Monotonicity
$M(i, j)=\min _{i<k<j}\left\{M(i, k-1)+M(k, j)+\left(2 t_{j}-\mathbf{t}_{k}-\mathbf{t}_{i}\right)\right\}$
$M(i, i)=0$
Arrivals: $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{n}$
(i,k-1): Sub-tree of all arrivals prior to k (incl $\operatorname{root}(T))$
(k, j) : Sub-tree rooted at k
$\left(2 \mathrm{t}_{j}-\mathrm{t}_{k}-\mathrm{t}_{i}\right)$: length of the stream started at k

Representative Algorithms Fibonacci Tree Algorithm

- How Many Channels?
- Medium Length: L
- Arrivals : $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{n}$
- Span: $N=\mathrm{t}_{n}-\mathrm{t}_{1}$
- Density ρ : n / N
- Density of n arrivals over N

Representative Algorithms Fibonacci Tree Algorithm

- Density ρ : $0<\rho \leq 1$
- Worst Case: ρ close to 0
- very few arrivals over N
- Each arrival gets a full stream
- Number of full Streams: $O(n L)$
- Best Case: ρ close to 1
- many merging activities
- Number of full Streams: $O(N \log (\rho L))$ <<Detail in Appendix>>

Dyadic Tree Algorithm

- 2-Dyadic Model: Merge Rules
- Start Rule
- Arrival Times: $t_{0}, \ldots t_{i} \ldots, t_{n}\left(t_{0}=0\right)$
- $t_{i} \geq \mathrm{L} / 2 \rightarrow$ new tree
$-t_{i}<L / 2 \rightarrow$ child in dyadic intervals of t_{0}

Dyadic Tree Algorithm

- 2-Dyadic Model: Merge Rules

- Medium Length: L
- Partition L into 2-dyadic intervals: I_{i}

Dyadic Tree Algorithm

- 2-Dyadic Model: Merge Rules
- Arrival Times: $t_{0}, \ldots t_{i} \ldots, t_{n}\left(t_{0}=0\right)$
- If $t=$ first arrival in $I_{i} \rightarrow$ label t with i.
- If $t=k^{\text {th }}$ arrival in $I_{i} \rightarrow$ label t with $i k$.
- Recursively label all arrivals

Representative Algorithms Dyadic Tree Algorithm

- 2-Dyadic Model: Merge Rule Example

Representative Algorithms Dyadic Tree Algorithm

- ϕ-dyadic Model: Generalized Intervals

2-Dyadic Intervals

Generalized Intervals

Representative Algorithms Dyadic Tree Algorithm

- ϕ-dyadic Model: Generalized Intervals

- Value of α
- 2-Dyadic: 2
- Coffman et al.
- ϕ-Dyadic: $(1+\sqrt{ } 5) / 2$
- Bar-Noy et al.
- 20 hour experiment:
- L: 1-hour
- Poisson with a mean interval arrival rate of 1 second
- α : $1.2-2.4$ in increment of 0.01
- Best $\alpha=1.65$ (by means of the least \# of streams)

Extension

- Stream Merging vs. Broadcasting

- Common:
- Reduce Server Bandwidth.
- Minimize Start-up Delay.
- Partition Medium into Sub-partitions.
- Use of Multicast.
- Use of Client Buffer.

Extension

- Stream Merging vs. Broadcasting

- Major Difference:

- Start-up Delay
- Stream Merging: Zero Delay
- Start a new stream for every new arrival.
- Broadcasting: Some Delay (Fixed or Variable)

Extension

- Stream Merging vs. Broadcasting

- Number of Client Arrivals:

- Channel (Stream) Length
- Stream Merging: Significant
- Broadcasting: No Effect
- Channel Allocation
- Stream Merging: Significant
- Broadcasting: No Effect

Extension

- Stream Merging vs. Broadcasting
- Page Handling:
- Page Sequence
- Stream Merging: Consecutive Order
- Broadcasting (e.g. Pagoda): Not Consecutive Order
- Page Compaction (more data packed via pages)
- Stream Merging: None
- Broadcasting: Major Benefit

Extension

- In the end...
- Streams: Mostly shorter than full
- Overall: earlier pages downloaded more often than later pages \leftarrow Broadcasting!
- True Advantages of Stream Merging over Broadcasting?
- Zero Delay
- No Batching

Conclusion

- Stream Merging
- Good when ZERO Delay absolutely necessary.
- In Reality...
- Can't have infinite number of streams (channels).
- Channel Allocation/Scheduling Algorithm:
- On-line (i.e. number of arrivals unknown).
- Optimal Number of Channels : $\boldsymbol{O}(\mathrm{N} \log (p \mathrm{~L}))$.

References

- Comparison of stream merging algorithms for media-on-demand
Amoz Bar-Noy, Justin Goshi, Richard E. Ladner, Kenneth Tam
AT \& T Research
Department of Computer Science and Engineering University of Washington
- Efficient Algorithm for Optimal Stream Merging Amoz Bar-Noy, Richard E. Ladner
AT \& T Research
Department of Computer Science and Engineering University of Washington

References

- Competitive On-Line Stream Merging Algorithms for Media-on-Demand
Amoz Bar-Noy, Richard E. Ladner
AT \& T Research
Department of Computer Science and Engineering
University of Washington
- The Dyadic Stream Merging Algorithm
E.G. Coffman, Jr., Predrag Jelenkovic, Petar Momcilovic Department of Electrical Engineering
Columbia University, New York, NY 10027

References

- Provably Efficient Stream Merging
E.G. Coffman, Jr., Predrag Jelenkovic, Petar Momcilovic

Department of Electrical Engineering
Columbia University, New York, NY 10027

- Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan Video-on-Demand Systems
Kien A. Hua, Simon Sheu
Department of Computer Science
University of Central Florida
Orlando, FL 32816-2362

Questions?

Thank you!

Fibonacci Tree Algorithm

- Upper Bound on Optimal Merge Cost $M(i, j)=\min \left\{M(i, k-1)+M(k, j)+\left(2 t_{j}-t_{k}-\mathrm{t}_{i}\right)\right\}$
$M(i, j) \leq c\left(t_{j}-t_{k}\right) \log _{2}(j-i+1), c=4 \log _{2} e$
- Optimal Full Cost for Forest F: Fcost(F)
- $\operatorname{Fcost}(\mathrm{F})=s L+\sum_{i=1 . s} M\left(m_{i}\right)$
- $s=$ number of L-trees, $1 \leq i \leq s$
- $m_{i}=$ cardinality of each L-tree, $\Sigma_{i=1 . . s} m_{i}=n$

Fibonacci Tree Algorithm

- $\operatorname{Fcost}(\mathrm{F})$
- $\operatorname{Fcost}(\mathrm{F})=s L+\sum_{i=1 . . s} M\left(m_{i}\right)$

$$
\leq s L+c L \sum_{i=1 . . s} \log _{e} m_{i}
$$

- By convexity of function $\log _{e}$:
$F \operatorname{cost}(\mathrm{~F}) \leq s L+c L \sum_{i=1 . . s} \log _{e}(n / s)$

$$
\begin{aligned}
& =s L+\operatorname{csL} \log _{e}(n / s) \\
& =s L\left(\operatorname{cog}_{e}(n / s)+1\right)
\end{aligned}
$$

Fibonacci Tree Algorithm

- Natural Upper Bound on s
- $S L\left(\operatorname{cog}_{e}(n / s)+1\right)=$ concave as a function of s
- Global Maximum of $c e^{-1+1 / c} n L$ at $s=e^{-1+1 / c} n$ $\rightarrow s \leq 4 N / L$
- $F \operatorname{cost}(\mathrm{~F}) \leq 4 N / L\left(\operatorname{clog}_{e}(n /(4 N / L)+1)\right.$ $\in O(N \log (\rho L))$

APPENDEX

Fibonacci Tree Algorithm

- Static Fibonacci Tree Example: $L=26,13$ arrivals...

