CMPT 886
Stream Merging Algorithms

Akiko Campbell
Presentation -1
Summer/2004

Agenda

= Background
= Basic Mechanism
= Performance Comparisons

= Representative Algorithms
= Fibonacci Tree Algorithm
= Dyadic Tree Algorithm

m Extension
s Conclusion

Background

= What Is Stream Merging?

= Technique to deliver media in multiple streams, using
multicast and client buffers.

= Basic ldea
= Medium: partitioned into equally-sized units.
= Server: sends each client a “Client Receive Program”.
= Clients: pre-receive and store data in buffers.
= Streams: terminated asap.

= Objective

= Reduce server bandwidth by having clients receive two or
more streams simultaneously and terminate streams as soon
as there are no needs for them.

Background

= Properties
= On-line
= Zero Delay
= Recelve-Two Model

= Client Buffer size: up to half the medium

Background

= Stream Merging Models

= Merge Tree Based Model
= Fibonacci Tree Algorithm

= Dyadic Tree Algorithm
m 2-dyadic
= {-dyadic

s Event-Driven Model

Basic Mechanism

s ldea

= Client C, arrives at time t;, and requests a video of
duration L.

m Client C, is currently playing the same video from
stream S, that began at time , < ;.

m C, missed the first A = t, — 1, time units.

m C, receives A from S,.

= At the same time, C, receives L —A from S,,.

= Terminate S, after A time units (Stream Merge).

S
Basic Mechanism

= Concrete Merge Diagram

— SErecrn Neroe

Basic Mechanism

= Total Data Capacity
Required

= Sum all stream lengths

= Example:
= S,= 10 for C,
m S, =5forC;
= S,=2forC,
= S;=1 for C,

= Total Capacity = 18

Basic Mechanism

= Merge Tree

= Alternative to Concrete
Merge Diagram.

s Each node is labeled
with client’s arrival time.

= Root: full stream length @

= Example:
= C,arrived at time 1
= C,arrived at time 2
= C,arrived at time 3
= C,arrived at time 5

Basic Mechanism

= Merge Tree
= Client C, receives from 5 P
stream started at times t,
and its parent p(t,). / \ x

= Stream started at t,
terminates.

= C, continues to receive
from p(t,) and
grandparent g(t,).

Basic Mechanism

= Merge Tree: Determining performance...

Total Data Capacity Required = Sum of All Stream Lengths

= Length of a Stream: 1(X)

Non-leaf: I(X) =2 z(X) — X = p(X)
Leaf: I(X) = X = p(X)
= Where

= p(x) = parent of node x
= Z(X) = the latest node in the sub-tree rooted at x

Performance Comparisons

= How to Merge?
= Merge decisions affect performance...

= Example Scenario

= Medium Length: 20

= Arrival Times: t =[O0, 4, 5, 6, 9]
= Total Capacity?

= Fibonacci: 44

= 2-dyadic: 42

= ¢-dyadic: 40

Performance Comparisons

m FIbonaccli: 44

= [(Root): 20
= 2 l[(Non Leaf): 12
2*9-6-0

n X I(Leaf): 12 o °

(4-0) + (5-0) + (9-6)

= Total Capacity: 44 e

Performance Comparisons
m 2-dyadic: 42

= |(Root): 20
= 2 |[(Non Leaf): 18

(2*5 -4 -0) + (2*9 - 6 - 0)
s 2 l(Leal): 4

(5-4) +(9-6)

= Total Capacity: 42

Performance Comparisons

= ¢-dyadic: 40

= [(Root): 20
= 2 I(Non Leaf): 8
2*6 -4 -0

a = I(Leaf): 12 | °
(5-4) + (6-4) + (9-0)

= Total Capacity: 40 ° °

Performance Comparisons

= Shape of the tree determines the algorithm
performance...

= \What does the tree shape signify?
= Merge Decisions.
= Policy for creating Client Receive Program.

= How are the Tree Shapes determined?

Representative Algorithms

= Merge Tree Based Models

= Fibonacci Tree Algorithm — worst case analysis

= Dyadic Algorithm — average case analysis

Representative Algorithms

= Fibonacci vs. Dyadic

s Common:
= Based on Merge Trees.
= Stream lengths can change at any time.
= No change in Client Receive Program.
= Heuristically start a new root.

= Difference:
= Policy for creating Client Receive Program.

e
REPRESENTALIVELSAIGORITAMS
Fibonacci Tree Algorithm

s Fibonacci Tree Refresher: formal definition

A Fibonacci tree is a variety of binary tree restricted
to have a special structure, which is defined
recursively as:

= The empty tree is a Fibonacci tree of order 0.
= A tree with a single node is a Fibonacci tree of order 1.

s Forn > 1, a Fibonacci tree of order n consists of a root
node, a left subtree that is a Fibonacci tree of order n-1,
and a right subtree that is a Fibonacci tree of order n-2.

e
REPRESENTALIVEYAIGORILAMS

]

Fibonacci Tree Algorithm
= Fibonacci Tree Refresher: Examples

Fibonacci Tree of odec O: Fibonacol Tee of order 3:

Fibonacci Troee of ooder L: 1 []

[1

Fibonacci Tree of oder 4

Fibonacol Tee of order 2:

S
REPRESENtAlIVELAIGOrItMS
Fibonacci Tree Algorithm

= Fibonacci Tree properties
= Infinite
= Preorder

Fibonacci Forest &

Cliert Strriveal Times Oadexn

L
REPRESENTALIVELSAIGORITAMS
Fibonacci Tree Algorithm

s \What to do with the new arrival...
= Add to an existing tree?
s Root of a new tree?

s Start Rule

= Client C, arrives at t,
= Medium Length: L
= Forest: F
= t: root of the last tree in F,;

m Ift -t >L/2:t = new root

REPRESENTALIVELSAIGORITAMS
Fibonacci Tree Algorithm

m Start Rule Example

= Medium Length: 20
= Client arrival times: t[0, 4, 5, 6, 9, 11, 19]
= Distance (t,—-t.):
= t[0]: = create a tree T,
= t[4, 5, 6, 9]: (4-0)...(9-0) < 20/2 > add to T,
= {[11]: (11-0) > 20/2 = new tree T,,
= 1]19]: (19-11) <20/2 > add to T,

e
REPRESENTALIVEYAIGORILAMS

]

Fibonacci Tree Algorithm

= Start Rule Example Fibonnaci Forest £

Fibonacci Forest F

= Create T,.

= Create T,, and connect
with T,

= Merging Rules
= Basic Merging Rule
= Nearest Fit Rule
= Best Fit Rule @

O
REPHRESENLALVELAIGOrItNMS
FlbonaCC| Tree Algorithm

= Merging Rules: Basic Merging Rule

= Node to connect to: which node can be the parent of the
new root?

= Parameters
= New root: t,
= Merge Tree: F,
s t+F 2 F,
= Right Frontier of F__;: t; = nodey,..., node; ,..., node, =t ;

= Nnode; on Right Frontier of F_, = parent of t,

O
REPRESENLALVELAIGOrTtM!
Fibonacci Tree Algorithm

V.

= Merging Rules: Basic Merging Rule
Not all nodes eligible parents...

= 5; = Stream started at node;
= 5 (1 >0) terminated before t?

= S;terminates at t; + 1(S;).

2 1S) =24 -t -t 2 G+ IS) =6+ (24 -G - 1y)
=2t - 1y
= Node; to be a parent...
n tn S 2tk " tl-l

S
REPRESENTALIVEYAIGORILAMS
Fibonacci Tree Algorithm

= Merging Rules: Basic Merging Rule

Right Frontier of F, ,: t, = node,,..., node;,..., node, =t ,

= node; : 1 =0
2 |:n:FOn-l
= node; : 1>0

- I:n =F in-1 (tn <2 o1 — ti—l)

O
REPRESENTALIVELSAIGORITAMS
Fibonacci Tree Algorithm

= Merging Rules: Basic Merging Rule
= Basic Merging Rule

= Property of the candidate parent.
= But not how to pick a parent...

- Nearest Fit Rule
Best Fit Rule

REPRESENTALIVESAIGORITAN!
Fibonacci Tree Algorithm

V.

= Merging Rules: Nearest Fit Rule
= Pick a parent closest to the new arrival.

= node;: the parent of t, where 1 Is as large as
possible.

Right Frontier of T, ;: t; = node,,..., node;,..., node, = t_,

-2 Pick largesti (1 <i<k)st.t, <2t ,-t,

O
REPHRESENLALVELAIGOrItNMS
Fibonacci Tree Algorithm

= Merging Rules: Best Fit Rule

= Pick a parent which minimizes the merge cost
Mcost of the resulting tree.

= Merge Cost of tree F
Mcost(F) = Z I(X)

X e{F-root}

REPRESENTALIVELSAIGORITAMS
Fibonacci Tree Algorithm

= Building a Merge Tree: COST
= O(n%) < Dynamic Programming + Monotonicity
M(i,j) = min{M(i k-1) + M(k,j) + (2t;-t,-t))}

i<k<j
M(i,1) =0
Arrivals: 1y, U, ..., T,
(1,k-1) : Sub-tree of all arrivals prior to k (incl root(T))
(K,)): Sub-tree rooted at k
(24;-t,-t;) - length of the stream started at k

S
REPHRESENLALVELAIGOrItNMS
Fibonacci Tree Algorithm

= How Many Channels?
= Medium Length: L
m Arrivals: t,, t,, ..., t.
mSpan: N=t -1,
= Density p: n/N

= Density of n arrivals over N

REPRESENTALIVESAIGORITAN!
Fibonacci Tree Algorithm

V.

m Density p:0<p<1

= Worst Case: p closeto 0

= very few arrivals over N
= Each arrival gets a full stream
= Number of full Streams: O(nL)

= Best Case: p closeto 1

= many merging activities
= Number of full Streams: O(Nlog(pL)) <<betail in Appendix>>

S
REPRESENTALIVESAIGOKITAMS
Dyadic Tree Algorithm

= 2-Dyadic Model: Merge Rules

= Start Rule
sArrival Times: t,,... t ..., t (t;=0)

m > L/2 -2 new tree
m ;< L/2 = child in dyadic intervals of t,

S
REPHRESENLALVELAIGOrItNMS
Dyadic Tree Algorithm

m 2-Dyadic Model: Merge Rules

= Medium Length: L
= Partition L into 2-dyadic intervals: I,

0 L/16 L/8 L4 L2

I. I, I, I, I

REPRESENTALIVELSAIGORITAMS
Dyadic Tree Algorithm

= 2-Dyadic Model. I\/Ierge Rules
m Arrival Times: t,,... t. ..., t (t, = 0)

m If t=first arrival In Ii - label t with 1.
m If t=k™M arrival in I, = label t with ik.
= Recursively label all arrivals

REPHRESENLALVELAIGOrItNMS
Dyadic Tree Algorithm

= 2-Dyadic Model: Merge Rule Example

Iq IS. IE Il
= W H Lt ll_| -
4 2 1
T — L L1 40281
21 13 11
= . - Lpeey | I l_| 219139 1]

111
R L e S 11'e

S
REPHRESENLALVELAIGOrItNMS
Dyadic Tree Algorithm

= (-dyadiC Model: Generalized Intervals

2-IOvadic Intervals

Is Iq. I3 Iz Il

L /16 £/’8 .74 .72

(Feneralized ITntervals

= I, r I Iy
1 | | I
A AV - K +H{V-x) X+ {V =X b
'I:I[.S (I,Z L

S
REPRESENTALIVESAIGOKITAMS
Dyadic Tree Algorithm

m ¢-dyadiC Model: Generalized Intervals

s Value of

= 2-Dyadic: 2
s Coffman et al.

= ¢-Dyadic: (1+V5)/2
= Bar-Noy et al.
= 20 hour experiment:
m L: 1-hour
= Poisson with a mean interval arrival rate of 1 second
m . 1.2-2.4in increment of 0.01
= Best a = 1.65 (by means of the least # of streams)

Extension

= Stream Merging vs. Broadcasting

s Common:
= Reduce Server Bandwidth.
= Minimize Start-up Delay.
= Partition Medium into Sub-partitions.
= Use of Multicast.

= Use of Client Buffer.

Extension

= Stream Merging vs. Broadcasting

= Major Difference:

= Start-up Delay

= Stream Merging: Zero Delay
= Start a new stream for every new arrival.

= Broadcasting: Some Delay (Fixed or Variable)

Extension

= Stream Merging vs. Broadcasting

s Number of Client Arrivals:

= Channel (Stream) Length
= Stream Merging: Significant
= Broadcasting: No Effect

= Channel Allocation
= Stream Merging: Significant
= Broadcasting: No Effect

Extension

= Stream Merging vs. Broadcasting
= Page Handling:

= Page Sequence
= Stream Merging: Consecutive Order
= Broadcasting (e.g. Pagoda): Not Consecutive Order

= Page Compaction (more data packed via pages)
= Stream Merging: None
= Broadcasting: Major Benefit

Extension

= In the end...

= Streams: Mostly shorter than full

= Overall: earlier pages downloaded more often than later
pages < Broadcasting!

= [rue Advantages of Stream Merging over
Broadcasting?

= Zero Delay
= No Batching

Conclusion

= Stream Merging

= Good when ZERO Delay absolutely necessary.

= In Reality...

= Can’t have infinite number of streams (channels).

= Channel Allocation/Scheduling Algorithm:

= On-line (i.e. number of arrivals unknown).
= Optimal Number of Channels : O(Nlog(pL)).

References

s Comparison of stream merging algorithms for media-

on-demand
Amoz Bar-Noy, Justin Goshi, Richard E. Ladner, Kenneth Tam
AT & T Research
Department of Computer Science and Engineering
University of Washington

m Efficient Algorithm for Optimal Stream Merging
Amoz Bar-Noy, Richard E. Ladner
AT & T Research
Department of Computer Science and Engineering
University of Washington

References

= Competitive On-Line Stream Merging Algorithms for
Media-on-Demand

Amoz Bar-Noy, Richard E. Ladner
AT & T Research

Department of Computer Science and Engineering
University of Washington

= The Dyadic Stream Merging Algorithm

E.G. Coffman, Jr., Predrag Jelenkovic, Petar Momcilovic
Department of Electrical Engineering

Columbia University, New York, NY 10027

References

= Provably Efficient Stream Merging
E.G. Coffman, Jr., Predrag Jelenkovic, Petar Momcilovic

Department of Electrical Engineering
Columbia University, New York, NY 10027

m Skyscraper Broadcasting: A New Broadcasting

Scheme for Metropolitan Video-on-Demand Systems
Kien A. Hua, Simon Sheu
Department of Computer Science

University of Central Florida
Orlando, FL 32816-2362

S
Questions?

Thank you!

e
AP RSN D&
Fibonacci Tree Algorithm

= Upper Bound on Optimal Merge Cost
M(i,j) = min{M(i k-1) + M(k,j) + (2ttt}

M(1,)) < c(ti-t)log,(J-1+1), ¢ = 4log,e

= Optimal Full Cost for Forest F: Fcost(F)
m Fcost(F) =sL + Xi=1.s M(m,)
= S = number of L-trees, 1 <i1<s
= M, = cardinality of each L-tree, Xi=1.s m; = n

S
APRENIIX
Fibonacci Tree Algorithm
m Fcost(F)
m Fcost(F) = sL + Xi=1.s M(m))
<sL + cL2'i=1.s log,m.
= By convexity of function log,:
Fcost(F) <sL + cLXi=1.s log,(n/s)
= sL + csLlog,(n/s)
= sL(clog,(n/s) + 1)

APPENDIX
Fibonacci Tree Algorithm

= Natural Upper Bound on s

= SL(clog.(n/s) + 1) = concave as a function of s
= Global Maximum of ce1*enL at s = e-1*1/ep
>S<4N/L

s Fcost(F) < 4N / L(clog,(n/(4N/L) + 1)
e O(Nlog(pL))

AP PEIN DI
Fibonacci Tree Algorithm

= Static Fibonacci Tree Example: L = 26, 13 arrivals...

S e e —

3

1

I ¥ ¥z I4 ¥z ¥y I

#g ¥o g #3131 ¥12 13

	CMPT 886Stream Merging Algorithms
	Agenda
	Background
	Background
	Background
	Basic Mechanism
	Basic Mechanism
	Basic Mechanism
	Basic Mechanism
	Basic Mechanism
	Basic Mechanism
	Performance Comparisons
	Performance Comparisons
	Performance Comparisons
	Performance Comparisons
	Performance Comparisons
	Representative Algorithms
	Representative Algorithms
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Fibonacci Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Representative Algorithms Dyadic Tree Algorithm
	Extension
	Extension
	Extension
	Extension
	Extension
	Conclusion
	References
	References
	References
	Questions?
	APPENDIX Fibonacci Tree Algorithm
	APPENDIX Fibonacci Tree Algorithm
	APPENDIX Fibonacci Tree Algorithm
	APPENDIX Fibonacci Tree Algorithm

