CMPT 881 (2007): Introduction to Computational Biology

Assignment #1, Due October 22 in class
Instructions:

· The questions below are of varying difficulty. Your mark will be based on your overall performance on the assignment. Answering only the easy and straightforward questions may get you a lower mark than answering an interesting (and hard) problem.

· A number of questions ask you to develop algorithms. For these you should always analyze the time and space complexity unless otherwise noted. An algorithm that is faster or takes less space is preferable. You also have the option of implementing your algorithms for extra points. If you choose to write computer code, make sure you document it and choose appropriate test cases that illustrate the features of the algorithm. It must be clear that your code is correct from your documentation and test cases.

· Make sure you reference all material that you use. If you discuss questions with other people please indicate that you have done so. If you use web sites, indicate the URL of the site. Some questions also appeared on previous years’ homework – if you discuss these with students who took the course previously indicate this.
· Not appropriately referencing material may result in penalties for plagiarism as specified by SFU which are beyond the control of the instructor.

· Assignments will not be accepted past the due date except by permission of the instructor.

· New questions may be assigned during classes that are dependent on the material covered.

1. Show how local alignment can be solved in O(mn) time and linear space.
2. A new algorithm “LINLOCAL” has been developed which finds optimal local alignments in linear time. You only have the executable code available. Develop a linear time algorithm for global alignment?

3. We define A to be a subsequence of B if A can be obtained from B by deleting characters. Given two strings S and T, the longest common subsequence problem is to find the longest string that is a subsequence of both S and T. The shortest common supersequence problem is to find the shortest string that contains S and T as subsequences. Devise algorithms for longest common subsequence and shortest common supersequence.

4. Give an example of 3 strings in which the multiple string alignment algorithm given in class does not produce the optimal answer.

5. BLAST is a fast algorithm for finding local alignments of biological sequences. The NCBI has an implementation of BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) that allows you to compare a given sequence with a number of large sequence databases.

BLAST runs faster than the in-class algorithms by “approximating” a solution to the problem. Find a pair of sequences for which BLAST does not perform as well as the in-class local alignment algorithm.

6. BLAST is especially useful for comparing an unknown sequence against a large database of known sequences. The NCBI implementation does this automatically, saving a significant amount of work. Each viable match is reported along with the score and a value “E” that is the expectation that such a match could have occurred by random chance given the length of the input sequence and the size of the database.

a. Suppose you become very ill while doing work in a third-world country. Luckily you brought along a PCR kit and find a micro-organism in your food with the following sequence:

>Unknown bug

tgtaccacct ctttatcgtt tgagcaatgg agggacgcag aaggatagaa gaagcgtgcg attggttgtg cacgtccaag cagttaggct gataagtagg caaatccgct tatcgtgaag gctgagctgt gatggggaag ctccttatgg caaatccgct tatcgtgaag gctgagctgt gatggggaag ctccttatgg agcgaagtct ttgattcccc gctgccaaga

Use the NCBI implementation of BLAST to identify possible organisms that may have contaminated your food.
b. Use Pubmed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) to determine which of the top candidate organisms might have poisoned you.
7. The FASTA algorithm is also available on the NCBI site. Find a bacterium on this site whose sequence is known, is at least .5M base pairs. Download the file containing the DNA sequence in FASTA format. Write a program that reads this file and counts the number of each nucleotide. What does it mean when there is a nucleotide that is not one of {A,C,G,T}? Make sure you handle these appropriately. The output will be the name of the organism and a table of frequencies.

8. In the gap alignment problem, we discussed an algorithm in which the gap penalty function was linear affine. What does it mean for a function to be linear affine? Another possible penalty is “convex” in which the penalty is proportional to the log of the length of the gap (as opposed to linear in the length of the gap). Investigate “convex” and other types of penalty functions by showing what modifications must be made to achieve working algorithms for these functions. Give time and space complexity for your new algorithms.

9. Investigate what is known about the distribution of intron and exon lengths in a eukaryote of your choice. Devise a gap penalty function that models this distribution well. Design an efficient algorithm for optimal alignment with this gap penalty function. Analyze your algorithm Note that you may need to write computer code to analyze the intron/exon distribution or you may find it on the web.

10. Suppose you wanted to award a bonus score for long ungapped segments in the alignment, For example, you might use a bonus of:

b(i) = ci+d for a block of length i.

(in addition to the scores for the i matching letter pairs in the block). Devise an algorithm to find optimal alignment under this scoring scheme.

11. An inversion of a string is the same string written backwards. Suppose you wanted to handle inversion mutations in an optimal alignment algorithm. That is, a contiguous substring of a DNA sequence is replaced by its reverse complement. One way is to have an affine inversion penalty (a constant per inversion plus a penalty that grows linearly with the size of the inversion). Devise an efficient algorithm that for optimal alignment in this setting. Be as general as possible (i.e. try to handle substitutions, insertions, and deletions in the reversed portion).
12. Given two sequences and a scoring function, devise an algorithm that computes the number of optimal global alignments of the sequences.
