The complexity of homomorphism and constraint satisfaction problems seen from the other side

Martin Grohe Humboldt-Universität zu Berlin

Speaker:

Victor Dalmau Universitat Polytécnica de Catalunya

The Homomorphism Problem

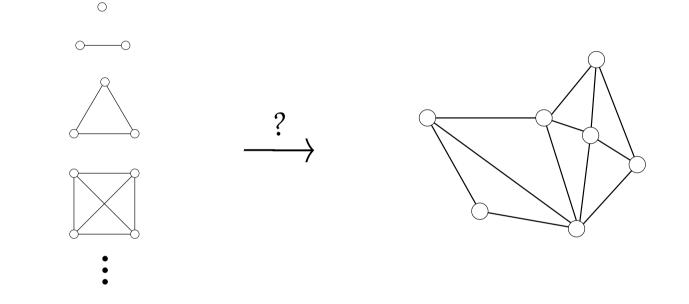
 $\mathfrak{C}, \mathfrak{D}$ classes of relational structures HOM($\mathfrak{C}, \mathfrak{D}$) is the following problem

Input:	Structures $A \in \mathcal{C}$, $B \in \mathcal{D}$
Problem:	Decide if there is a homomorphism from A to B

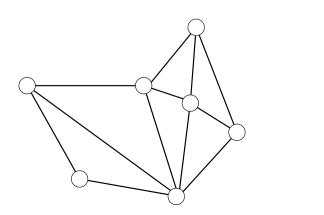
We write HOM($_, \mathcal{D}$) if \mathcal{C} is the class of all structures. Similarly HOM($\mathcal{C}, _$).

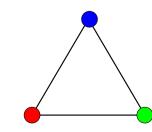
Examples

CLIQUE is HOM(Class of all Complete Graphs, _).



3-COLOURABILITY is HOM(_, {Triangle}).





3

?

Constraint Satisfaction Problems

Observation (Feder and Vardi 1998) HOM(\mathcal{C}, \mathcal{D}) is equivalent to the constraint satisfaction problem with instances from \mathcal{C} and templates from \mathcal{D} .

One Side — the Hell-Nešetřil Theorem

Theorem (Hell and Nešetřil 1990)

Let B be an (undirected simple) graph. Then $HOM(_, \{B\})$ is in PTIME iff B is bipartite. Otherwise, $HOM(_, \{B\})$ is NP-complete.

Corollary

Assume that $PTIME \neq NP$. Then for every class \mathcal{D} of graphs, $HOM(_, \mathcal{D})$ is in PTIME iff all graphs in \mathcal{D} are bipartite.

Remark

The Hell-Nešetřil Theorem only holds for undirected graphs. No classification result is known for directed graphs or arbitrary relational structures.

The Other Side

Goal

Find a similar classification for problems $HOM(\mathcal{C}, _)$.

The Combinatorial Ingredients

Tree-Width

The tree-width of a graph (or relational structure) measures the similarity of the graph (structure) with a tree.

Cores

A core of a graph (or relational structure) G is a minimum subgraph (substructure) w.r.t. inclusion that is a homomorphic image of G.

Fact

The core of a graph is unique up to up to isomorphism.

Tractable Problems

Theorem (Freuder 1990) Let \mathcal{C} be a class of structures of bounded tree-width. Then HOM(\mathcal{C} , _) is in PTIME.

Theorem (Dalmau, Kolaitis, and Vardi 2002) Let \mathcal{C} be a class of structures whose cores have bounded tree-width. Then HOM(\mathcal{C} , _) is in PTIME.

Proof uses Ehrenfeucht-Fraisse games for a logic describing homomorphism problems and the fact that winning strategies for these games can be computed in PTIME.

The Main Result

Theorem

Assume that FPT \neq W[1]. Let \mathfrak{C} be a recursively enumerable class of structures of bounded arity. Then HOM(\mathfrak{C} , _) is in PTIME iff the cores of the structures in \mathfrak{C}

have bounded tree-width.

Assumptions on the Class $\ensuremath{\mathcal{C}}$

Theorem

Assume that FPT \neq W[1]. Let C be a recursively enumerable class of structures of bounded arity. Then HOM(C,_) is in PTIME iff the cores of the structures in C have bounded tree-width.

The assumption that C is recursively enumerable can be omitted if the complexity theoretic assumption FPT \neq W[1] is slightly strengthened to

non-uniform-FPT \neq non-uniform-W[1]

(which is still believed to be true).

Assumptions on the Class \mathcal{C} (cont'd)

Theorem

Assume that FPT \neq W[1]. Let C be a recursively enumerable class of structures of **bounded arity**. Then HOM(C,_) is in PTIME iff the cores of the structures in C have bounded tree-width.

Bounded arity means that there is an r such all relations in all structures in C are at most r-ary.

All classes of graphs, directed graphs, or coloured graphs, and all classes of structures of a fixed vocabulary have bounded arity.

The assumption that \mathcal{C} has bounded arity is necessary, the theorem does not hold for classes \mathcal{C} of unbounded arity.

The Complexity Theoretic Assumption

Theorem

Assume that FPT \neq W[1]. Let C be a recursively enumerable class of structures of bounded arity. Then HOM(C,__) is in PTIME iff the cores of the structures in C have bounded tree-width.

FPT = W[1] is equivalent to either of the following three problems being fixed-parameter tractable, i.e., solvable in time f(k)p(n) for some computable function f and polynomial p:

The **CLIQUE** problem

Input:Graph G of size n, positive integer kProblem:Decide if G has a clique of size k

The Complexity Theoretic Assumption (cont'd)

The k-STEP HALTING problem

Input:	Non-deterministic Turing machine M of size n , positive integer k
Problem:	Decide if M has a k -step halting computation

The WEIGHTED SATISFIABILITY problem

Input:	Boolean formula ${f \varphi}$ in 3-CNF of size ${f n}$, positive integer ${f k}$
Problem:	Decide if ϕ has a satisfying assignment setting precisely k
	variables to TRUE

If FPT = W[1] then 3-SAT is solvable in time $2^{o(n)}$.

The Complexity Theoretic Assumption (cont'd)

The assumption FPT \neq W[1] is necessary:

Proposition

FPT = W[1] iff there is a recursively enumerable class of graphs \mathcal{C} whose cores have unbounded tree-width such that $HOM(\mathcal{C}, _)$ is in PTIME.

A Few Words on the Proof

Proof uses graph minor theory and parameterized complexity theory.

Call a recursively enumerable class C of structures of bounded vocabulary whose cores have unbounded tree-width complicated.

Goal

Prove that for complicated classes C the problem HOM(C, _) is W[1]-complete.

Idea

- Let C be a complicated class and C' the class of cores of structures in C. Then HOM(C,_) and HOM(C',_) are equivalent (w.r.t. their parameterized complexity).
- By Robertson and Seymour's Excluded Grid Theorem, the primal graphs of the structures in C['] contain arbitrarily large grid minors.
- A combinatorial reduction reduces the parameterized CLIQUE problem to the parameterized homomorphism problem for cores with arbitrarily large grid minors.

Is there a Dichotomy?

LOG-CLIQUE is the following problem:

Input:	Graph G with n vertices
Problem:	Decide if G has a clique of size at least log n

Seems unlikely to be either in PTIME or NP-complete.

Proposition

There is a polynomial time computable class \mathcal{C} of graphs such that HOM(\mathcal{C} , _) and LOG-CLIQUE are polynomial time equivalent.

Remark

There is a dichotomy for the parameterized complexity of problems $HOM(\mathcal{C}, _)$ — they are either fixed-parameter tractable or W[1]-complete.

Open Problems

- Classify problems $HOM(\mathcal{C}, _)$ for classes \mathcal{C} of unbounded arity.
- Classify the embedding problems $EMB(\mathcal{C}, _)$
- Classify the corresponding counting problems.