
Building State-of-the-Art SAT Solvers
Inês Lynce and João Marques-Silva1

Abstract. The area of Propositional Satisfiability (SAT) has been
the subject of intensive research in recent years, with significant the-
oretical and practical contributions. From a practical perspective, a
large number of very effective SAT solvers have recently been pro-
posed, most of which based on improvements made to the orig-
inal Davis-Putnam-Logemann-Loveland (DPLL) backtrack search
SAT algorithm. The new solvers are capable of solving very large,
very hard real-world problem instances, which more traditional SAT
solvers are totally incapable of. Despite the significant improvements
in state-of-the-art backtrack search SAT solvers, a few relevant ques-
tions remain. Is a well-organized and well-implemented DPLL algo-
rithm enough per se, or should the algorithm definitely include addi-
tional search techniques? Which search techniques are indeed effec-
tive for most problem instances? Which search techniques cooperate
effectively and which do not? This paper is a first step towards an-
swering the previous questions. We start by describing the search
techniques that have been proposed in recent years for backtrack
search SAT solvers. Afterwards, we empirically evaluate the differ-
ent techniques, using representative real-world problem instances.
Finally, and to conclude, we address the problem of organizing ef-
fective DPLL-based SAT solvers.

1 Introduction

Propositional Satisfiability (SAT) is a well-known NP-complete
problem of theoretical and practical relevance, with application in
many fields of Computer Science and Engineering, including Artifi-
cial Intelligence (AI) and Electronic Design Automation (EDA). In
the past few years, Propositional Satisfiability has been the subject of
intensive research, from which very significant improvements have
resulted [2, 9, 16, 11, 12, 7]. These improvements range from new
search strategies, to new search pruning and reasoning techniques,
and to new fast implementations.
State-of-the-art SAT solvers can now very easily solve problem

instances that more traditional SAT solvers are known to be totally
incapable of. As a result, a thorough understanding of the organiza-
tion, the strategies, the techniques, and the implementation of state-
of-the-art SAT solvers is essential to help focus future SAT research,
to help devise effective new ideas for the next generation solvers,
able to solve the next generation problem instances, and finally to
help developing innovative modeling approaches, more capable of
exploiting the organization of state-of-the-art SAT solvers.

1.1 SAT Algorithms

Over the years a large number of algorithms has been proposed for
SAT, from the original Davis-Putnam procedure [4], to recent back-

1 Technical University of Lisbon, IST/INESC/CEL, R. Alves Redol, 9, 1000-
029 Lisboa, Portugal, email: {ines,jpms}@sat.inesc.pt

track search algorithms [2, 9, 16, 11, 12, 7], to local search algo-
rithms [14], among many others. Local search algorithms have al-
lowed solving extremely large satisfiable instances of SAT. These
algorithms have also been shown to be very effective in randomly
generated instances of SAT. On the other hand, several improve-
ments to the backtrack search Davis-Putnam-Logemann-Loveland
algorithm [3] have been introduced. These improvements have been
shown to be crucial for solving large instances of SAT derived from
real-world applications, and in particular for those where local search
cannot be applied, i.e. for unsatisfiable instances. Indeed, the most
effective algorithms are able to prove that an instance cannot be sat-
isfied if given enough time. We should note that in a large number of
significant real-world applications, proving unsatisfiability is most
often the objective.

1.2 Objectives

This paper proposes to further investigate the different improvements
that have been introduced by recent state-of-the-art SAT solvers.
Given a representative set of instances, from different origins, several
questions can be posed. Which SAT techniques are effective? How
should the techniques be combined? How should a DPLL-based SAT
solver be organized to be competitive with other state-of-the-art SAT
solvers? This paper represents a first study to answer these questions.
We will start by describing the basic, more well-known algorithms,
will detail recent, more advanced SAT strategies and techniques, and
will address the implementation of fast SAT solvers. In addition, we
will highlight current SAT research topics. Throughout the paper, an-
other key underlying objective is to address some often perceived
misconceptions in organizing SAT algorithms.
The remainder of the paper is organized as follows. Section 2 in-

troduces the definitions and the experimental setup. Afterwards, we
review backtrack search algorithms for SAT. Section 4 analyzes ex-
isting SAT implementations and Section 5 describes different search
strategies for SAT algorithms. Finally, we point out recent research
trends and the paper concludes in Section 7. Within each of the dif-
ferent sections, the proposed approaches are empirically evaluated in
a common SAT framework.

2 Preliminaries

This section introduces the notational framework used in the paper.
Moreover, we describe the experimental setup that will be used to
obtain the different experimental results presented throughout the pa-
per.

2.1 Definitions

Propositional variables are denoted x1, . . . , xn, and can be assigned
truth values 0 (or F ) or 1 (or T ). The truth value assigned to a vari-



Table 1. Example Instances

Application Domain Selected Instance # Variables #Clauses Satisfiable?

Circuit Testing (Dimacs)
bf0432-079 1044 3685 N
ssa2670-141 4843 2315 N

Inductive Inference(Dimacs) ii16e1 1245 14766 Y

Parity Learning(Dimacs) par16-1-c 317 1264 Y

“Flat” Graph Colouring flat200-39 600 2237 Y

“Morphed” Graph Colouring sw100-49 500 3100 Y

Blocks World 4blocksb 410 24758 Y

Planning
logistics.c 1027 9507 N
facts7hh.13.simple 2809 48920 Y

Bounded Model Checking
barrel5 1407 5383 N
queueinvar16 1168 6496 N

Superscalar Processor Verification
dlx2 aa 490 2804 N
dlx2 cc a bug17 4847 39184 Y
2dlx cc mc ex bp f2 bug005 4824 48233 Y

Data Encryption Standard cnf-r3-b4-k1.2 939040 35963 Y

able x is denoted by ν(x). (When clear from context we use x = νx,
where νx ∈ {0, 1}). A variable whose binary value has already been
determined is considered to be assigned; otherwise it is unassigned.
A literal l is either a variable xi or its negation ¬xi. A clause ω is
a disjunction of literals and a CNF formula ϕ is a conjunction of
clauses. A clause is said to be satisfied if at least one of its literals
assumes value 1, unsatisfied if all of its literals assume value 0, unit
if all but one literal assume value 0, and unresolved otherwise. Liter-
als with no assigned truth value are said to be free literals. A formula
is said to be satisfied if all its clauses are satisfied, and is unsatis-
fied if at least one clause is unsatisfied, which means there is a con-
flict. A truth assignment for a formula is a set of assigned variables
and their corresponding truth values. An assignment is complete if
all variables are assigned; otherwise, it is partial. The SAT problem
consists of deciding whether there exists a truth assignment to the
variables such that the formula becomes satisfied.

2.2 Experimental Setup

In order to experimentally evaluate the different approaches, in a con-
trolled experiment that ensures that only specific differences are eval-
uated, a dedicated SAT solving framework is needed. Besides differ-
ing data structures and coding styles, each existing SAT solver im-
plements its own set of search techniques, strategies and heuristics.
Hence, a comparison between state-of-the-art SAT solvers hardly
guarantees meaningful results.
Consequently, we developed the JQUEST SAT framework, a Java

framework of SAT algorithms, that implements a significant number
of the most well-known SAT techniques, and that can be used to
conduct unbiased experimental evaluations of SAT techniques and
algorithms.
In order to perform this comparison using the JQUEST SAT

solver, instances were selected from several classes of instances (see
Table 1)2. In all cases, the problem instances chosen can be solved
with several thousand decisions by the most effective solvers, usually

2 All the instances are available from Sat-Ex web site
(http://www.lri.fr/∼simon/satex/satex.php3), with
the exception of the superscalar processor verification instances.

taking a few tens of seconds, and thus being significantly hard. For
this reason, different algorithms can provide significant variations on
the time required for solving a given instance. In addition, we should
also observe that the problem instances selected are intended to be
representative, since each resembles, in terms of hardness for SAT
solvers, the typical instance in each class of problem instances.
For the results shown a P-III@866 MHz Linux machine with 1

GByte of physical memory was used. The Java Virtual Machine used
was SUN’s HotSpot JVM for JDK1.3. With respect to the organiza-
tion of the algorithm, we decided to randomize the variable selection
heuristic, since this is required for applying some strategies (see Sec-
tion 5), and since randomization usually provides improvements on
most if not all algorithms. For the results shown, the number of runs
for each instance and for each algorithm was set to 100. Moreover,
the obtained results correspond to the median values for all the runs.
The CPU time was limited to 3000 seconds.

3 Backtrack Search Algorithms

The vast majority of backtrack search SAT algorithms build upon the
original backtrack search algorithm of Davis, Logemann and Love-
land [3]. The backtrack search algorithm is implemented by a search
process that implicitly enumerates the space of 2n possible binary
assignments to the n problem variables. A decision level is associ-
ated with each variable selection and assignment. The first variable
selection corresponds to decision level 1. For each new decision as-
signment, the decision level is incremented by 1. In addition, the unit
clause rule [4] is applied. If a clause is unit, then the sole free lit-
eral must be assigned value 1 for the formula to be satisfied. In this
case, the value of the literal and of the associated variable are said
to be implied. The iterated application of the unit clause rule is often
referred to as Boolean Constraint Propagation.
In chronological backtracking strategies, the search algorithm

keeps track of which decision assignments have been toggled. Given
a conflict that occurs at decision level d, the algorithm checks
whether the corresponding decision variable x has already been tog-
gled. If not, it erases the variable assignments which are implied by
the assignment on x, including the assignment on x, and assigns the
opposite value to x. In contrast, if the value of x has already been



toggled, the search backtracks to level d − 1. Satz [9] is an example
of a modern SAT solver that applies chronological backtracking.
Non-chronological backtracking strategies were originally pro-

posed by Stallman and Sussman [15] in the area of Truth Mainte-
nance Systems (TMS), and further studied by J. Gaschnig [6] and
others (see for example [5, 13] in the context of Constraint Satis-
faction Problems (CSP)). Non-chronological backtracking strategies
attempt to identify the variable assignments causing a conflict and
backtrack directly to a point so that at least one of those variable
assignments is modified. GRASP [11] and relsat [2] are examples
of SAT solvers that successfully implement non-chronological back-
tracking.
For all SAT algorithms implementing non-chronological back-

tracking, new clauses are recorded to explain and prevent identi-
fied conflicting conditions. Basically, given a set of variable assign-
ments, that is identified as representing a sufficient condition caus-
ing an identified conflict, clause recording consists in the creation
of a new clause that prevents the same assignments from occur-
ring simultaneously again during the subsequent search. In general,
recorded clauses are used for computing the backtracking decision
level, which is defined as the highest decision level of all variable
assignments of the literals in each newly recorded clause 3.

Table 2. Chronological vs Non-Chronological Backtracking

Instance CB NCB

bf0432-079 >3000 3.73
ssa2670-141 >3000 101.69
ii16e1 >3000 0.53
par16-1-c 165.75 1362.53
flat200-39 656.55 1472.53
sw100-49 >3000 17.15
4blocksb >3000 639.87
logistics.c >3000 38.96
facts7hh.13.simple >3000 8.31
barrel5 189.88 635.12
queueinvar16 >3000 22.9
dlx2 aa >3000 32.35
dlx2 cc a bug17 >3000 4.2
2dlx... bug005 >3000 >3000
cnf-r3-b4-k1.2 >3000 18.69

The results presented in Table 2 compare the required CPU time
for solving the chosen example instances with both chronological
backtracking (CB) and non-chronological backtracking (NCB). Def-
initely, the results trend is clear: the use of non-chronological back-
tracking is crucial for solving a large number of instances from dif-
ferent domains. Nonetheless, the few instances that chronological
backtracking is able to solve need more time to be solved when
non-chronological backtracking is used. This is due to the fact that
non-chronological backtracking does not apply often to these in-
stances, and consequently making an additional effort for analyzing
the causes of conflicts does not compensate.
The main conclusion of the previous comparison is that applying

non-chronological backtracking is most often crucial in solving real-
world instances of SAT.

3 It would be interesting to distinguish between results obtained with non-
chronological backtracking and with clause recording, since these tech-
niques do not necessarily have to be jointly applied. This evaluation is not
within the scope of the paper, but a preliminary study can be found in [10].

4 Fast Implementations

Recent state-of-the-art SAT solvers are characterized by using very
efficient implementations, intended to reduce the CPU time required
per each node in the search tree. As a result, the often used standard
implementations (i.e. counter-based), have been replaced by the lazy
implementations, characterized by saving memory and requiring less
computational effort.
Most backtrack search SAT algorithms represent clauses as lists of

literals, and associate with each variable x a list of the clauses that
contain a literal in x. In addition, literal counters are associated with
each clause, to keep track of unsatisfied, satisfied and unit clauses.
These literal counters indicate how many literals are unsatisfied, sat-
isfied and, indirectly, how many are still unassigned. A clause is un-
satisfied if the unsatisfied literal counter equals the number of literals;
it is satisfied if the counter of satisfied literals is greater than one; fi-
nally, it is unit if the unsatisfied literal counter equals the number of
literals minus one, which means there is still one unassigned literal.
When a clause is declared unit, the list of literals is traversed to iden-
tify which literal needs to be assigned. Examples of a SAT solvers
that utilize a counter-based implementation include GRASP [11], rel-
sat [2] and satz [9].
Lazy implementations are characterized by each variable keeping

a reduced set of clauses’ references, for each of which the variable
can effectively be used for declaring the clause as unit or unsatisfied.
These data structures are based on the observation that if a clause
has more than one unassigned literal, it can be neither a unit nor an
unsatisfied clause. As a result, instead of keeping counters for each
clause, each variable only keeps a list of references to some of its
clause literals. Since such literals are the last to be assigned value 0,
unit and unsatisfied clauses are detected by examining the references
in the clause. Examples of efficient lazy data structures include the
head/tail lists used in SATO [16] and the watched literals used in
Chaff [12]. In Chaff, for each clause there are solely two references
to literals, which are said to be watched. Moreover, watched literals
do not have to be updated in the backtrack step.

Table 3. Counter-based vs Lazy Implementations

Instance CBcb CBwl NCBcb NCBwl

bf0432-079 >3000 >3000 3.73 3.11
ssa2670-141 >3000 >3000 101.69 22.91
ii16e1 >3000 >3000 0.53 0.48
par16-1-c 165.75 175.59 1362.53 233.53
flat200-39 656.55 769.66 1472.53 396.95
sw100-49 >3000 >3000 17.15 12.19
4blocksb >3000 >3000 639.87 248.03
logistics.c >3000 >3000 38.96 27.39
facts7hh.13.simple >3000 >3000 8.31 9.09
barrel5 189.88 203.29 635.12 146.74
queueinvar16 >3000 >3000 22.9 13.06
dlx2 aa >3000 >3000 32.35 11.74
dlx2 cc a bug17 >3000 >3000 4.2 3.92
2dlx... bug005 >3000 >3000 >3000 >3000
cnf-r3-b4-k1.2 >3000 >3000 18.69 16.48

The results presented in Table 3 reveal interesting trends. (We
should note that the different implementations (cb for counter-based,
wl for (lazy) watched literals) perform the same search for the same
backtracking strategy (CB or NCB)). For CB, the best results are
obtained with a cb implementation. In contrast, the best results
for NCB are obtained with a wl implementation. The explanation
for this difference is simple. NCB performs clause recording and



therefore creates a clause for each identified conflict. Usually, these
clauses have a significant number of literals, especially when com-
pared to the original clauses. Hence, wl is more efficient for the large
(usually recorded) clauses. On the other hand, cb is more adequate
for the small (usually original) clauses.
Interestingly, this experimental evidence strongly suggests utiliz-

ing mixed data structures. For reasonably small clauses (e.g. with a
number of literals less than or equal to k) use a cb data structure,
whereas for larger clauses (e.g. with a number of literals greater than
k) use a wl data structure.

5 Search Strategies

Search strategies are used to implement different organizations of the
search process. The most well-known strategy consists in randomiz-
ing the variable selection heuristic used for selecting variables and
also the values to assign to them [2].
Although intimately related with randomizing variable selection

heuristics, randomization is also a key aspect of search restart strate-
gies [1, 8]. Randomization ensures with high probability that differ-
ent sub-trees are searched each time the backtrack search algorithm
is restarted.
Current state-of-the-art SAT solvers already incorporate some of

the above forms of randomization [1, 12]. In these SAT solvers vari-
able selection heuristics are randomized and search restart strategies
are utilized.

Table 4. Search Restart Strategies

Instance CBcb CBcbRST NCBwl NCBwlRST

bf0432-079 >3000 >3000 3.11 3.17
ssa2670-141 >3000 >3000 22.91 23.22
ii16e1 >3000 >3000 0.48 0.5
par16-1-c 165.75 135.55 233.53 198.51
flat200-39 656.55 539.89 396.95 125.95
sw100-49 >3000 >3000 12.19 10.3
4blocksb >3000 >3000 248.03 323.74
logistics.c >3000 >3000 27.39 30.99
facts7hh.13.s... >3000 >3000 9.09 9.91
barrel5 189.88 157.14 146.74 175.74
queueinvar16 >3000 >3000 13.06 13.36
dlx2 aa >3000 >3000 11.74 12.31
dlx2 cc a bug17 >3000 >3000 3.92 3.58
2dlx... bug005 >3000 >3000 >3000 197.55
cnf-r3-b4-k1.2 >3000 >3000 16.48 16.78

Experimental results on restarts were obtained considering the
best implementation for CB and for NCB. Hence, Table 4 ap-
plies restarts (RST) to chronological backtracking with a counter-
based implementation (CBcb) and to non-chronological backtrack-
ing implemented with watched literals (NCBwl). In general, apply-
ing restarts improves the results, even though the improvements are
not remarkable. However, there is an exception with respect to the
2dlx cc mc ex bp f2 bug005 instance, that would not be solved in
the allowed CPU time if it was not for the restarts. It should be ob-
served that this instance is representative of a very large number of
instances from the formal verification domain, all known to be hard
and structured problem instances, for which search restarts are cru-
cial and yield similar improvements.

6 Recent Trends

Regarding the evaluation of state-of-the-art SAT solvers, the exper-
imental results, obtained on representative problem instances, indi-
cate that lazy implementations may be preferable for the next gener-
ation SAT solvers.
More recently, and due to the introduction of lazy data structures

(and consequently lazy knowledge of clause status), a different kind
of variable selection heuristic (referred to as VSIDS, Variable State
Independent Decaying Sum) has been proposed [12]. It selects the
literal that appears most frequently over all clauses, which means
that the metrics only have to be updated when a new recorded clause
is created. More than to develop an accurate heuristic, the motivation
has been to design a fast (but dynamically adaptive) heuristic. In fact,
one of the key properties of this strategy is the very low overhead, due
to being independent of the variable state.

Table 5. Branching Heuristics

Instance NCBwlRSTslis NCBwlRSTvsids

bf0432-079 3.17 2.24
ssa2670-141 23.22 1.06
ii16e1 0.5 0.42
par16-1-c 198.51 178.36
flat200-39 125.95 12.96
sw100-49 10.3 2.35
4blocksb 323.74 85.94
logistics.c 30.99 26.8
facts7hh.13.simple 9.91 7.28
barrel5 175.74 41.07
queueinvar16 13.36 16.39
dlx2 aa 12.31 10.12
dlx2 cc a bug17 3.58 2.86
2dlx... bug005 197.55 41.66
cnf-r3-b4-k1.2 16.78 15.39

Table 5 shows the obtained results on using two different heuris-
tics, named SLIS and VSIDS. SLIS (Static Largest Individual Sum)
is an heuristic that selects the literal that appears most frequently in
original clauses; in this case, the metrics are not dynamically changed
during the search. This heuristic has been used in all the previous re-
sults, since it can be applied to both standard and lazy implementa-
tions 4. Moreover, VSIDS consists in the heuristic described above.
For some of the instances, and for the VSIDS heuristic, significant
improvements can be observed.

7 Conclusions & Recommendations

In this paper we described and compared different techniques, im-
plementations and strategies for backtrack search SAT algorithms.
The plot from Figure 1 compares the obtained results for each al-
gorithm described throughout the paper, based on the percentage of
solved instances per unit of time. It is plain from the plot that we have
achieved remarkable improvements, as we evolved from the stan-
dard DPLL algorithm (CBcb) to a non-chronological backtracking
algorithm, with a lazy implementation, integrating restarts and using
the VSIDS heuristic (NCBwlRSTvsids). Observe that each technique
has been included in the order it was proposed in the literature.
The obtained experimental results are clear. Given the problem

instances considered, which have been selected to be representative

4 A more elaborated heuristic could have improved the obtained results for
CB. Nevertheless, the experimental results of [10] are still far from being
competitive with NCB.



0

20

40

60

80

100

0 100 200 300 400 500

S
ol

ve
d 

In
st

an
ce

s 
(%

)

Time (s)

NCBwlRSTvsids
NCBwlRST

NCBwl
NCBcb

CBcbRST
CBcb
CBwl

Figure 1. Experimental Results

of each class, from a relevant number of classes of problem instances,
we can suggest answers to the questions formulated at the beginning
of the paper:

1. A well-organized and well-implemented DPLL algorithm is not
enough per se, and should definitely include additional search
pruning techniques.

2. Non-chronological backtracking is indeed effective for most prob-
lem instances, when compared to chronological backtracking.

3. Search restart strategies can be crucial for solving some of the
most hard and structured problem instances.

4. There are techniques that do cooperate effectively: chronologi-
cal backtracking with counter-based implementations, and non-
chronological backtracking with lazy implementations.

Moreover, we believe the experimental results clearly address
some often perceived misconceptions in organizing SAT algorithms.
To be successfully used in most classes of problem instances a state-
of-the-art SAT solver should: (i) apply non-chronological backtrack-
ing with clause recording; (ii) utilize the watched literals data struc-
ture; (iii) apply a fast instead of an accurate decision heuristic; and
(iv) implement the search restart strategy, and selectively use it.

ACKNOWLEDGEMENTS

This work is partially supported by the European research
project IST-2001-34607 and by Fundação para a Ciência e Te-
cnologia under research projects PRAXIS/C/EEI/11249/98 and
POSI/34504/CHS/2000.

REFERENCES
[1] L. Baptista and J. P. Marques-Silva, ‘Using randomization and learn-

ing to solve hard real-world instances of satisfiability’, in International
Conference on Principles and Practice of Constraint Programming,
ed., R. Dechter, volume 1894 of Lecture Notes in Computer Science,
pp. 489–494. Springer Verlag, (September 2000).

[2] R. Bayardo Jr. and R. Schrag, ‘Using CSP look-back techniques to
solve real-world SAT instances’, in Proceedings of the National Con-
ference on Artificial Intelligence, pp. 203–208, (July 1997).

[3] M. Davis, G. Logemann, and D. Loveland, ‘A machine program for
theorem-proving’, Communications of the Association for Computing
Machinery, 5, 394–397, (July 1962).

[4] M. Davis and H. Putnam, ‘A computing procedure for quantification
theory’, Journal of the Association for Computing Machinery, 7, 201–
215, (July 1960).

[5] R. Dechter, ‘Enhancement schemes for constraint processing: back-
jumping, learning, and cutset decomposition’, Artificial Intelligence,
41(3), 273–312, (January 1990).

[6] J. Gaschnig, Performance Measurement and Analysis of Certain Search
Algorithms, Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh,
PA, May 1979.

[7] E. Goldberg and Y. Novikov, ‘BerkMin: a fast and robust sat-solver’,
in Proceedings of the Design and Test in Europe Conference, (March
2002).

[8] C. P. Gomes, B. Selman, and H. Kautz, ‘Boosting combinatorial search
through randomization’, in Proceedings of the National Conference on
Artificial Intelligence, (July 1998).

[9] C. M. Li and Anbulagan, ‘Look-ahead versus look-back for satisfiabil-
ity problems’, in Proceedings of the International Conference on Prin-
ciples and Practice of Constraint Programming, (October 1997).

[10] I. Lynce and J. P. Marques-Silva, ‘The effect of nogood recording in
MAC-CBJ SAT algorithms’, Technical Report RT/04/2002, INESC,
(April 2002).

[11] J. P. Marques-Silva and K. A. Sakallah, ‘GRASP-A search algo-
rithm for propositional satisfiability’, IEEE Transactions on Comput-
ers, 48(5), 506–521, (May 1999).

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, ‘Engi-
neering an efficient SAT solver’, in Proceedings of the Design Automa-
tion Conference, (June 2001).

[13] Patrick Prosser, ‘Hybrid algorithms for the constraint satisfaction prob-
lems’, Computational Intelligence, 9(3), 268–299, (August 1993).

[14] B. Selman and H. Kautz, ‘Domain-independent extensions to GSAT:
Solving large structured satisfiability problems’, in Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 290–295,
(August 1993).

[15] R. M. Stallman and G. J. Sussman, ‘Forward reasoning and
dependency-directed backtracking in a system for computer-aided cir-
cuit analysis’, Artificial Intelligence, 9, 135–196, (October 1977).

[16] H. Zhang, ‘SATO: An efficient propositional prover’, in Proceedings of
the International Conference on Automated Deduction, pp. 272–275,
(July 1997).


