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Abstract. A recent theoretical result by Achlioptas et al. shows that many models of random binary constraint
satisfaction problems become trivially insoluble as problem size increases. This insolubility is partly due to
the presence of ‘flawed variables,’ variables whose values are all ‘flawed’ (or unsupported). In this paper,
we analyse how seriously existing work has been affected. We survey the literature to identify experimental
studies that use models and parameters that may have been affected by flaws. We then estimate theoretically
and measure experimentally the size at which flawed variables can be expected to occur. To eliminate flawed
values and variables in the models currently used, we introduce a ‘flawless’ generator which puts a limited
amount of structure into the conflict matrix. We prove that such flawless problems are not trivially insoluble
for constraint tightnesses up to 1/2. We also prove that the standard models B and C do not suffer from flaws
when the constraint tightness is less than the reciprocal of domain size. We consider introducing types of
structure into the constraint graph which are rare in random graphs and present experimental results with such
structured graphs.
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1. Introduction

One of the most exciting areas in AI in recent years has been the study of phase tran-
sition behaviour. In a seminal paper that inspired many later researchers, Cheeseman,
Kanefsky, and Taylor showed empirically that the hardest instances to solve in a num-
ber of NP-complete problems often occur around a rapid transition in solubility [7].
Problems from such transitions in solubility are routinely used to benchmark algorithms
for many different NP-complete problems. Experimental results about phase transition
behaviour have come thick and fast since the publication of [7]. For example, in random
3-Sat, the phase transition was quickly shown to occur when the ratio of clauses to vari-
ables is approximately 4.3 [45]. Unfortunately, theory has often proved more difficult.
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A recent result proves that the width of the phase transition in random 3-Sat narrows
as problems increase in size [15]. However, we only have rather loose but hard won
bounds on its actual location [16], [37]. For random constraint satisfaction problems
(CSPs), Achlioptas et al. recently provided a more negative theoretical result [1]. They
show that, as the number of variables increases, the conventional random models produce
problems which almost surely contain flawed variables and are therefore trivially insol-
uble. Thus, these models do not have an asymptotic phase transition over most of their
parameter space. This paper studies the impact of this theoretical result on experimental
studies. We show how to add structure to random problems to overcome such flaws, as
well as to make them more representative of problems met in practice.

The paper can be broadly divided into two parts reflecting our subtitle: flaws and
structure. In the first part of the paper, from Section 4 to Section 6, we analyse the
consequences of Achlioptas et al.’s discovery that the most commonly used methods
of generating random problems suffer from flaws. In Section 4 we survey the litera-
ture, showing that many past studies may indeed have been compromised by flaws. In
Section 5 we estimate theoretically the likelihood of flaws arising and in Section 6 con-
firm these estimates theoretically. In the second part of the paper, from Section 7 to
Section 10 we show how structure can be added to generation methods to eliminate
flaws and we consider using constraint graphs with specific structure, to make random
problems more representative of problems met in practice. In Section 7 we introduce
a new flawless method of generating binary CSPs, and show how it can be used with
existing models. In Section 8, we justify the name ‘flawless’ by proving that, asymp-
totically, flawless instances are not trivially insoluble. A corollary of this result is that
problems from the standard models B and C are not trivially insoluble in the limit, if the
constraint tightness <1/m, where m is the domain size. We also report empirical results
using both the flawless method (Section 9) and constraint graphs which have specific
structure, rather than being purely random (Section 10).

2. Constraint Satisfaction

A binary constraint satisfaction problem consists of a set of variables, each with a domain
of values, and a set of binary constraints. Each constraint defines the incompatible val-
ues for a pair of variables. Each assignment of values to variables ruled out is called a
nogood. We can describe the constraint between the variables vx and vy by a conflict
matrix. This is a 0–1 matrix with 0 in the �i	 j� entry iff the ith value for vx is incompat-
ible with the jth value for variable vy and 1 otherwise. Associated with each problem is
a constraint graph. This has variables as vertices and edges between variables that appear
together in a constraint. The constraint satisfaction decision problem is to decide if there
is an assignment of values to variables such that none of the constraints are violated.

Randomly-generated binary CSPs have been widely used experimentally, for instance
to compare different solution algorithms. Most experimental and theoretical studies use
one of four simple models of random problems. In each of these models, we generate a
constraint graph G, and then for each edge in this graph, we choose pairs of incompatible
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values for the associated conflict matrix. The models differ in how we generate the
constraint graph and how we choose incompatible values. In each case, we can describe
problems by the tuple �n	m	p1	 p2�, where n is the number of variables, m is the uniform
domain size, p1 is a measure of the density of the constraint graph, and p2 is a measure
of the tightness of the constraints.

model A: we independently select each one of the n�n−1�/2 possible edges in G with
probability p1, and for each selected edge we pick each one of the m2 possi-
ble pairs of values, independently with probability p2, as being incompatible;

model B: we randomly select exactly p1n�n−1�/2 edges for G, and for each selected
edge we randomly pick exactly p2m

2 pairs of values as incompatible;

model C: we select each one of the n�n−1�/2 possible edges in G independently with
probability p1, and for each selected edge we randomly pick exactly p2m

2

pairs of values as incompatible;

model D: we randomly select exactly p1n�n−1�/2 edges for G, and for each selected
edge we pick each one of the m2 possible pairs of values, independently with
probability p2, as being incompatible.

While we use the same notation p1 and p2 in each model, note that in some cases the
value is used as a proportion, and in others as a probability. For example in model D,
p1 is used as a proportion but p2 is used as a probability.

3. The Problem with Random Problems

Achlioptas et al. [1] identify a shortcoming of all four random models. They prove that
if p2 ≥ 1/m then, as n→�, there almost surely exists a flawed variable, one for which
every value is flawed. A value for a variable is flawed if, when the value is assigned to the
variable, there exists an adjacent variable in the constraint graph that cannot be assigned
a value without violating the constraint between the two variables. A value for a variable
is supported if it is not flawed. A problem with a flawed variable cannot have a solution.
They argue that therefore “the currently used models are asymptotically uninteresting
except, perhaps, for a small region of their parameter space” (when p2 < 1/m). Further,
they claim that “the threshold-like picture given by experimental results [with these
models] is misleading, since the problems with defining parameters in what is currently
perceived as the underconstrained region (because a solution can be found fast) are in
fact overconstrained for large n (obviously, larger than the values used in experiments).”
As they point out, this result does not apply to problems in which the constraints are
not completely random but have a certain amount of structure. For example, if conflict
matrices only have 0’s on the diagonal then neighbouring variables in the constraint
graph must take different values. These are graph colouring problems, which have good
asymptotic properties.

Achlioptas et al. [1] propose an alternative random problem class, model E, which
they show has better asymptotic properties than models A to D. This model does not
separate the generation of the constraint graph from the selection of the nogoods.
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model E: we select uniformly, independently and with repetitions, pm2n�n− 1�/2
nogoods out of the m2n�n−1�/2 possible.

They show that there is a range of parameter values for which instances generated by
this model almost surely have a solution, and a range of parameters for which instances
almost surely do not have a solution, and hence this model does not suffer from the
deficiencies of the other models discussed earlier.

In passing, we note that model E is not entirely novel since Williams and Hogg study
random problems both with a fixed number of nogoods picked uniformly from the set
of all possible nogoods, and with a uniform probability of including a nogood [58]. As
Achlioptas et al. themselves observe [1], the expected number of repetitions in model E is
usually insignificant (for instance, it is O(1) when the number of nogoods is ��n�), and
repetitions are only allowed in order to simplify the theoretical analysis. The differences
between model E and the models of Williams and Hogg are therefore likely to be slight.

More recently, Xu and Li [59] and Smith [56] have shown that variants of models B
and D respectively can exhibit interesting asymptotic behaviour. In these variants, both
the number of values, m, and the number of constraints increase with n in a specified
way, dependent on additional parameters. Further, Xu and Li show that the location of
the asymptotic phase transition can be determined exactly for a certain range of these
parameters.

Model E was proposed in order to deal with the difficulty that, as the number of
variables increases, asymptotically these models produce trivially insoluble problems. It
might therefore be natural to wonder whether model E should be used as an experimental
problem generator, in preference to the standard models.

However, models A to D generate the constraint graph and constraint matrices sepa-
rately, whereas in model E the constraint graph emerges from the nogoods selected, and
cannot be independently controlled. The standard models therefore give much greater
flexibility in the range of instance types that can be generated. A particular shortcoming
of model E as a source of benchmark problems is that it generates complete constraint
graphs for quite small values of p, even though each constraint contains just a few
nogoods. It is hard therefore to generate sparse constraint graphs with tight constraints.
In model E, we randomly select pm2n�n−1�/2 nogoods independently and with repe-
titions. By a coupon collector’s argument, we expect a complete constraint graph when
p ≈ log�n�n− 1�/2�/m2. For example, for n = 20	m = 10, we expect a complete con-
straint graph when p ≈ 0�052. With a larger number of nogoods, there is a very small
probability that the constraint graph is not complete. Hence, although model E has good
asymptotic properties, it is not suitable for use as a problem generator at the small
problem sizes which are feasible for experimental studies.

4. Past Experimental Practice

Achlioptas et al.’s result, that models A to D are “asymptotically uninteresting,” does
not apply to random problems from models B and C for which p2 < 1/m. Indeed, as
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we prove in Section 8, such problems are not trivially insoluble in the limit. To study
the practical significance of this restriction, we surveyed the literature from 1994 (when
phase transition experiments with random constraint satisfaction problems first started
to appear) to 1997, covering all papers in the proceedings of the CP, AAAI, ECAI and
IJCAI conferences which gave details of experiments on random constraint satisfaction
problems. The results of this survey are summarized in Table 1. Just over a quarter of
the papers include some set of problems to which the results of [1] do not apply. Most
commonly, these exceptions are random problems with m = 3 and p2 = 1/9 or 2/9,
using Model B. However, all of the papers which included inapplicable problem sets
also used some sets with p2 ≥ 1/m. In conclusion, all published experiments which we
have considered use ensembles of problems that satisfy the preconditions of Achlioptas
et al.’s result.

Table 1. Parameters and models used in some previous studies of random constraint satisfaction problems. The
final column details studies in which model B or C was used and p2 < 1/m. In the limit, such problem classes
are not trivially insoluble

Conference Author initials Reference Model �n	m� B/C & p2 < 1/m?

AAAI-94 [DF, RD] [17] B �25−250	3� p2 = 1/9	2/9
[DF, RD] [18] B �25−275	3� p2 = 1/9	2/9

�15−60	6� p2 = 4/36
�15−35	9� no

[NY, YO, HH] [60] B �20	10� no

ECAI-94 [PP] [47] D �20	10�	 �20	20�	 �30	10� no
[BMS] [51] B �8	10� no
[DL] [42] B �10	20� no
[DS, ECF] [49] A �50	8� no

CP-95 [IPG, EM, PP, TW] [26] B �10−110	3� p2 = 2/9
�10	10�	 �20	10�	 �10	5−50�	 � � � no

[JL, PM] [39] A �10	10� no
[FB, PR] [3] B �25	3� p2 = 1/9

�35	6�	 �50	6� p2 = 4/36
�15	9�	 �35	9� no

[FB, AG] [2] B �25	3� p2 = 2/9
�25	6�	 �15	9� no

IJCAI-95 [ECF, PDH] [14] A �50	8� no
[DF, RD] [19] B �125	3� p2 = 1/9

�35	6� p2 = 4/36
�250	3�	 �50	6�	 �35	9�	 � � � no

[PM, JL] [44] D �10	10�	 �20	10�	 �30	10� no
[KK, RD] [35] B �100	8�� no
[BMS, SAG] [55] B �20	10�	 �50	10� no

Continued� � �



350 I. P. GENT ET AL

Table 1. Continued

Conference Author initials Reference Model �n	m� B/C & p2 < 1/m?

AAAI-96 [AC, PJ] [8] B �16	8�	 �32	8� no
[ECF, CDE] [13] B �100	6� no
[IPG, EM, PP, TW] [27] B �20	10� no
[KK, RD] [36] B �100	8�	 �125	6�	 �150	4� no

CP-96 [CB, JCR] [4] B �35	6� p2 = 4/36
�125	3�	 �350	3� p2 = 1/9
�35	9�	 �50	6�	 �50	20� � � � no

[DAC, JF, IPG,
EM, NT, TW] [9] B �20	10� no

[IPG, EM, PP,
BMS, TW] [24] B �20−50	10� no

[JL, PM] [40] B �15	5� p2 = 1/25−4/25
�10	10� p2 = 1/100−9/100

[RJW] [57] A �30	5�	 �100	5� no

ECAI-96 [JEB, EPKT, NRW] [5] B �50	10� no
[BC, GV, DM, PB] [6] B �50	10�	 �20	5� no
[SAG, BMS] [34] B �30−70	10� no
[ACMK, EPKT, JEB] [38] B �30	5� p2 = 0�12

�40	5� p2 = 0�08
�60	5� p2 = 0�04
�10	5�	 �20	5�	 �10	10�	 � � � no

[JL, PM] [41] B �10	10� no
AAAI-97 [AM, SES, GS] [43] B �6−12	9� no

[DRG, WKJ, WSH] [22] B �10	5� no
[IPG, EM, PP, TW] [28] B �10−120	3� p2 = 2/9

�10	10−100� no
[DF, IR, LV] [20] B �20	4� p2 = 0�125

�150	3� p2 = 0�125
�20−75	6�	 �20	10� no

CP-97 [IPG, JLU] [29] D �10	10� no
[IR, DF] [48] B �100	8� no
[DS, ECF] [50] B �20	20�	 �40	20� no
[BMS, SAG] [54] B �10	10� no
[PG, JKH] [21] B �50	10�	 �100	15�	 �250	25�	 � � � no
[RD, CB] [10] B �100	20� no
[IPG, EM, PP, PS,TW] [23] B �20−70	10� no

IJCAI-97 [RD, CB] [11] B �20	10� no

5. Probability of Flawed Variables

As Achlioptas et al. themselves suggest [1], most previous experimental studies will not
have been greatly influenced by the existence of flawed variables since the number of
variables is usually too small. Using the Markov inequality, they give a first moment
bound on the probability of a flawed variable,
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Pr�problem has a flawed variable�≤ n�1− �1−pm
2 �

n�m

For example, for the �n	10	1	1/2� problem class, they calculate that the probability of
a flawed variable is less than 10−5 even for n as large as 200. At what size of problem
and sample do flawed variables start to occur?

By making a few simplifying assumptions, we can estimate the probability of a flawed
variable with reasonable accuracy. Our first assumption is that each variable is connected
to exactly p1�n−1� others. In practice, some variables have a greater degree, whilst oth-
ers have a lesser degree. Fortunately, our experiments show that this mean-field approxi-
mation does not introduce a large error into the estimate. We also assume independence
between the probabilities that the different variables have at least one unflawed value.
The probability that there are no flawed variables is then simply the product of the
probabilities that the variables have at least one unflawed value. For model A problems,
we have:

Pr�problem has a flawed variable�

= 1−Pr�there are no flawed variables�

= 1− �Pr�a variable has at least one unflawed value��n

= 1− �1−Pr�every value for the variable is flawed��n

= 1− �1− �Pr�a value for the variable is flawed��m�n

= 1− �1− �Pr�value inconsistent with every value of an adjacent variable��m�n

= 1− �1− �1−Pr�value consistent with a value of every adjacent variable��m�n

= 1− �1− �1− �Pr�value consistent with a value of an adjacent variable��p1�n−1��m�n

= 1− �1− �1− �1−Pr�value inconsistent with every value of adjacent variable��p1�n−1��m�n

= 1− �1− �1− �1− �Pr�value inconsistent with a value of adjacent variable��m�p1�n−1��m�n�

For model A, the probability that a given value is inconsistent with a value of an
adjacent variable is p2. Hence, we obtain the estimate

Pr�problem has a flawed variable�= 1− �1− �1− �1−pm
2 �

p1�n−1��m�n�

A similar derivation can be made for model B problems, except that the last line can
be omitted. Instead, we can calculate directly the value of the probability that there is a
value inconsistent with every value of an adjacent variable. In model B each constraint
matrix is picked uniformly from the

(
m2

p2m
2

)
possible matrices. If we assign a value to one

of the variables involved in a constraint, then
(

m2−m

p2m
2−m

)
of the possible constraints have

nogoods that rule out all the values for the other variable. Hence, the probability that a
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particular value for a variable is inconsistent with every value for an adjacent variable is
given by

Pr�value inconsistent with every value of adjacent variable�

=
(

m2 −m
p2m

2 −m

)/(
m2

p2m
2

)
�

Thus, for model B problems, the estimate for Pr�problem has a flawed variable� is

1−
(

1−
(

1−
(

1−
(

m2 −m
p2m

2 −m

)/(
m2

p2m
2

))p1�n−1�)m)n

Note that we have assumed independence between the probabilities that the m different
values for a given variable are flawed. The probability that every value for a variable
is flawed is then simply the product of the probabilities that each individual value is
flawed. Whilst this independence assumption is valid for model A, it is not strictly true
for model B.

6. Occurrence of Flawed Variables

We can use these estimates for the probability of a flawed variable to determine when
flawed variables will start to occur in experimental studies. To test the accuracy of
the estimates and to compare them with the simpler first moment bound, we generated
random problems using model B. We tested each instance for flawed variables. This
test is linear in the size of the problem, so we were able to experiment with problems
containing thousands of variables with large samples. Since flawed variables are more
likely in dense constraint graphs, we generated problems with complete constraint graphs
(i.e. with p1 = 1). As in other studies (e.g. [33], [24]), we also generated a separate
ensemble of problems in which the constraint graph has constant average degree, �. That
is, p1 = �/�n−1�. The constraint tightness for which the expected number of solutions
is 1 is then constant as n increases; this constraint tightness is often a good predictor
of the transition from soluble to insoluble problems ([52]). Empirically, the transition
is observed to occur at roughly the same value of p2 over a wide range of values of
n. Keeping the average degree constant also reduces the probability of flawed variables
occurring. In Table 2, we give the results for �n	10	1	1/2� and �n	10	19/�n−1�	1/2�
with n from 200 to 4000. In this (and indeed all the subsequent experiments) our estimate
for the probability of a problem having a flawed variable is very close to the observed
fraction of problems with flawed variables, and much closer than the first moment bound
to the observed fraction of flawed variables.

With complete constraint graphs, flawed variables are observed in samples of 1000
when the problems have 500 or more variables. This is beyond the size of problems typi-
cally solved with systematic procedures but potentially within the reach of approximation
or local search algorithms. By comparison, with constraint graphs of constant average
degree, flawed variables are not observed in samples of 1000 even when the problems
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Table 2. The impact of flawed variables on model B problems with a
domain size of 10 and: (a) complete constraint graphs; (b) constraint
graphs of constant average degree

Sample Fraction with Estimate for 1st moment
n size flawed variables Pr�flawed variable� bound

200 106 0 <10−6 0.000006
500 104 0.0005 0.006 0.0370

1000 103 0.272 0.275 >1
1200 103 0.753 0.755 >1
1500 103 1 0.999 >1
2000 103 1 1.000 >1
4000 103 1 1.000 >1

(a) �n	10	1	1/2�

Sample Fraction with Estimate for 1st moment
n size flawed variables Pr�flawed variable� bound

200 103 0 <10−3 0.000
500 103 0 <10−3 0.037

1000 103 0 <10−3 >1
1500 103 0 <10−3 >1
2000 103 0 <10−3 >1
4000 103 0 <10−3 >1

(b) �n	10	19/�n−1�	1/2�

have thousands of variables. Because of the greater homogeneity of model B problems,
we expect flawed variables to be less likely than in model A. Our estimates for the prob-
ability of a flawed variable support this conjecture. For example, for �1000	10	1	1/2�
problems, our estimate for the probability that a model A problem has a flawed variable
is 0.99986 whilst for a model B problem it is 0.275.

With constraint graphs of constant average degree, we can estimate the size of prob-
lems at which we expect to observe flawed variables. If p1 = �/�n− 1� and a fraction
f of problems contain flawed variables then, by rearranging our estimates for the prob-
ability of a flawed variable, the number of variables nf in model A problems is

nf =
log�1−f �

log�1− �1− �1−pm
2 �

��m�
	

and in model B problems,

nf =
log�1−f �

log
(
1− (

1− (
1− (

m2−m

p2m
2−m

)
/
(

m2

p2m
2

))�)m) �

For instance, for model B problems with similar parameters to those of Table 2 (i.e.
m= 10	 � = 19 and p2 = 1/2�	 n1/1000 ≈ 3�2∗1017 and n1/2 ≈ 2�2∗1019. That is, problems
need more than 1017 variables before we expect to observe flawed variables in samples
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of 1000 problem instances, and more than 1019 variables before half can be expected to
contain a flawed variable. As a consequence, at this domain size, constraint tightness, and
degree of the constraint graph, experimental studies can safely ignore flawed variables.

With smaller domain sizes, we expect flawed variables to be more prevalent. To test
this hypothesis, we generated problems with m= 3	 p2 = 1/m and either complete con-
straint graphs or constraint graphs of constant average degree. Note that, for model B,
p2 = 1/m is the smallest possible value which gives flawed variables. If p2 < 1/m then at
least one value for each variable must be supported, as each constraint rules out strictly
less than m possible values. Note also that problems with m= 3 and p2 = 1/m have the
same domain size and constraint tightness as 3-colouring problems. Table 3 gives the
results for �n	3	1	1/3� and �n	3	19/�n−1�	1/3� with n= 10 to 2000. With complete
constraint graphs, flawed variables occur with significant frequency in problems with as
few as 20 variables. With constraint graphs of constant average degree, although flawed
variables again occur in problems with as few as 20 variables, their frequency increases
much more slowly with n. We need a thousand or more variables to ensure that prob-
lems almost always include a flawed variable. By comparison, with complete constraint
graphs, we need just 60 or so variables.

Some of the experiments surveyed in Section 4 used random problems containing
hundreds of variables with m= 3 and p2 between 1/9 and 4/9. We performed a simple

Table 3. The impact of flawed variables on model B problems with a
small domain size and (a) complete constraint graph; (b) constraint graph
of constant average degree

Sample Fraction with Estimate for 1st moment
n size flawed variables Pr�flawed variable� bound

10 103 0.006 0.011 0.311
20 103 0.143 0.156 >1
30 103 0.504 0.536 >1
40 103 0.869 0.882 >1
50 103 0.987 0.990 >1
60 103 1 1.000 >1

(a) �n	3	1	1/3�

Sample Fraction with Estimate for 1st moment
n size flawed variables Pr�flawed variable� bound

20 103 0.143 0.156 >1
50 103 0.318 0.345 >1

100 103 0.524 0.571 >1
200 103 0.796 0.816 >1
500 103 0.986 0.985 >1

1000 103 0.999 1.000 >1

2000 103 1 1.000 >1

(b) �n	3	19/�n−1�	1/3�
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experiment to show that flawed values will have significantly influenced such experi-
ments. We tested problems generated using model B with 100 variables, p2 = 4/9, and
92 constraints, repeating one of the experiments reported by [18] at the 50% solubility
point. In a sample of 100, all problems contained flawed values. On average a problem
contained 26.7 flawed values (minimum 19, maximum 36). Four problems contained a
flawed variable and were thus trivially insoluble. The extent to which these flaws influ-
enced behaviour can also be seen in Section 9, where we compare the phase transition
from model B with a new generation method which is guaranteed to give problems
without flawed values or variables.

The papers in Table 1 were for the most part using experiments on random CSPs in
order to compare the performance of different solution methods. The presence of flawed
values or variables would favour methods which look for such flaws, and unless this is
recognised by the experimenter can distort the conclusions.

7. Flawless Random Problem Generation

Until this point in the paper, we have been analysing the effect of flawed values and vari-
ables on past experiments and existing models. Unfortunately no existing model meets
the twin desiderata of allowing the flexibility of traditional models like A to D, with the
good asymptotic property of model E. We will therefore introduce some simple variants
of models A to D which have similar asymptotic properties to those holding for model E
but allow us to generate the constraint graph and the conflict matrices independently as
in models A to D. Aside from the absence of flaws, these models give problems very
similar to those generated by the traditional models.

The reason that traditional models of random CSPs suffer asymptotically from trivial
insolubility is that they allow flawed values. Flawed values can cause flawed variables,
which in turn cause trivial insolubility. Since a flawed value is exactly a value without
support across some constraint, simply insisting that all constraints are arc consistent
guarantees that flawed values and variables cannot occur. It is easy to adapt all the tra-
ditional models by discarding and regenerating constraints which are not arc consistent.
Unfortunately this does not give us an asymptotic guarantee against trivial insolubility,
because simple cycles in a small part of the constraint graph might make a problem insol-
uble, and these may be sufficiently probable to lead asymptotically to trivial insolubility.

Instead we propose a new way of generating conflict matrices which we call ‘flawless’
since problems are guaranteed not to be trivially insoluble. The basic idea is that each
value is supported by at least one unique value, i.e. at least one value which is not
also required to support another value. We cannot then get a chain reaction in which
support for values of several other variables disappears if we remove one value. We first
introduce the flawless model and then prove its desirable asymptotic properties.

Definition 1 (Flawless). A conflict matrix is flawless if there is a permutation � of
1	2	 � � � 	m such that all the pairs of values �1	��1��	 �2	��2��	 � � � 	 �m	��m�� are
allowed.
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It is clear that a flawless matrix must be arc consistent, because the value ��i� always
supports value i. We mistakenly believed the converse, and are grateful to Yeo Shao
Hong for suggesting the matrix in Figure 1 which contradicts this.2 Insisting on flawless
matrices gives us good asymptotic properties as we shall prove in the next section. First,
however, we illustrate how easy it is to adapt any of the existing models A to D to
generate flawless conflict matrices.

For models B and C, in which all conflicts for a constraint are selected together, there is
a simple way to generate flawless instances. Given a pair of variables between which we
wish to construct a constraint, we choose a random permutation � of 1	2	3 � � � 	m. The
set of goods based on this permutation is simply ��1	��1��	 �2	��2��	 �3	��3��	 � � � ,
�m	��m���. A conflict matrix that contains these goods cannot give a flawed value. We
therefore remove the goods just chosen from the set of all possible conflicts and choose
p2m

2 elements randomly from the remainder. An example is shown in Figure 2. For
models A and D the process is similar, except that having removed a set of goods, we
increase p2 to mp2/�m−1� before selecting conflicts.

8. Theory of Flawlessness

We now prove some asymptotic results about flaws. We will show the unexpected result
that conflict matrices generated by the flawless variants of models B and C are not
trivially insoluble for all p2 up to p2 < 1/2. As a corollary, the standard models B and
C do not suffer asymptotically from trivial insolubility whenever p2 < 1/m. Whilst these

Figure 1. A conflict matrix which is arc consistent but not flawless. Since a permutation of 1	 � � �m corresponds
to a placement of m non-attacking rooks on a m by m chess board, we can see that the problem is not flawless
by trying to place 3 rooks on the squares where there are 1s in the matrix. In this case two rooks in the third
row and in the third column leave no space for a third rook.

Figure 2. The first conflict matrix shows a flawless constraint arising from the permutation 3, 1, 4, 2. Even
though the tightness is 3/4, every value for both variables is supported. The second conflict matrix shows a
flawless constraint with tightness 7/16 derived from the first conflict matrix by choosing randomly 7 of the 12
conflicts.
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results do not apply directly to the flawless variants of models A and D, they can be
made to by adapting those models to reject candidate conflict matrices in which the
proportion of conflicts selected ≥1/2.

The proof of our main result proceeds in a manner similar to that of Achlioptas et al.’s
proof of the analogous result for model E: we show that a constraint graph in which
each component has at most one cycle is guaranteed to be soluble, and appeal to a graph
theoretic result to show that such constraint graphs occur with a ratio of constraints to
variables bounded away from zero.

Lemma 1 If the constraint graph of a flawless binary CSP (without unary constraints)
is a forest, the instance has a solution. Furthermore, for each variable in the instance,
and each value in its domain, there is a solution in which it takes that value.

Proof. A flawless binary CSP is necessarily strongly arc consistent, since we assume
that there are no unary constraints. A forest has width 1, and we can apply Freuder’s
Theorem [12] to show that search is backtrack free. Because there are no unary con-
straints, we can choose the first variable and its value arbitrarily, and extend it to
a solution. �

Given flawless constraint matrices, we have the following theorem. The fact that this
result extends to such a large value of p2, i.e. 1

2 , is rather surprising.

Theorem 1 If a binary CSP with uniform domain size contains only flawless constraints
with p2 < 1/2, and each component in the constraint graph contains at most one cycle,
the instance is soluble.

Proof. If the constraint graph is acyclic, Lemma 1 applies, and with the result for one
component we can apply it to each component of a graph in turn. So for the rest of
the proof we consider a constraint graph containing a single component which contains
exactly one cycle. We will show that there is an assignment which satisfies all the con-
straints in the cycle. Having done that, the assignment can be extended to the entire
component by giving each variable in the cycle the relevant value, removing all con-
straints in the cycle, and appealing to Lemma 1. Thus we have reduced the proof to
showing that if a cycle of flawless constraints is insoluble, p2 ≥ 1/2.

For the general case of a cycle of length three or more, consider an insoluble cycle,
say v−x0 −x1 −· · ·−xk− v. (In a triangle, k = 1.) Consider the constraints v−x0 and
xk−v. We claim that these two constraint matrices must, between them, contain at least
m2 conflicts, so p2 ≥ 1

2 . The proof will be completed by justifying the claim.
If there is no satisfying assignment, the value v = 1 in particular must be impossible.

Some number r of conflicts involving v = 1 and the constraint v−x0 rules out r values
for x0, leaving m− r values when v = 1. Without loss of generality, suppose that the
remaining values are 1	2	 � � � 	m− r . Since the constraint x0 −x1 is flawless, note that
there is a permutation �0 such that each pair �x0 = i	 x1 = �0�i�� is allowed by the con-
straint. This means that all the pairs �x0 = 1	 x1 = �0�1��	 �x0 = 2	 x1 = �0�2��	 � � � �x0 =
m− r	 x1 = �0�m− r��, are consistent with the constraint x0 − x1, so there are at least
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m− r distinct values of x1 consistent with the constraints in the chain v−x0 −x1 when
v= 1. The process iterates since each constraint is flawless. Thus there are m−r distinct
values of xk consistent with the chain of constraints v−x0 −x1 −· · ·−xk when v = 1.
We have ignored only the constraint xk − v. If this is to rule out v = 1, there must be
at least m− r conflicts involving v = 1. Thus between the two constraints xk − v and
v− x0, there are at least r + �m− r� = m conflicts involving v = 1. Exactly the same
holds for all m values of v, and the set of m conflicts that must exist for each value are
all disjoint. Therefore the two constraints xk−v and v−x0 contain at least m2 conflicts,
completing the proof. �

Theorem 2 In Models B or C with p1 = 2c/n and c < 1/2, almost all constraint graphs
have no components with more than one cycle, that is the components are trees of
unicyclic.

Proof. For model C, the result follows from Theorem 4.2.6 from Palmer [46]. The same
result applies to model B, because the property of being a tree or unicyclic is ‘convex’
in the terms of Appendix VI of Palmer. Theorem 6.1 then applies.3 �

The following results follows immediately from Theorems 1 and 2.

Theorem 3 Almost all random binary CSPs from models B or C with flawless con-
straints, p2 <

1
2 , and fewer than cn constraints, for c < 1/2, are soluble.

Two corollaries follow from this result which confirm the theoretical benefits of flaw-
less problem generation that we have already claimed. The second is not immediately
obvious, but follows because instances from the standard models B and C with p2 <

1
m

are automatically flawless. This can be shown by induction on the domain size m. The
base case is that a 1× 1 conflict matrix with p2 < 1 must consist of a single, allowed,
pair. In the step case, an m×m conflict matrix with p2 <

1
m

must have m−1 or fewer
conflicts. Suppose one conflict excludes the pair of values i	 j. There must be at least one
value j ′ consistent with i, so set ��i�= j ′. Removing the row i and the column j ′ from
the matrix yields an m−1×m−1 conflict matrix with m−2 or fewer conflicts, and we
can appeal to induction to complete the construction of the permutation � required for
flawlessness.

Corollary 1 Problems generated according to flawless model B or C at any value of
p2 <

1
2 do not suffer asymptotically from trivial insolubility.

Corollary 2 Problems generated according to standard model B or C at any value of
p2 < 1/m do not suffer asymptotically from trivial insolubility.

These results do not apply directly to flawless models A and D, because for any value
of p2 > 0 they can generate individual conflict matrices with at least half of the possible
conflicts selected. We can obtain similar asymptotic results if we condition the models
to reject any such conflict matrix. While inelegant, this step will have little practical
effect on generated problems where p2 is significantly less than 1/2. Apart from the
rarity of matrices with the selected proportion of conflicts ≥1/2, the proof of Theorem 1
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shows that every pair of constraints in a cycle of flawless constraints must contain at
least m2 conflicts to make a cycle insoluble. This makes cyclic flaws even less likely in
flawless models A and D. It is probable therefore that flawless models A and D will not
be affected by flaws at practical problem sizes, and this likelihood can be extended to
a guarantee if the models are adapted to ensure that the proportion of conflicts in any
matrix <1/2.

Achlioptas et al. [1] say that “Attempting to fix the old models, simply by conditioning
on each value having degree less than D [m in our notation] in C [i.e. p2 < 1/m] will
probably not lead to any interesting new models.” Instead, they suggest that it is more
important to “shift from constraints that contain an entirely random subset of p2D

2

forbidden pairs [p2m
2 nogoods in our notation]� � � to constraints where this subset has

some structure.” This is exactly what we have done by introducing flawless models. We
suggest that flawless problem generation is a remedy more in keeping with Achlioptas
et al.’s recommendation than their own model E. To guarantee an absence of flawed
values, the minimum property required is arc consistency. However, this is not enough to
prevent problems from being trivially insoluble. Our flawless generation method enforces
a stronger condition than arc consistency, to guard against trivial insolubility for more
complex reasons. Even if conflict matrices are arc consistent, if they are not flawless, a
chain reaction of value removals can be triggered as propagation takes place. For example
in the matrix of Figure 1 removing the single value 3 from either variable removes
support from two values 1 & 2 of the other variable. Flawlessness prevents such chain
reactions occurring and, as we have proved, prevents trivial asymptotic behaviour. It
would be very interesting in the future to investigate the use of more complex structures
in conflict matrices.

Our theoretical results for models B and C show a region of almost sure solubility
when p1 < 1/�n− 1�. Problems in this region can contain many more conflicts than
model E problems in their almost surely soluble region. That is because model E just
adds one conflict at a time, while in our case each constraint can have up to m2/2− 1
conflicts in the flawless case. For models B, C, and the restricted versions of A and D, we
have shown a soluble region when CSPs have O�n� constraints, the same result obtained
for model E previously [1]. When p2 is fixed it is easy to show insolubility also occurs
with O�n� constraints. It is therefore likely that in these cases, there are genuine phase
transitions between the almost-all-soluble and almost-all-insoluble regions.

To summarise, we have shown two surprising results. First, somewhat contrary to
expectation, the value p2 = 1/m does precisely characterise the region of trivial insol-
ubility in models B and C of binary CSPs. Second, for flawless generation methods,
trivial insolubility is avoided up until the very high value of p2 = 1/2. This second result
can be made to apply to flawless models A and D if the models are adapted to reject
constraints with at least half the possible conflicts selected.

9. Experimental Comparison of Flawless and Flawed Models

Based on our analysis in Section 6, the experiments from the literature most likely to
contain flawed variables are those with domain size 3, such as those reported by Frost and
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Dechter in [18]. We would expect ordinary and flawless versions of model B to behave
very differently on such problems. To test this, we implemented flawless model B and
tested it against model B on the class �100	3	 p1	4/9�. For this problem class, Frost and
Dechter reported that 50% of problems were soluble in model B at 92 constraints, i.e.
p1 ≈ 0�01858. We found a similar result, with 49.8% soluble problems at 92 constraints
in model B with a sample of 1000. However, when the same parameters were used with
flawless model B, we observed 99.3% solubility. This suggests that flawed variables
played a significant role in this experiment. To confirm this, we generated and solved
random problems using both models, varying the number of constraints (and hence p1)
to cover the transition from soluble to insoluble problems, with a sample size of 1000.
The probability of solubility is shown in Figure 3. The transitions in solubility are very
different for the two models. Indeed, the mushy region for model B (the region in which
we have both soluble and insoluble problems) started with only 20 constraints on the
100 variables, at p1 ≈ 0�004, with a single insoluble problem. This problem contained
a flawed variable. For flawless model B, we saw 52.4% solubility at 112 constraints
(p1 ≈ 0�023) compared to 12.6% for model B. The transition for flawless model B is very
sharp, whilst that for ordinary model B is very spread out. While these two transitions
end at about the same place, the transitions may occur over completely different regions
as n increases, with the flawed transition eventually converging on p1 = 0.

Figure 3. Probability of solubility (y-axis) against p1 (x-axis) for ordinary and flawless model B for
�100	3	 p1	4/9� problems.
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Figure 4 shows the difference in median search cost, measured by the number of
consistency checks. The problems were solved using the forward checking algorithm
with conflict-directed backjumping and the fail-first heuristic (FC-CBJ-FF); the same
algorithm was used for all subsequent experiments. The peak median cost for flawless
problems is greater than for standard model B problems, and the flawless problems
remain much harder as problems become more constrained. We conjecture that as prob-
lems become more constrained, flaws in flaw-prone problems become more common,
and flawed problems will usually be quickly proved insoluble. The relative behaviour of
other measures of search cost such as mean and maximum is broadly similar to that of
the median.

Would flawless problem generation have affected experiments which were not influ-
enced by flawed variables? To investigate this, we compared flawless model B with
model B using the parameters n = 20 and m = 10 and sample size 1000 at each value
of p2. Results are shown in Figure 5. The transitions in probability are almost indistin-
guishable. The search cost is shown in Figure 6. Over the phase transition region, search
cost is very similar in the two models. As problems become more constrained, flawless
model B problems are very slightly harder to prove insoluble than ordinary model B
problems. This is perhaps to be expected as flaws become more likely with increasing
constrainedness.

Figure 4. Median number of consistency checks used (y-axis) against p1 (x-axis) for FC-CBJ-FF on ordinary
and flawless model B problems with �100	3	 p1	4/9�.
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Figure 5. Probability of solubility (y-axis) against p2 (x-axis) for ordinary and flawless �20	10	1	 p2� model B
problems.

Figure 6. Median number of checks used (y-axis) against p2 (x-axis) for ordinary and flawless �20	10	1	 p2�
model B problems.
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To conclude, experimenters should be aware of the danger of producing problems with
flawed values when using the standard models A to D, and should use a flawless gen-
erator when the occurrence of flaws might affect their conclusions. For many purposes,
a flawless generator could be used as a matter of course, since the results will only
be significantly different from those produced by the equivalent flaw-prone generators
exactly when flaws are occurring.

10. Structured Constraint Graphs

Random problems provide a plentiful and unbiased source of problems for benchmarking.
However, we must be careful that our algorithms do not become tuned to solve random
problems and perform poorly on real problems. Real problems can contain structures
that occur very rarely in the models discussed here, even when the real problems contain
only binary constraints. For example, in a graph colouring problem derived from a 1994
exam time-tabling problem at Edinburgh University, Gent and Walsh found a 10-clique
of nodes with only 9 colours available [30]. This was in a 59 node graph with 485
edges. The presence of this clique dominated the performance of their graph colouring
algorithm.

Random graphs of similar size and density are very unlikely to contain such a large
clique. The probability that k given nodes in a random graph with n nodes and e edges
are connected by the right edges to form a k-clique is,

�k2�−1∏
i=0

e− i(
n

2

)− i

From this we can get the expected number of k-cliques and hence by the Markov inequal-
ity a bound on the probability of the graph containing a k-clique:

Pr�m-clique in graph of n nodes & e edges�≤
(
n
k

) �k2�−1∏
i=0

e− i(
n

2

)− i

For n = 59	 k = 10 and e = 485, the probability of clique of size 10 or larger is less
than 10−14. It is thus very unlikely that a random graph of the same size and density
as the graph in the exam time-tabling problem would contain a regular structure like a
10-clique. However, cliques of this size occur in the real data due to the module structure
within courses.

As another example, Gomes et al. have proposed quasigroup completion as a constraint
satisfaction benchmark that models some of the structure found in sports scheduling and
fibre-optic routing problems [32]. Quasigroup completion is the problem of filling in
the missing entries in a Latin square, a multiplication table in which each entry appears
once in every row and column. An order n quasigroup problem can be formulated as
n-colouring a graph with n2 nodes and n2�n− 1� edges. The edges form 2n cliques,
with each clique being of size n and representing the constraint that each colour appears
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once in every row or column. For example, an order 10 quasigroup has 20 cliques of
size 10 in a 100 node graph with 900 edges. With a random graph of this size and
edge density, the probability of a clique of size 10 or larger is less than 10−20. It is thus
extremely unlikely that a random graph of this size and density would contain a regular
structure like a 10-clique, let alone 20 of them linked together. The random models will
therefore not generate sets of problems like the exam time-tabling problem or quasigroup
completion.

It is clear that the existing models can be adapted to use any constraint graph that is
desired. In models A to D, problems are generated in a two stage process: the first stage
is to generate a constraint graph, and the second stage is to generate conflict matrices
for edges in this graph. There is no technical reason why the first stage must be random;
it can instead involve a particular constraint graph. This approach was taken by Smith
and Grant [53] where they used a “braided” constraint graph and generated random
constraints on this as in model B. Given a particular constraint graph, we can then
generate the conflict matrices as in models A & C or as in models B & D, including
generating flawless constraints if required.

To determine how these structured models differ from unstructured models, we experi-
mented on the timetabling and quasigroup graphs mentioned earlier. To focus the compar-
ison just on the introduction of structure into the constraint graph, we only report results
for flawless model B. We observed broadly similar results using model B. Our first exper-
iments are on the constraint graph taken from the quasigroup problem of order 7. This
problem has 49 variables all with domains of size 7. Each variable is in constraints with
12 others, giving a total of 294 constraints. In the original quasigroup problem these con-
straints are difference constraints. Here, we randomly generated flawless constraints of
different tightnesses using the model B method. As a comparison, we generated unstruc-
tured flawless model B problems with the same number of variables, same domain size
and same density of edges in their constraint graph, i.e. �49	7	0�25	 p2� problems. We
tested 100 problems at each value of p2 from 1/49 to 25/49 in steps of 1/49, using the
FC-CBJ-FF algorithm. Results are shown in Figure 7 and Figure 8. While the transition
in solubility occurs at very similar values of p2 in the two experiments, there is a large
difference in search cost. In particular, the structured instances seem much harder than
the random problems at the phase transition.

We also experimented with the constraint graph derived from the 1994 exam timetabling
problem at Edinburgh University. The graph has 59 nodes and 485 edges. Nodes corre-
spond to exams, while each edge corresponds to two exams to be taken by one student,
for which clashes must be avoided. In the original problem there were 36 values, cor-
responding to 9 days with 4 exams per day. Gent and Walsh solved the original prob-
lem using Prosser’s CSPLab code for FC-CBJ-FF with directed k-consistency [30]. The
problem was insoluble and took 411,770,462 consistency checks. Unfortunately, solv-
ing an ensemble of structured problems based on this constraint graph was prohibitively
expensive with 36 values in the domain of each variable. Gent and Walsh showed that
the original exam timetabling problem was insoluble because it contains a 10-clique of
exams which all had to happen at different times with only 9 time slots available. Since
our problem generation method preserves this 10-clique, we generated problems with
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Figure 7. Probability of solubility (y-axis) against p2 (x-axis) for flawless model B problems generated with
either the constraint graph of a quasigroup problem of order 7 or a random constraint graphs with the same
number of nodes and edges.

9 values for each variable. We tested flawless model B on random problems generated
either with this constraint graph, or with a random graph with the same number of
nodes and edges. Sample size was again 100, and we tested values of p2 from 1/81 to
35/81 in steps of 1/81 using FC-CBJ-FF. Figure 9 shows the probability in solubility
as the constraint tightness is varied. The transition in solubility for problems with ran-
dom constraint graphs is almost identical to that for problems with structured constraint
graphs. Figure 10 shows the median search cost. The difference in search cost is the
opposite of that seen with the quasigroup constraint graph. Problems with random con-
straint graphs require about 100 times more consistency checks at and beyond p2 = 0�21.
Similar behaviour is seen in mean and maximum search cost.

To summarise, we have experimented with ensembles of problems based on specific
constraint graphs. Such structured problem generation is particularly interesting when
the constraint graph contains structure unlikely to occur in random graphs. We have
experimented on two such graphs, based on a quasigroup and a timetabling problem.
In both cases, search cost was very different to that seen with existing random mod-
els; structured problems using the quasigroup constraint graph were harder than purely
random problems with equivalent parameter values, while the timetabling graph gave
easier problems than the random problems. Structured problem generation allows us to
repeatedly test constraint graphs of special interest. This helps address the difficulty that
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Figure 8. Median number of checks used (y-axis) against p2 (x-axis) for flawless model B problems generated
with either the constraint graph of a quasigroup problem of order 7 or a random constraint graphs with the
same number of nodes and edges.

randomly generated problems may not be realistic, whilst realistic problems may be hard
to collect in statistically significant sample sizes.

11. Conclusions

We have performed a detailed study of the consequences of a recent theoretical result
of Achlioptas et al. [1]. This result shows that as the number of varibles increases, the
traditional models of random problems almost surely contain a flawed variable and are
therefore trivially insoluble, provided the constraint tightness is at least 1/m, where m is
the domain size. We proved that this result is tight for models B and C since they do not
suffer from such flaws for p2 < 1/m. Our survey of previous experimental studies shows
that many studies have, however, used problems with p2 > 1/m. Fortunately, most (but
not all) of these studies use too few variables and too large domains to contain flawed
variables. As expected, flawed variables occur most often with dense constraint graphs
and small domains. With constraint graphs of fixed average degree and large domains,
the possibility of flawed variables can usually be ignored.
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Figure 9. Probability of solubility (y-axis) against p2 (x-axis) for flawless model B problems generated with
either the constraint graph of the 1994 exam timetabling problem or a random constraint graph with the same
number of nodes and edges.

Achlioptas et al. propose an alternative random model (model E) which does not suffer
from the deficiencies of the standard models as the number of variables increases, and
so give the first evidence that there could be an asymptotic phase transition in random
constraint satisfaction problems. However, from the experimental point of view, model E
is much less flexible than the standard models, since the constraint density and constraint
tightness cannot be controlled independently.

We have shown how a limited amount of structure can be introduced into the conflict
matrices to make them flawless. We have proved that problems generated by flawless
variants of the models A, B, C and D are not trivially insoluble in the limit for all values
of p2 less than 1/2. We can thereby generate ensembles of problems that are not trivially
insoluble due to the presence of flawed variables. We have also reported on experiments
with problems that contain structures in their constraint graphs which are rare in random
graphs.

What general lessons can be learnt from this study? First, experiments can bene-
fit greatly from theoretical results like those of Achlioptas et al. Flawed variables are
likely to have occurred in a small but significant number of previous experimental stud-
ies. A simple arc consistency algorithm would therefore have shown very quickly that
these problems have no solution. Experimenters should take this into account when
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Figure 10. Median number of checks used (y-axis) against p2 (x-axis) for flawless model B problems generated
with either the constraint graph of the 1994 exam timetabling problem or a random constraint graph with the
same number of nodes and edges.

planning future experiments, and consider choosing a flawless problem generator. Sec-
ond, theory can benefit greatly from experiments. Theory provided estimates for the
probability of problems having flawed variables based on some simplifying assump-
tions. Experiments quickly determined the accuracy of such estimates. Third, we must
continue to improve and extend our random models so that we have a wide range of
realistic and hard problems on which to test algorithms. Such extensions can introduce
structure either into the constraint graph (as in the experiments reported in section 10)
or into the conflict matrix (as in the flawless generation method proposed here) or
both.

Notes

1. Supported by EPSRC awards GR/L/24014 and GR/K/65706 and was completed while the fourth author
was employed at the University of Leeds. The authors are all members of the APES research group,
http://apes.cs.strath.ac.uk, and we thank other members of the group. We especially thank Yeo Shao Hong
for identifying an error in an earlier version of this paper, and Joseph Culberson for extensive help
correcting the error. We also thank reviewers of this journal for their helpful comments.
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2. Unfortunately the mistake is present in the original Research Report version of this paper [25], so we ask
readers to use definitions from this paper and not the original report. In particular, note that our definition
of flawless here corresponds to the definition of “strongly flawless” in the original.

3. We thank Joe Culberson for help with this proof.
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