CMPT-827 - Intelligent Systems

School of Computing Science
Simon Fraser University

Bill Havens
TASC1-9425
August 27, 2007

Assignment #1: CSP Solving

1 Overview

This assignment is designed to give students practical experience in using modern constraint pro-
gramming (CP) algorithms for solving constraint satisfaction problems (CSPs). You will employ
both constructive backtrack methods and stochastic local search methods to solve a set of ran-
domly generated CSPs. You will experiment with variations of these techniques and compare their
performance on the test problems. By so doing, you will gain knowledge about the difficulty of
CSPs and the power of modern methods to solve them.

We are given a database of random CSP problem instances on the website. All of these problem
instances are solveable meaning that at least one solution exists for each instance. Your job is to
find one of these solutions. Each problem instance is represented by a set of parameters recognized
by a random CSP generator written in Java which is available on the website. Running the problem
generator on a problem instance will create a constraint network of CSP variables and constraints.
You then run your various search algorithms on this constraint network for each such problem
instance. You will keep track of interesting performance parameters of your algorithms in order to
compare your results later.

You will experiment with at least three different search methods on these random CSP instances.
You can try more methods if you have time and are interested. You will try a constructive (back-
track) algorithm, a basic hillclimbing local search algorithm with random restart and a more so-
phisticated local search algorithm (such as tabu search or simulated annealing). We will cover these
search methods in lecture during the first part of the course.

You will provide a short report on your experimental results which plots the runtime performance of
the three algorithms on the given dataset. We will compare the performance against the probabilis-
tic difficulty of each problem instance. Details of these experimental techniques will be provided in
lecture.



2 Random CSP Generator

There has been considerable research in the CP community in constructing hard random CSPs. The
size and difficulty of these problem instances can be varied parametrically using standard random
CSP generators. We have such a generator written in Java which is available on the class website
under the link: CSP Solving Resources. A short tutorial on using the generator is provided. As
well, there exists a calculator written in MSFEzcel which allows you to vary the expected difficulty
of each problem instance by varying its parameters. Details of these parameters will be discussed
in class.

Also on this web page is a database of 4500 solveable random CSP problem instances.! These
problem instances have 20 variables each with a domain size of 10 values. They vary from easy to
hard with 150 instances of each problem difficulty. By finding a single solution for each problem
instance, you will be able to plot the relative performance of your algorithms for each level of
problem difficulty.

3 Search Methods

You will implement three different search algorithms and apply each algorithm to the random CSP
dataset. The algorithms are the following but many variations are possible:

1. Constructive Backtrack Search - Implement a popular backtracking technique for solving
CSPs as described in class. Simple chronological backtracking will be inefficient but easy
to implement. A better choice will be backjumping which is not much more complicated.
Add forward checking of unassigned (future) variables to your search algorithm. This will
significantly reduce the size of the search space. An alternative is to use full arc-consistency
among future variables. Use minimum domain size of future variables (first-fail principle) as
an effective variable ordering heuristic. Does this variable ordering work significantly better
than assigning variables in lexicographic order? Use lexicographic as the value ordering
heuristic. Can you think of any alternatives which might work better?

2. Hillclimbing Local Search - Implement basic hillclimbing local search for CSPs using
minconflicts as the evaluation function. Initialize the search with a random assignment of
values to variables. Since all local search algorithms get stuck in local minima, use random
restart to escape local minima. Use max-conflicts as the variable ordering heuristic and min-
conflicts as the value ordering heuristic. Break ties randomly for both variable and value
ordering heuristics.

3. Advanced Local Search - Extend the basic hillclimbing method above by adding either
tabu search or simulated annealing search. Both are good at escaping from local minima.
Does this work better than random restart? You may also try other local search methods if
you like.

!file: RandomCSP20_10_0.4(0.20-0.49) .txt.



4 Experimental Evaluation

Run your three algorithms on the dataset provided. For each instance, keep track of the number
of iterations and the run-time required to find a first solution. Some problems will have more than
one solution but we only want to find the first one. For backtrack search, we take an iteration to
be the assignment of a variable to a value (either a future variable or a variable being backtracked).
For local search, an iteration is simply the assignment of a value to a variable.?

Now plot the runtime performance of all three algorithms against the parameter p2 in the random
CSP dataset. You will have 150 execution performance values for each value of p2 which will
smooth out the uncertainty of each problem instance.? You should see a peak in problem difficulty
for certain values of p2 that is manifest in the performance of all three algorithms. Does this peak
correspond to k = 1.0 using the provided x-calculator?

5 Report

Provide a short report on your experiments which covers the following issues. The report should
be in good technical style with appropriate references to papers relevant to your approach. The
length of the report should be about 10 pages single spaced but use as much space as necessary
to describe your results and present your diagrams. A report template will be provided on the
website.

1. Which methods did you implement? Describe the algorithms used including the details of the
constraint propagation, backtracking, variable and value ordering, restart techniques, tabu
or simulated annealing parameters. Give references into the appropriate literature. What
variations did you implement if any?

2. Provide run-time performance graphs of the algorithms. Describe the results in good technical
English. How well did the three algorithms work on the dataset?

3. Discuss what you have learned about solving CSPs. Are some methods better than others?
What variations or other algorithms would you expect to work well on random CSPs?

2The initial randomec assignment of variables counts as a single iteration.
3If the results are not sufficiently smooth for the randomized local search methods then we can run each instance
multiple times and use an average performance value.



