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A Perspective on Range Finding Techmques
for Computer Vision

R. A. JARVIS

Abstract—In recent times a great deal of interest has been shown,
amongst the computer vision and robotics research community, in the
acquisition of range data for supporting scene analysis leading to re-
mote (noncontact) determination of configurations and space filling
extents of three-dimensional object assemblages. This paper surveys a
variety of approaches to generalized range finding and presents a per-
spective on their applicability and shortcomings in the context of
computer vision studies.

Index Terms—Computer vision, range finding.

I. INTRODUCTION

T IS well documented in the psychological literature [1]-
[3] that humans use a great variety of vision-based depth
cues, combinations from this repertoire often serving as con-
firming strategies with various weighting factors depending
upon the visual circumstances. These cues include texture
gradient, size perspective (diminution of size with distance),
binocular perspective (inward turning eye muscle feedback
and stereo disparity), motion parallax, aerial perspective
(haziness, etc. associated with distance), relative upward loca-
tions in the visual field, occlusion effects, outline continuity
(complete objects look closer), and surface shading variations.
In difficult circumstances, various of these cues provide evi-
dence of feasible interpretations; resolving ambiguity when
it exists depends not only on the sensory information imme-
diately available but also on previously formed precepts and
consequent expectation factors. It is interesting to note that
binocular convergence (related to muscle driven inward turn-
ing of the eyes) adjusts the scale of the stereo disparity system.
Of the human vision depth cues, from a geometric point of
view, convergence and disparity are unambiguously related
to distance whereas, without movement, perspective depth
cues are intrinsically ambiguous as can be easily demonstrated
by the Ames room illusions [2]. Thus, convergence and dis-
parity are good candidates for depth estimation in computer
vision studies. However, the apparatus available to support
depth estimation in machine vision can extend beyond anthro-
pomorphically based cues; these will be detailed later.
Categorization of the various types .of range finding tech-
mques is useful in providing a structure for detailed discussion.
Direct and active range finding includes ultrasonic and light
time-of-flight estimation and triangulation systems. All in-
volve a controlled energy beam and reflected energy detection.
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Most other range finding methods can be generally classifieg
as image based, but further refinement is helpful. Passiye
(or relatively so) monocular image-based range finding includeg
texture gradient analysis, photometric methods (surface
normals from reflectance), occlusion effects, size constancy,
and focusing methods. Contrived lighting approaches include
striped and grid lighting, patterned lighting, and Moiré fringe
analysis. This leaves methods based either on motion or my].
tiple relative positions of camera or scene; these include recop.
struction from multiple views, stereo disparity, retinal flow,
and other motion related techniques. Most of these are really
geometric triangulation systems of one kind or another. In
fact, almost every circumstance that includes at least two
views of a scene is potentially exploitable as a range finding
mechanism of a triangulation kind; equally true is the draw-
back that all triangulation methods potentially suffer from the
problem of “missing parts” not included in more than one
view. In contrast, a coaxial source/detector arrangement for
a time-of-flight laser range finder is not subject to this malady.

In general, passive methods have a wider range of applica-
bility since no artificial source of energy is involved and
natural outdoor scenes (lit by the sun) fall within this category.

However, for complex scenes, the degree of ambiguity in need .

of resolution is likely to be higher if intrusive methods such as
using ultrasonics, laser-beams, and striped lighting are not
applicable. On the other hand, ranging methods using struc-
tured light sources or time of flight measuring devices, al-
though perhaps contributing little to our understanding of
human vision, are certainly acceptable in indoor factory
environments where these active approaches are consistent
with other instrumentation methodologies.

It will be assumed that the type of range finding required
is that which results in a “rangepic,” an array of distance esti-
mates from a known point or plane with adjacency constraints
corresponding to those of two-dimensional intensity imagery.
Not only does this allow a direct correspondence to be made
with intensity imagery, but also indicates the amount of infor-
mation associated with the results and puts some time con-
straints on range data acquisition if robotic manipulation is
to be carried out in a reasonable time span. That a “rangepic”
is in fact an “image” is more easily argued in this context;
however, a purist might argue that the use of directly acquired
range data puts this analysis outside the scope of legitimate
computer vision. That both intensity and range data can be

remotely acquired to plan manipulation trajectories, is, how- -

ever, most valuable. The combination of range and intensity
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data to this end is worthy of careful study because of the
high potential of resolving scene interpretation ambiguities
in this way, without heavy dependence on semantically
derived guidance which might severely restrict the breadth
of applicability.

The paper first deals with two contrived lighting ranging
methods. Then follows coverage of the monocular passive
techniques of relative range from occlusion cues, range from
texture gradient, range from focusing, and surface orientation
from brightness. The multiple camera position techniques
of stereo disparity and camera motion into the scene are then
addressed. This is followed by a section on Moiré fringe range
contouring, which, although in the category of contrived
lighting methods, is presented later in the paper both because
more specialized instrumentation is involved and because a
photographic intermediate step makes it unsuitable for real-
time range analysis. Then follows the artificial beam energy
source methods which range to one point at a time: simple
triangulation active ranging, ultrasonic and laser time-of-flight
active methods, and a streak camera approach which provides
an interesting and fast method for measuring light transit
times with great accuracy.

Although some of the methods presented may seem to have
considerable drawbacks which could throw doubt on why they
are included, it was felt that a wide representative spread of
ranging approaches should be described to provoke thought
and development in this important, relatively new field,

"bearing in mind that new technologies could change the feasi-

bility status of various methods for particular applications.

II. CoNTRIVED LIGHTING RANGE FINDING

In many laboratory situations where experiments in com-
puter vision are intended to have applications in the compo-
nent handling, inspection and assembly industry, special
lighting effects to both reduce the computational complexity,
and improve the reliability of 3-D object analysis is entirely
acceptable. That similar methods are not applicable in gen-
eralized scene analysis, particularly out of doors, is of no great
concern. This class of range finding method involves illumi-
nating the scene with controlled lighting and interpreting the .
pattern of the projection in terms of the surface geometry of
the objects.

A. Striped Lighting (See Fig. 1)

Here the scene is lit by a sheet of light usually produced with
a laser beam light source and a cylindrical lens, but projecting
a slit using a standard slide projector is also feasible. This sheet
of light is scanned across the scene, producing a single light
stripe for each position. When the light source is displaced
from a viewing TV camera, the camera view of the stripe
shows displacements along a stripe which are proportional to
depth; a kink indicates a change of plane and a discontinuity
a physical gap between surfaces. The proportionality constant
between the beam displacement and depth is dependent upon
the displacement of the source from the camera so that more
accurate depth measurements can be made with larger dis-
placements; however, larger parts of the scene viewable from

~ the source position (lightable) are not seen from the TV
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camera—the depth of such portions cannot be measured in
this way. High source energies permit operation in normal
ambient lighting conditions.

It is simpler to analyze one stripe at a time in the image
since line identification for tracing purposes becomes difficult
with multiple lines, particularly when discontinuities occur.
Using specially identifiable adjacent stripes using dashes or
color coding could reduce the number of images requiring
analysis. In [4] Shirai and Suwa use a simple stripe lighting
scheme with a rotating slit projector and TV camera to recog-
nize polyhedral shapes. The fact that the projected lines are
equispaced, parallel, and straight on planar surfaces are taken
advantage of in reducing the computational complexity; only
the endpoints of each straight line segment are found and line
grouping procedures are used to identify distinct planar
surfaces. The geometry of the relationship between depth and
displacement of a point on a stripe is not confounded by non-
planar surfaced objects but point by point depth analysis
involving one binary image for each stripe is expensive compu-
tationally. Furthermore, if a rangepic on a uniform grid is
required, some extrapolation and interpolation calculations
will be required.

In [5] Agin and Binford describe a laser ranging system
capable of moving a sheet of light of controllable orientation
across the scene. A helium neon laser emitting 35 mW of red
light at a wavelength of 6328 A was thought adequate for use
with the vidicon camera used. Their aim was to derive de-
scriptions of curved objects based on the generalized cylinder
model [6]. The stripe line from an image at each of a number
of positions of a rotating mirror were analyzed, the orientation
of the sheet of light rotated by 90°, and a second mirror scan
sweep taken. This process resulted in data for an overlapping
grid of laser lines covering the scene. Some 5-10 min were
involved in the process. Range data are derivable from these
data since the relative position of the laser beam with respect
to the camera can be determined by a calibration process.
The disadvantages of the apparatus as cited by the authors
include slowness of data collection and low-level processing,
the monochromaticity of the laser source in restricting the hue
of the objects to the scanned, and the hazards present during
the use of lasers in an uncontrolled environment.

The work reported by Popplestone et al. [7] differs from
Shirai’s in that it deals with both cylindrical and plane surfaces
and from both Shirai’s and Agin’s work in the development
of body models specifically suited to solving juxtaposition
problems in automatic assembly. The stripe analysis hardware
takes advantage of the facts that 1) a nearly vertical stripe
intersects each horizontal scan of a TV camera only once and
that 2) since each TV line scan is at constant speed, the time
from the start of that line at which the video signal indicates
an intersection “blip” is proportional to the distance of the
stripe from the left edge of the image. The stripe finder elec-
tronics returns the relevant timing data to the controlling
minicomputer which is fast enough to collect the data for one
complete stripe in one TV frame time (1/50 s). Hardware
details are given in [8].

It is cvident that without special vidco signal timing elec-
tronics, many frames, each with little relevant information,



124

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-5, NO. 2, MARCH 1983

/
/ Scene
/ Light Stripe
/
Discontinuity /_
Jump /
/ Ground Plane
/ 7
/ /4
7/
/
7 re
'
/ 7
/ 7
/ 7/ ‘\_/ Vertical Light
l J Sheet
/ s
! / s
7
Rotation (‘) / 7
e
! s
e
Light Source TV Camera

€~ Displacement =———————————p—

Fig. 1. Striped lighting apparatus.

have to be stored and analyzed, leading to a time-consuming
range extraction process. Rocker and Kiessling [9] discuss
this problem along with difficulties associated with other
. ranging techniques. In particular, they point out that, if more
is to be extracted from a single image frame by using parallel

grid illuminations, the strike identification problem causes a -

number of restrictions related to the following.

1) The image should contain parts of the supportihg plane
surface.

2) Shadows cause line interruptions.

3) Top surface lines should be distinguishable from ground
plane lines. .

‘4) Scenes with more than one object should not have hid-
den object planes.

This last point would appear to affect nearly all types of
ranging and all image based scene analysis, for that matter.

B. Grid Coding

Will and Pennington [10] describe a method by which the
locations and orientations of planar areas of polyhedral solids
are extracted through linear frequency domain filtering
applied to images of scenes illuminated by a high contrast
rectangular grid of lines. Edges are defined through the inter-
sections of the extracted planes. Fast Fourier 2-D transforms
are used - for rapid computation and segmentation in the

Fourier domain used to identify the planes in the grid coded
image. Once again the TV camera is offset from the illumina-
tion source. The transformation matrix which would restore
“the individual distorted squares back to their original form in
the projected grid contains the local surface normal directions;
but here Fourier domain analysis is used instead. The grid
coded planar areas map into a 2-D Fourier transform which is
a crossed set of harmonically related delta functions in the
spatial frequency domain. Separation of the delta functions
“identifying the planes is equivalent to bandpass filtering; the
inverse transform is a reconstruction of the isolated planes in
the image domain. Higher level processing can then deduce
the object structures in terms of the identified planes. A filter
consisting of a 1° sector of a circle with radial direction all-
pass response was applied to the 2-D Fourier spectrum to
produce an energy versus angle function, the peaks of which
are associated with individual planes; a set of filters was de-
signed to straddle each peak; each filter then passed those
parts of the 2-D Fourier spectrum corresponding to the indi-
vidual planes; inverse transforms reconstruct the planes in the
image domain.

Towards the end of the paper, an interesting alternative
approach is mentioned. If a photographic camera is moved
transversely to the dominant direction to the scene, each
image point gives rise to a streak of length inversely propor-
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camera at constant intervals; each is encoded as an array of
points whose period is proportional to range. This periodicity
can be detected in the Fourier domain. This approach would
cem to be time-consuming and inconvenient, particularly if
photographic processing is involved. Furthermore, only dis-
finct points in the scene would give rise to clear modulated

streaks on the image plane; range to other parts would need to

pe calculated on the basis of assumptions of the shapes of
surfaces and other clues. '

The Fourier analysis approach to 3-D computer vision would
pe feasible for robot guidance only if the computations in-
volved could be completed quickly enough, perhaps with array
processing support.

III. RELATIVE RANGE FROM OccLusioN CUES

Rosenburg et al. [11] have developed a technique for com-
puting the relative relationships of “in-front-of,” “behind,”
and “equidistant” using heuristic evidence of occlusion in
monocular color imagery. A relaxation labeling [12], [13]
process is used to produce a depth map which is used to test
the consistency of a depth graph derived from occlusion cues.
The scheme functions without domain-specific restrictions.
A segrented image is used as input—each region is assumed to
be distinguished from adjacent regions on the basis of the pri-
mary features of color and texture. It is assumed that if some
of these regions represent only parts of objects, this is purely
the result of occlusion effects. Occlusion evidence is obtained
by examining clusters of adjacent regions, each cluster being
evaluated in terms of six different occlusion cases (see Fig. 2)
ordered in decreasing evidence of occlusion. In Fig. 2(a)
region A is totally contained within region B. This represents
the strongest evidence of occlusion, there being no breaks in
the occluded region. In Fig. 2(b) the occluded object is
broken somewhat. Region A is surrounded by region B on at
least 75 percent of its perimeter and the fragment region C has
the same primary feature properties as region B. It is likely

* that B and C are parts of the same object. Removing region C

gives rise to Fig. 2(c) which is ranked below (b). In Fig. 2(d),
the reduction of the occluded region B weakens the clue
further—A is surrounded by B on at least 50 percent of its
perimeter. Again the additional area C with feature properties
similar to B strengthens the occlusion hypothesis a little. In
Fig. 2(e), the lack of region C weakens the hypothesis. In Fig.
2(f) the extent of the adjacency of region B is reduced, 4 is
surrounded by B on at least 25 percent of its perimeter; once
again C can help.

Where there are distinct occlusion related groupings with no
occlusion clues between the groupings, relative depth relation-
ships between the groups cannot be determined in this way.
Probabilistic relaxation labeling [12] is used both to resolve/
reduce possible contradictions in local occlusion data based on
the six classes given above and to establish the “equidistant”
relationship. Labels are attached to each region indicating
hypotheses about depth level of the underlying physical
objects. If N depths are used (depth level 1 is foreground
and depth level NV is background) and A,, @=1,2,--,N

are the labels used, p;(Ay) is the probability that A, is the
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Fig. 2. Occlusion cases.

correct depth level for region i. The total number of re-
gions in occlusion clusters is taken as an upper bound on N.
Initially all p;(}) are set to 1/N.

These probabilities are updated using

Pk [1 +4gFV]”
> pEO) [1 +4FN]Y
A

pfr (N =
maintaining
N
S pF*'(Na)=1 foreachi
=t '
where we have the following.

X P P
cij 3 rii(AAe) pf(Na)-

a=1

D afN= X
j ENEIGH()
2) k is the iteration number and y > 1 an accelerating factor.
NEIGH()) is the adjacency neighborhood set of i.
3) rii(\, \') is the compatibility (or consistency) between
label \ on region 7 and label ' on region j. In this example,

ry(LN)=-1 if ASN
=+1 if AN

if i is an occluding region and j the corresponding occluded
region.

4) c;; is relative certainty of interences attached to each of
the six occlusion cases for region pair Z, j. The assignment used
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inn this paper is

(0.6 for Fig. 2(a)

0.5 for Fig. 2(b)

_J 04 forFig. 2(c)
Y 03 for Fig. 2(d)
0.2 for Fig. 2(e)

\ 0.1 for Fig. 2(f).

Convergence usually occurs after applying the update function
a medium number of times (in paper, 22 iterations used for
example presented). v can be changed at any iteration if it
seems helpful.

The final step is the determination of depth relationships of
each region with each other region; this process is not pre-
sented here.

The most glaring weakness in this approach is the restraint of
correct segmentation of the scene in the first place. In many
practical situations one would wish that range information
would help resolve segmentation ambiguities, not range infor-
mation itself to depend upon the lack of these. Total reliance
on occlusion cues is also a weakness in that object groups not
linked by occlusion relationships cannot be relatively placed in
the depth map. However, the approach is most ingeneous and
deserving of attention, particularly because of its monocular
application.

IV. DEpTH FROM TEXTURE GRADIENT

Texture gradient refers to the increasing fineness of visual
texture with depth observed when viewing a 2-D image of a
3-D scene containing approximately uniformly textured planes
or objects. Gibson [14] placed considerable emphasis on this

_effect in terms of human depth cues, particularly when asso-
ciated with the ground plane. It is intrinsically a monocluar

- phenomenon particularly useful in range analysis on natural
outdoor scenes where uniform visual texture is a dominant
manifestation.

Bajcsy—and Lieberman [15] have developed a method of

- measuring texture gradients in the domain of natural outdoor
scenes based on Fourier descriptors which are claimed to vary
in a manner consistent with surface geometries in three dimen-
sions. The Gibson [14] point of view is supported—surfaces
are the primary objects of the visual world; these reflect light,
some of which is projected on the retina. The basic surface
classes are longitudinal (parallel to line of sight) and frontal
(transverse to line of sight); longitudinal surfaces are asso-
ciated with distance perception.

The Bajcsy and Lieberman texture operator is developed as
follows.

The 2-D discrete Fourier transform of a digitized image
window considered as a real function g(x, y) of two spatial
mteger variables x, y is

p-1p-1
Z &g(x,y) exp [-2mi(xn + ym)|p]
y=0

. where p is the dimension of the square image window array
(0<x, y <p, all integers).
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The power spectrum is
P(n,m) = [F,(n,m) + F£ _(n,m)] '/

where Fg (n,m) and Fy (n,m) are the real and complex
parts, respectively, of F(n, m). The phase spectrum is

¥(n, m) = arctan [Fy, (n, m)[Fg (n,m)].

The power spectrum, being invarient to translation but oy
rotation preserves the visual pattern directionality of the
image; the phase spectrum contains position information iy
the image and is not relevant for texture cues. Transformmg
the power spectrum from Cartesian (n,m) to polar (r, )
coordinates aids extraction of directionality information. Ip
each direction ¢, P(r, ¢) is a one-dimensional function P 5(r);
for each frequency, r, P(r, ¢) is a one-dimensional function,
P,(¢). The paper is not clear in distinguishing Py(r) funcuons
for each ¢ from a single function P(r) formed by integrating

over ¢ nor in distinguishing between P,(¢) for each r and a |

single function P(¢) formed by integrating over r.

In [15] in fact, an example is given where P(¢) is calculated
by summing the energy spectrum P(n,m) in equiangular
sectors and then finding P(r) for each direction indicated by
peaks in P(¢) by summing the energy spectrum P(n, m) within
the associated ¢ sector and within rectangular annuluses of
radius 7. The nomenclature used is not consistent.

Peaks in P(¢) indicate texture directionality—a few distinct
peaks indicate strong directionality properties, a uniform func-
tion indicates nondirectionality of texture. A significant peak
is taken as one higher than the mean by 1.5 times the standard
deviation. In the nondirectional texture case a uniform P(r)
indicates a noisy texture and a peaky P(r) a blob-like texture.
A lack of texture (smooth image) gives rise to a large P(r) at
r=20 (zero frequency component).

The quantxtatlve components used for the texture descriptor
include:

1) average gray value (zero frequency constant),

2) the number and angle values of prime textural direc-
tionalities,

3) maximum power corresponding to each prime direc-
tionality,

4) the r corresponding to the maximum power in each
prime direction, and

5) their corresponding spatial frequencies and wavelength.

Qualitative components include:

1) texture class (bloblike, monodirectional, noisy, homo-
geneous, etc.),

2) contrast (sharp, medium, weak),

3) brightness (bright, dark),

4) granulation (large, medium, small).

The depths derivable from texture gradient are only relative
unless the actual size of the texture element is known as a
basis of calibration.

Using the geometric model of Fig. 3, I; is the texture element
size as projected on the image plane, Y; the center of the
window in which J; is found. The ground plane texture ele-
ments are all the same size (say =7). Y,, Yg, Y are Y value
image projections of points 4, B, C which are on the ground
plane. The relative distances of 4, B, and C to the image plane
are to be determined.

P=(1/k,
how distan
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P =(1/k,) (ds/dy) is a projection function which indicates
how distance on the ground plane is related to distance on the
image plane where k; is a proportionality constant depending
on geometric system parameters. Distance in 3-D space is
given by

S=k1dey.

The texture descriptors extracted earlier can be used to pro-
duce a form of P,

Py(Y)) = kat[1(Y)

where Y; identifies the associated windows in the image plane
and k, is another constant

YC
J P*dy
distance AC _ “v4
distance AB YB
P*dy
YA

where P* is a curve fit approximation to P.

This is shown in Fig. 4. The /;’s are the texture wavelengths
or elements sizes measured in adjacent windows along the
vertical direction of the image. Thus relative distances can be
found in terms of texture gradient without needing to know
focal length, height above ground, etc.

I
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Window size requires careful consideration since relativity to
texture coarseness is needed to give reliable texture features.

This method of relative range measurement would seem to
have several drawbacks. Firstly, the regions of the image over
which the texture features are to be extracted must be uni-
formly textured in the 3-D sense. Prior segmentation is re-
quired. Secondly, application is restricted to highly textured
scenes. Thirdly, computational cost, despite use of fast FFT
algorithms, would be high.

Other texture coarseness measures [16], [17] might be
substituted in the above method to derive relative depths.

V. RANGE FROM FOCUSING

Knowledge of the focal length and focal plane to image
plane distances permits evaluation of focal plane to object
distance (range) for components of the 3-D scene in sharp
focus. The sharpness of focus needs to be measured on
windows on the image over a range of lens positions s to deter-
mine the range of the corresponding components of the
scene. Prior segmentation is not required, but sufficient visual
“business” is required to enable sharp focus. Large lens aper-'
tures shorten the depth of focus and enhance focus position
discrimination of objects at different ranges. Horn [18] pro-
vides some technical details on focusing relationships and
Jarvis [19] suggests some simple computational formulas
for sharpness of focus evaluation. The method is essentially
simple and a direct calibration procedure can be used to asso-
ciate lens positions for various ranges in focus, thus obviating

the need for mathematical derivation of this function. The
method becomes increasingly inaccurate with range (see
Fig. 5).

Jarvis [19] suggests the following focus sharpness measures,
chosen on the basis of computational simplicity, effectiveness,
consistency and possible direct hardware implementation:

1) entropy (comentropy) =E = -3 P(x) In P(x).
X

2) variance =V =

N
3) sum modulus difference =SMD = 3" |x; - x;4|-
i=2

For each window on the image one need only find the lens
position (and thus range) which maximizes these functions;
no texture details are required and no absolute values are
important.

Instead of considering each of a set of rectangular grid based
windows in the image over a set of lens positions, it is also
possible, for any one complete image, to identify those por-
tions which are in focus and thus derive the range of the
corresponding objects.

Once again, as with the texture gradient approach, the range
to visually homogeneous regions of the image cannot be deter-
mined directly. However, only one camera position is involved
and no special apparatus (except perhaps a computer con-
trolled motor to adjust the lens position) is required in addi-
tion to standard digitization equipment if the focus sharpness
calculations are to be computed rather than determined with




128 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-5, NO. 2, MARCH 1955
S

Object

Inage

S U

Fig. 5. Depth from focus principle.

specialized analog electronic hardware. In the.former case,
calculations, although straightforward, could be lengthy.

VI. SURFACE ORIENTATION FROM IMAGE BRIGHTNESS

As early as 1970 Horn [20] raised issues concerning the
recovery of surface shape from shading information in the
image. In more recent times there has been a renewal of
interest in this approach to scene analysis as it represents a
generalized analysis strategy independent of domain specific

" restrictions. Only the recent work by Ikeuchi and Horn [21]
will be briefly presented here as representative of this approach
to surface orientation recovery. As mentioned earlier, surface
orientation permits relative range information over parts of
the scene to be calculated by integration; discontinuities
frustrate absolute range determinations over the entire scene.
Central to the method is the concept of a reflectance map
which captures the relationship between image intensity
(shading) and surface orientation.

- Denoting the slope components of a surface patch as p, q

p =0z/dx
q =3z[dy

where z is the depth coordinate and the brightness distribution
on the surface gradient space, R(p, q), is called the “reflectance
map.”

The dominant image brightness relationship to reflectance
map is -

‘ Ep(x,y) =R(p’ q,Ds, qs)

where
Ep(x,y) is the image irradiance in the image plane
(x,7)
(orthographic projection assumed)
(ps, q5) are the direction components of the light

source
is the reflectance map function defined over
surface orientation and light source positiop,

R(p’ qa ps: qs)

The central mechanism of surface normal recovery is tq
calculate the R(p, q, ps, q;) map offline for the surface
material of the scene and to determine p, ¢ for each X,y image
point from solving a set of E,(x, y) = R(p, q, P;, q;) equations
with different light source positions but with camera and scepe
stationary. - The paper deals with surfaces with high specular

reflectance properties which the authors suggest are typical

of industrial objects, but the general approach is not restricted
to these types of surfaces. A considerable amount of off-line
computation of the reflectance map function is required but
on-line scene analysis is largely by table look-up which is
rapid. Surfaces with indirect illuminations from adjacent
components cannot be analyzed reliably in this way and the
method would be restricted to objects of the one type of
surface for which the reflectance map has been calculated
off-line. The accuracy with which image intensity can be
evaluated would also seem critical to the method. In an
industrial hand/eye coordination system these restrictions
may not be prohibitive.

VII. RANGE FrROM STEREO DISPARITY

Stereo disparity refers to the phenomenon by which the
image of a 3-D object point shifts as the camera is moved
laterally to the depth coordinate axis. For two such camera
positions, simple geometry indicates that the image displace-
ment (disparity) is inversely proportional to depth as measured
from the camera (see Fig. 6). The image of a point at an
infinite distance along the optical axis can be used as a refer-
ence position in both images. Disparity relative to a line
through this reference point on the image at right angles to
the camera shift direction is inversely proportional to depth.
(In the limit, the image of the infinitely distant point does
not shift at all.)

It is necessary to establish correspondence or matching of
points between the two images to derive the depth relation-
ship. If this correspondence is to be determined from the
image data there must be sufficient visual information at the
matching points to establish a unique pairing relationship.
Two basic problems arise in relation to this requirement.
The first arises at parts of the image where uniformity of
intensity or color makes matching impossible, the second
when the image of some part of the scene appears in only
one view of a stereo pair because of occlusion effects (the
missing parts problem) or because of the limited field of
view captured on the images. The further apart the two
camera positions, the potentially more accurate the disparity
depth calculation—but the more prevalent the missing parts

_problem and smaller the field of view overlap.
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Fig. 6. Stereo disparity geometry.

If the correspondence problem is to be tackled using cor-
relation maximization over windows of the image pair, the
correlation shift need only be in the direction of the camera
movement axis if this is known. .

There is quite a lot of literature on the stereo disparity range
finding problem and [22], [24]- [26] are only a sample from
this field.

The solution” of the correspondence may be effectively
sought over the entire overlap areas of the stereo pair of
images if the scene is visually “busy” over most of its imaged
extent. When large areas of the image are relatively feature-
less, correlation window matching attempts would prove futile
and it is more reliable and expedient to preselect portions
for matching on the basis of scene “‘busyness” measure of a
textural or line structure sensitive type. Hopefully, these
preselected areas are strategically sufficiently well placed to
allow extrapolation and interpolation based depth estimates
to be reliably made for unrepresented portions of the scene.
Certainly in man-made environments with planar faced solids,
this approach is likely to be fruitful. The “busyness” measures
that are likely to be suitable include many of the same mea-
sures that relate to texture quantification [15]- [17] and

also those suggested earlier which have proven useful [19] as
focus sharpness measures.
Levine ef al [22] apply the following correlation measure
over (2u+1)X (2v+1) windows of the stereo image pair
A(i, j), B(, j); the windows are centered off some point (i, j):

i+u j+v

2

1
o(p) = Qu+)(+1) 252,, nejov

{AE D BE+P)] - paG ) pp(i Y p)}
OA(i’ ]) OB(i’ ] +p)

129

NN
\\\V//

(@ (b)

Fig. 7. Correlation masks.

and
1 ivu j+p+v
us(, i tP)= > a1 B(%,m)
(2u l 1) (2V+ 1) g-—g-:u n=j+zp-u
where

i=u

o 1 i
mEN= o@D =, n;jj_v A(E,m)

are the window means of images A and B, respectively, and
where

2 1 itu j+v
L= o )
040, 1) Qu+1)(w+1) gég;u ngl;-”

A{IAGE M) 2 - (4 D1
and

itu j+d+v
0%(1',]'+P)=( )P

ut 1) (2V+ l) g=i-un=j+tp-v

- {[B(& M]? - [1sG. N1}

are the corresponding window variances.

The correlation shift p is along the axis in the direction of
camera displacement. The maximum ¢(p) occurs at the
sought disparity p*, linking the corresponding pair of points
of the two images, one in each.

The window. size can be adjusted and is an important factor
in the analysis. If too small a window is used, false matches
can occur through random effects, the sample size being
inadequate for reliable peak finding over the ¢(p) function.
Too large a correlation window leads to poor spatial dis-
crimination of picture cells corresponding to different depths
in the scene. In general ¢(p) is a multimodal function which
needs to be searched over using global optimization techniques
[23], the simplest but most expensive of which is exhaustive
search. Hierarchical searches including coarse and fine com-
ponents can reduce the search cost considerably.

Yakimovsky and Cunningham [24] present details of a
camera model and calibration system to support stereo dis-
parity range finding. They continue with the description
of stereo correlation algorithms in which specially configured
masks are used instead of the more usual rectangular image
window (see Fig. 7). This first type of mask [Fig. 7(b)] is a
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set of concentric diamonds Dy, Dy, - - -
the reference image point (/,,J;) and

D;={l,J: III—II+IJI—JI=dI.}’ i=1,--- k.
Typical values of d; are
dl=]: d2=29 d3=4, d4=8

giving an N = 61 point mask.

The second type of mask [Fig. 7(a)] consists of four line
segments defined by integer k:

1) horizontal (I, - k,J)) to (I, + &, J,)

2) vertical (I, J, - k)to (I, J, +k)

3) 45° Uy -k, Jy+k)to(I, + &k, J, +k)

4) -45° (I, -k, Jy+k)to(l, +k, J, - k).

k is typically =8 producing an N = 65 point mask.

In both cases the mask definitions can be interpreted as
sequences of NV displacement pairs (Al;, AJy), i=1,-+-,N,
each point, m;, on the mask being defined as (I + Al, J + AJ})
with the mask centered on (/,J). To find T, in the second
image of a stereo pair which represents the same scene point

P which appears at T, in the reference image a mask correla-
tion search is carried out along a line segment S. The search
is indexed by k& in the X direction.

The image intensity value X; at each point m; of the mask
centered at T on the reference image is stored in an N ele-
ment array.

With the mask centered on T}, = (I, i) in the second image,
the intensity value Y; at each point m; = (Iy + Al; Jy + AJ))
is sampled.

The correlation function

z

_ _ |y ~N _ N o\l
Ce=) (Xi- X)(Y; - Y)/(Z X - X)X (Y- Y)2)
i=1 i=1 izl

-1<C <1

g (B

to minimize computation. Since the X;’s remain fixed while
T, is fixed during the search for the corresponding point in
the second image T,, the maximization of the following
suffices to determine the value of k which maximizes Cy :

il (]

,Dk where Do = T],

- directions (corners) are ideal.
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where

D= Zzy 5035 Y,

i=1

Z;=NX; foreachTy.

Since Sk and Z; are constant for the search over k, the main
computational effort is in computing

N N N
XY, Y Y ad Y Zv,.
i=1 i=1 i=1

Two tests are applied to determine whether a particular
mask at T, will produce reliable correlation peaks corre-
sponding to a proper match. If the intensity variance of the
mask points is less than 0.3 of the camera noise variance,
the mask is not considered suitable for correlation matching,
there being insufficient visual information present. If the
autocorrelation function of T, centered mask points and mask
point sets of a sequence of shifts along the X direction on the
same image shows a sharp drop from 1 away from the refer-
ence position, the correlation with the other image proceeds.
These measures are consistent with the “busyness”” measures
suggested earlier in this section.

Moravec [25] used a TV camera on a horizontal rack to
gather a sequence of nine images at equal intervals of camera
displacement. The high degree of redundancy this sequence
provides was exploited to improve the accuracy of range
estimation based on disparity. An experiment begins with a
camera calibration phase with a visual chart which automati-
cally establishes focal length and image distortion parameters.
Then with the cameras pointing at the scene, localized features
which can unambiguously be detected from different views
are selected. Image regions with high contrasts in orthogonal
An “interest operator” sub-
routine attempts to select a scattering of such regions so that
each object might be represented a few times. Sums of squares
of adjacent pixel intensity difference in each of the directions,
horizontal, vertical, left diagonal, and right diagonal are calcu-
lated over small square windows and the minimum of these
four directional variance measures- used as that window’s
“interest” measure. Points of interest valuable for disparity

“locally maximal interest points with other images by searching

a whole image area or a specified rectangular subimage.

A hierarchical search which begins with a coarse strategy
applied to a reduced resolution image and proceeds by re-
fining the search into finer and finer resolution images guided
by higher level results is used. The fifth image of the nine
camera images sequence is used as the reference both for the
interest operator phase and the correlation match phase. The
correlator attempts to match selected high interest features
from that image with each of the other eight images. Since the
camera shift is horizontal, the search is restricted to narrow
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horizontal bands. After the correlation search, each feature’s
position in each nine images is known. The 36 image pairings
are used for stereo disparity analysis for each feature. The
range estimations for each pair are considered to be the means
of normal distributions with standard deviations inversely pro-
portional to the relative camera shift, the distribution area
being scaled by a confidence measure based on the correlation
measures (the product of the two best match correlation
figures with respect to the reference image using the value 1
for one factor when the central image is involved amongst
the 36 pairs) and by the projection of the feature shift on
the X axis. For each feature, the peak of the summed 36
distribution functions provides the overall range estimation

. with considerable reliability. False matches tend to produce

distributions which fail to gain reinforcement from the others.
In all, this method of combining the 36 estimations is statisti-
cally sound and most intelligent in refining the solution. Note
that only eight correlation match searches for each feature of
the reference image are involved. :

Baker [26] describes a stereo pair range analysis technique
based on edge data in the images. The use of edge data fulfills
the basic requirement of visual “busyness” (at least in the
direction across the edge) for-reliable correlation matching,
at the same time reducing the computational cost. Camera
shift is in the direction of horizontal scan lines and only edges
with a vertical component in their slope are used in the cor-
relation process (i.e., edges are associated with sharp differ-
ences in an intensity plot along a horizontal scan line). The
correspondence problem is attacked one horizontal line at a
time using edge correlation procedures for finding the best
association of first and second image edges; the information
used is strictly local for this phase. At a more global level,
edge continuity constraints are used to confirm or reject these
edge pairings. This second phase is termed “‘cooperative
continuity enforcement.”  Inconsistent pairings involving
those edges where nearest image space connections (as seen in
either image) are with edges other than given by the correla-
tion based link, are removed. Those that remain hopefully
provide reliable range data from the corresponding disparity
values. This approach is an excellent example of filtering
local information through a global constraints function to
preserve consistency and thus improve reliability. This method
should be particularly useful for colinear edged planar sur-
faced objects under edge enhancing lighting conditions.

The work by Marr and Poggio [27] has excited a consider-
able amount of interest among computer vision and psycho-
physicists alike, particularly as their proposals for solving
the stereo disparity correspondence problem by the use of
cooperative computational processes contains clues of human
neurophysiological function in this same domain. Julesz’s
[28] findings regarding the human interpretation of random
dot stereograms when viewed binocularly to yield patterns
separated in depth suggests a mechanism of local processing
which inspired Marr and Poggio in their computer vision work
on stereo disparity analysis. A cooperative algorithm is one
which operates in parallel upon a large array of inputs to yieid
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a global (consistent) organization through local interacting
constraints. In this case the constraints are derived from the
physical 3-D world of solid objects where

1) a point on a surface has unique position in space at any
time instant, and

2) the surfaces of objects are smooth compared to their
range from the viewer and matter, divided into objects, is
cohesive.

Only identifiable features on surfaces are suitable for match-
ing stereoscopically; lines, edges, shadows, other markings, etc.
in the images usually have a physical existence in the 3-D
scene. ,

The above two constraints can be mapped into rules for
combining descriptions (including positions) of identifiable
features in the left and right images of a stereo pair.

1) Uniqueness: Each item (feature) can be assigned at most,
only one disparity value. — '

2) Continuity: Disparity varies smoothly almost every-
where, ie., discontinuities corresponding to depth change
occur only relatively infrequently in the image when compared
with the total area.

Computational cells for each x, y position in the image pair
and for each possible disparity value d, evaluate the state for
triples in X, y, d to represent actual disparity match points
by using iterative processes with the local neighborhood con-
straint conditions inhibiting and supporting candidature at
each step. The stable states for the cells represent a disparity
solution. The computational cost, when the algorithm is
processed on a conventional serial machine would probably
be large, but specialized array processing would be most effec-
tive in reducing this cost.

The form of the iterative equations is

= {( 5 cm)
x'y'd € S{x,y,d)

_ s( Z CJ(‘") ) C(O)
x'y'd € O(x,y,d)
where

1) C,f% is the state of the cell at position (x, y) with dis- -
parity d at iteration n;

2) § and O identify supportive neighbors and inhibitive
neighbors, respectively, in the vicinity of x, y, d;

3) o is a sigmoid function (“S” shaped curve) with range
[0, 1];

4) £ is the inhibition constant.

From the paper, it would seem that when o is a simple
threshold function, the process converges for a wide range of
parameter values. A number of difficulties are encountered
in regarding this process as a theory of human vision stereo.
These concern the human tolerance for the defocusing of one
image, the movements of the eyes as a stereo pair of images
come into fusion and the hysterisis effect by which there isa
delay in matching but fusion remains for subsequent separa-
tion of the images in the pair beyond the distance for which
fusion was initially impossible.
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More recently, Marr et al. [29]-[31] have proposed an
alternative theory of stereo vision computation which has
strong links with low-level biological visual mechanisms.

- It is based on initially extracting edges with mask operators
of various sizes convolved over both left and right images and
extracting the zero crossings for each. The stereo correspon-
dence problem is then solved by using the disparity matches
of the gross line structures for the results of using the large
masks to guide the matchings at finer, higher resolution.

Neurophysiological studies carried out on cats and monkeys
indicate a lateral inhibition local operator which can be

modeled mathematically as the difference of two Gaussian
distributions:

203/-r?

- N ST
Gi(x,) - Gy(x,p) = 2o, e 2o,
where r is radius from the center at the point of reference
(x,») and 0,, 0, are standard deviations which correspond to
scale factors for excitatory (G,) and inhibitory (G,) distribu-
tions, respectively. This is approximately equivalent to the
application of a Gaussian smoothing operator followed by the
application of the Laplacian operator

02 02
2 = — —
v ox?  9y?
which is a nonoriented second derivative.
Since convolving the image 7 with G, the Gaussian smoothing
mask, and then applying V? is equivalent to applying, in one
pass, the convolution of the product mask V2G, the computa-

tional cost of convolutions over finely quantized images is
reduced:

V(G *I)=(V*G) = I

where * is the convolution operator.
The shape of the VG mask is given by

2
(o)
g

The various scales of edges are extracted by applying the
discretized form of this function, with a geometric progression
of sizes (equivalent to adjusting o) and extracting the zero
crossings (which correspond to extrema of the first derivatives
of the smoothed images). -

Intermediate between the extraction of zero crossings for a
sequence of scaled VG mask convolutions and application of
stereo correspondence algorithms, a representation called the
“raw primal sketch” [32] is created by segmenting collections
of zero-crossing contours into sequences of short line segments
and evaluating, for each, its position, orientation, length, and
rate at which VG changes across the segment. This represen-
tation aids the left/right image matching process which, as
mentioned earlier, is applied at the crudest scale level first,
these results then being used to guide finer matches at higher
resolution. ,

It is given in [33] that the first implementation of the Marr-
Hildreth theory took in the order of 3 h to compute the coarse
level zero crossings of a 512 X 512 pixel image and a proto-
type hardware implementation some 30 min. In [34] is a
report of a hardware implementation which can complete the
zero crossings in under 0.25 s. Note, however, that the smallest
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operator used on something like a 512X 512 pixel image
(NV?) is 35 X 35 pixels (M?) and a convolution pass involves
some M2N? multiplications and slightly fewer additions.

VIII. RANGE FROM CAMERA MOTION

In this case camera motion is not restricted to a limited
lateral displacement as for stereo disparity. evaluation. Two
approaches in this class are represented by Williams [35] and
Prazdny [36].

Williams makes-the simplifying assumption that all surfaces
are planar and orientated in one of only two directions, vertical
and horizontal (see Fig. 8). The relationship between the
camera relative movement of a point in the scene and the cor-
responding displacement in the image is illustrated in Fig. 9,
where from similar triangles

xAz

Ax=—— and
z z

where z is the distance to the scene point at time ¢;, Az is the
camera movement since Zo, (x, ¥) are the coordinates of the
corresponding image point at #,, and (Ax, Ay) are its displace-
ment components at #;. The relative distance between camera
and scene has diminished between ¢, and t;. All points in the
image move radially outward from a point on the image plane
called the focus of expansion. It is assumed that the position
of this point is known and that there is no movement in the
scene itself. An initial static segmentation is used in defining
the extent of the planar regions.

A simple model of planar surfaces (either vertical or hori-
zontal), used to express a 3-D scene interpretation, is used to
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predict image dynamics which are tested against image data by
applying the prediction (in reverse time) to an image at ¢, and
calculating an error function based on differencing (pixel by
pixel) for each surface region, this predicted (synthetic) image
with the previous time sequence actual image at fo.

The averaged difference for each region is that surface’s error
value. Subpixel displacement resolution is achieved by inter-
polation based on weighting the gray levels of each pixel in
the predicted window by the areas of the pixel cells involved.

Occlusion predictions are used to prevent companions of
region parts not visible in both time sequence images of a pair.
A search process to reduce the error measure refines the scene
interpretation model. The search is split into two independent
parts, each involving only one parameter per surface. The first
search is to find the distance Z for each surface assuming it is
vertical and the other to find the height Y for each surface
assuming it is horizontal.

The distance to all surfaces under the vertical orientation
assumption are refined to reduce the appropriate error value.
Simultaneously and independently the heights of each surface
are refined by the second search on the assumption of hori-
zontal orientation. The correct orientation for each surface is
decided on the basis of lowest error. Unresolved errors in the
initial static segmentation can be detected once the surface
model is refined.

Each synthetic image which is tested against a real image
reflects a set of systematic changes in the distance and height
of every surface—these are simply increments and decrements
of Z and Y for each hypothesized surface. The global mini-
mum error for each surface is sought using a hill climbing
algorithm (see [23] for survey on global search methods) with
fractional perturbations on the best values of Zs and Ys found
so far. The fractional perturbations are diminished as extrema
are approached and a number of simple stopping criteria are
applied for each surface independently.

The overall approach is a conventional optimization strategy
applied independently for each surface. Since the error evalua-
tions are based on average pixel value differences over segmen-
tation regions for each of the Z and Y values for the corre-
sponding surface the process is computationally expensive,
particularly if a large number of surfaces are involved. Again,
accuracy would diminish for distant objects as corresponding
image displacements with camera motion would be small.
Overall, this method represents an interesting approach worthy
of further investigation but would seem to be both tedious and
not particularly reliable, especially since the initial static seg-
mentation is carried out without the aid of range information.
Also, the sharpness with which a synthetic to real image seg-
ment segment match can be achieved would depend upon the
visual “busyness” in those regions. Furthermore, hill climbing
techniques are intrinsically only able to find local extrema
which are obviously not guaranteed to be the global ones
sought if multimodal search performance index functions
are involved.

In [35] Prazdny presents a rather elegant method of re-
covering instantaneous egomotion (observer motion) param-
eters and a surface normal map (from which relative range
information can be derived) starting with optical (or retinal)
flow data in the form of the instantaneous positional velocity
field (planar retina based) which is regarded as being provided
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Fig. 10. Moiré fringe range contour apparatus.

by some procedure not yet defined. The vector geometry is
complex but elegant and the method involves an iterative solu-
tion of a set of three third degree equations in three unknowns
for retinal point sets. The author admits that the greatest
weakness in the approach is the assumption concerning the
provision of the instantaneous positional velocity field. Apart
from the assumption concerning the provision of this field
defined on the observer’s retinal plane, the only requirements
are the smoothness of the observer trajectory and the rigidity
of the objects in the scene. However, absolute distance to an
object is not recoverable and must be seen as another weakness
of the method. The computational complexity would also be
considerable.

IX. MoirRE FRINGE RANGE CONTOURS

A Moiré fringe interference pattern formed by illuminating a
scene with shadow patterns through an equispaced optical
grating and viewing the scene through an identical grating in
a camera displaced laterally from the light projection system
(see Fig. 10) represents contours of equal range, but the sign
information indicating increasing or decreasing range between
adjacent contour lines is missing. Completing two experiments
with a known movement of the scene objects between observa-
tions or using a phase shifted second grating does allow sign
recovery, but contour correspondence problems make range
recovery difficult.

Idesawa et al. [37], [38] describe an ingeneous method
whereby automatic range recovery is possible by modifying
the standard Moiré fringe method through use of a high spatial
resolution image tube. In this method, the second grating is
replaced by a “‘virtual grating” formed by a set of equispaced
scan lines of the image tube system. Sampling along these
lines is equivalent to the superposition associated with the
standard configuration of Fig. 10. Suppression of unwanted
lines not associated with the intensity peaks and valleys which
form the range contours is carried out to clarify the contour
patterns.

Contour lines for different range levels can be produced
simply by changing the phase or the pitch (spacing) of the
scanning lines, while using just one grating shadow lit image.

The required contour change sign information is recoverable
in this process (using only phase shift will suffice). The image
tube spatial accuracy and reproducibility was an order of
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magnitude higher than for an ordinary cathode ray tube.
Unfortunately, the experiment required the photographic
recording of the grating lit image and this was scanned in a
flying spot scanner mode using the high resolution image
tube as the spot light source. If high resolution solid-state or
vidicon TV cameras could be used directly it would be a great
advantage for real time range analysis of scenes which may be
required to be robotically navigated through or manipulated.
The basic concept is certainly worth exploring further as the
potentials are high. However, once again, as for many of the
ranging methods presented earlier, although relative ranges
over contiguous surfaces can be measured this way, the abso-
lute range to a partially occluded surface cannot be recovered
if there is no range contour continuum to that surface.

X. SIMPLE TRIANGULATION RANGE FINDER

Perhaps the most obvious method of absolute range finding
is to use simple one spot at a time triangulation. In a sense,
" this is a one-dimensional version of stripe light ranging and no
image analysis is required. The image of a small portion of the
scene is focused upon a light detector. A narrow beam of
light from a source laterally displaced from the detector is
swept over the scene. The known directions associated with
source and detector orientation at the instant the detector
“sees” the light spot on the scene are sufficient to recover
range if the displacement between the source and detector
is known. It is sensible, of course, to sweep the light beam
only in the plane defined by the line from the scene to the
detector and the line from the light source to the detector.
If the detecting system is made to “look” at a raster sequence
of scene points, sweeping the source beam in the suitable
plane for each position and recording the relevant angles when
a “strike” is detected, a reliable rangepic can be easily con-
structed (see Fig. 11). Sometimes no strike will be detected
because of occlusion or surface absorbance. The larger the
base line distance between detector and source, the more
accurate the ranging but more prevalent the “missing parts”
_problem caused by directional occlusion. Also, closer ranges
‘can be more accurately measured.
_Fig. 12(b) shows a 64 X 64 rangepic of the scene of Fig.
12(a) obtained by using the infrared range detection compo-

p——

,(a).. v

)

(©)

Fig. 12. Za) Color image. (b) Pseudocolor rangepic of scene depicted
inv(a‘). (c) Infrared range scanner experimental setup.

nents from an inexpensive Cannon AF 35 mm camera and
mounting them on the pen carriage of an XY plotter; which
was driven in a raster sequence. The experimental setup is
shown in Fig. 12(c). The scan time was in the vicinity of
50 min but there is no inherent reason why the whole process
could not be speeded up by an order of magnitude or two with
the design of suitable apparatus. Range accuracy for the above
example was not great but this could easily be improved upon
also. This range scanner is also discussed in [39]. The use of
an infrared source permitted range finding in normal lighting
conditions (or in the dark).

XI. TIME-OF-FLIGHT RANGE FINDERS

A distinct turning away from triangulation based range
finding with its inherent “missing parts” problems and dimin-

ishing accuracy with range is exemplified in the existence of

time-of-flight ranging apparatus where energy source and
detection windows can be coaxial and range accuracy main-
tained over depth up to the point where reliable signal detec-
tion is no longer possible. The main two representatives in
this category are ultrasonic range finders and laser range
finders, the speed of sound and the speed of light, respectively,
being the most relevant parameters. No image analysis is
involved, nor are assumptions concerning the planar properties
or otherwise of the objects in the scene relevant. Furthermore,
absolute range is directly available and rangepic registration
with imagery easily achieved. Since the range measurements
are image independent, they are a legitimate source of com-
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plementary information that can support reliable scene seg-
mentation, unrestricted by domain specificity.

A whole range of anthropomorphically phrased questions are
entirely sidestepped as direct time-of-flight ranging has no
analog in human depth perception, although, of course, it is
relevant to bat navigation.

A. Ultrasonic Range Finding

Polaroid makes available an ultrasonic ranging system Kit
based on the transducer and electronics of their ultrasonic
range finder cameras. This kit, which includes a test board
and range read-out display and a fairly comprehensive manual,
is ideal for exploring the advantages and disadvantages of ultra-
sonic rangefinding for any particular application.

A 1 ms ultrasonic “chirp” consisting of 56 pulses at four
frequencies, 60, 57, 53, and 50 kHz, is transmitted by a simple
electrostatic transducer of about l% in diameter and exhibiting
a beam pattern with a major forward lobe of about 30° solid
angle. The signal reflected off an object within range is
detected by the same transducer and processed by an amplifier
whose gain and bandwidth are adjusted during delay between
“chirp” and “bounce back” so as to improve the signal noise
ratio and the reliability of signal detection. The mixed fre-
quency “chirp” is used to lower the probability of signal
cancellation for certain target topographies. Ranges from 0.9
to 35 ft are recovered with an accuracy of about 1 in. Two
basic problems are encountered in using such a device in an
attempt to derive a rangepic of acceptable spatial resolution
for computer vision studies perhaps involving robotic manipu-
lation. The first is that the 30° solid angle of the main lobe of
the transducers beam pattern does not allow better than about
4 X 4 resolutions of a 90° solid angle field. Special acoustic
focusing devices could improve this resolution as could using
arrays to sharpen the directionality; a simple sound absorbing
plastic foam tube is also effective in narrowing the direction-
ality to about a 10° solid angle but even this only gives at best
a 10 X 10 resolution over a 90° solid angle field [40]. The
second problem is a more fundamental one and concerns the

intrinsic properties of acoustic waves and reflecting surfaces.
If the transducer disk is pointed at more than about 40° to
the normal of a large hard surface there is a tendency for the
acoustic wave to bounce off mostly concentrated in a direc-
tion where the angle of incidence and the angle of reflection
are equal (see Fig. 13); consequently, little energy is reflected
directly back to the detector directly from this surface. Some-
times other objects in the path of the reflected beam may
return signals back to the sensor via reflection off the plane,
thus producing a false reading. No return energy is a better
result since it would indicate an invalid situation for the range
finder. This reflection effect is explained in terms of Huygen’s
principal and the undulations of the surface material in rela-
tion to the wavelength of the energy. A simple particle theory
analogy is the way in which many elastic balls whose sizes
(diameters, say) correspond to energy wavelength would
bounce off a relatively smooth surface (whose undulations are
small in comparison with the ball’s diameter) in a highly pre-
dictable way with a small probability of returning towards the
incident direction. When the surface is relatively undulating
in comparison with the ball size a stream of balls striking a
small portion of this surface would bounce off in all directions
with equal probability; some energy is detectable along the
incident direction. For light sources the surface needs to be
almost mirror smooth before this specular reflectance effect
is noticeable since the wavelengths involved are much smaller
than in the ultrasonic range. Thus for a large number of
commonly encountered surface materials the ultrasonic device
cannot measure range at incidence angles more than about 40°.
The scattering of reflected energy with equal probability in
all directions in a hemisphere on the surface is known as
lambertian scattering in the theory of light.

In summary, range finding using a system like the Polaroid
range finder kit is not suitable for producing medium to high
resolution rangepics over scenes containing hard objects with
surfaces whose normals are in arbitrary directions. However,
for crude navigation purposes, the device would be most
useful as an obstacle detector.



136 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-5, NO. 2, MARCH 1983

9 MHz Oscillator

Scanning mirror

goduiai-“ Analyser Pinhole
rysta. Photomultiplier
15 mW N 2 legi
kleNe Laser NG
Y N\ v I

Scanner CInterference filter

Reference signal 3 Motors
€ Scanner control
Amplitude and Amplitude PDP 11/10 -
Phase analyser Minicomputer
Phase

Fig. 14. Phase detection laser range finder block diagram.

B. Laser Range Finders
There are two basic laser range finder designs dependent
upon time of flight to and from an object point whose range is
sought. The first kind measures phase shift in a continuous
wave modulated laser beam between leaving the source and
returning to the detector coaxially. The second measures the
time a laser pulse takes to go from the source, bounce off a
target point (approximately lambertian surface assumed) and
~return coaxially to a detector. As light travels at approxi-
mately 1 ft/ns, the supporting instrumentation must be capa-
ble of 50 ps time resolution for range accuracy in the vicinity
of +% in. For both approaches an intrinsically large dynamic
range of return energy is involved both because of the inverse
fourth power range law involved and because of the variable
reflectance properties of the target surfaces.

" The modulated beam phase shift measuring version is repre-

sented by the instrument built at the Stanford Research
Institute, rgported by Duda and Nitzan [41] and detailed by
Nitzan ez al. in [42]. A simplified block diagram of this instru-
ment is shown in Fig. 14. A scanning mirror unit points the
modulated continuous laser beam at a raster scan of positions
in a scene and captures a coaxial portion of the lambertian
scattered beam for a receiver chain consisting of an inter-
ference filter, photomultipliér, logarithmic amplifier, and
phase detector, the last using a sample of the direct source
beam as a phase reference. Range is recovered through phase
shift measurements and reflected intensity by energy measure-
ments. The ratio of returned energy over source energy, when
corrected for range gives the intrinsic surface property of the
target known as albedo which is independent of both the
surface orientation and the illumination. The combination
of intensity and range information is a powerful comple-
mentary source of information for supporting scene segmenta-
tion and other scene analysis problems. The coaxial paths of
source and reflected beams ensure not only that no shadows
are cast on the scene by any one object or edge on another
surface but also that there are no parts of the scene which

can be illuminated by the source but not “seen” by the
detector. The “missing parts” problem, which is prevalent
in all triangulation based ranging including stereo disparity,
is entirely absent. A 15 mW He-Ne laser (A = 632.8 nm) was
used and a 9 mHz modulation applied. The wide dynamic
range (~100 dB) of the reflected energy and low energy laser
used made it necessary to integrate over many measurements
for each position to reduce the uncertainty of measurement to
an acceptable degree. This proved time consuming as a typical
128 X 128 rangepic of 7-8 bits accuracy in the 1-5 m range
took 2 h. If further developments in technique and instru-
mentation can reduce this time by three orders of magnitude,
a device most useful for near real-time robotic hand/eye
coordination tasks would result. Adding color discrimination
would also be valuable.

The direct time of flight pulse laser range finder alternative
is represented by the instrument developed at CALTECH’s
Jet Propulsion Laboratory and reported by. Lewis and Johnston
[43]. The block diagram is shown in Fig. 15.

A solid-state gallium arsenide pulse laser emitting at wave-
length X = 840 nm was used as the energy source and a photo-
multiplier with a gallium arsenide photosurface with spectral
sensitivity to match as the detector. Again, as for the phase
shift type system, a mirror scanning system was used to deflect
the beam and to collect a coaxial component of the reflected
beam. The output from the detector is passed onto a chain of
sensitive instrumentation normally associated with nuclear
physics experiments. A constant fraction discriminator pro-
duces a time pulse corresponding to a point on the input signal
at a constant fraction of the peak; this ensures stable pulse
arrival timing independent of intensity which has a large
dynamic range. The time between a reference time pulse
produced at the moment of laser firing and the output of
the constant fraction discriminator is converted into a rela-
tively wide (2 us) pulse whose height is proportional to the
required time interval (time to pulse height converter). This
helght is averaged over many pulses and digitized for trans-
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Fig. 15. Time-of-flight laser range finder schematic.

mission to the controlling computer. Its ranging accuracy is

about 2 cm and once again the repetition requirements to

increase signal/noise to acceptable levels constrained the
speed with which the rangepic could be produced. The

authors state that reliable range collection at beyond the rate

of 100 points/s would be prohibited by the basic noise in

the system. A range accuracy approaching 2 cm in the 1-3 m

range was achieved. A 128 X 128 rangepic would, under ideal

conditions take about 3 min to collect, still a long time in -
terms of a convenient vision-robotic manipulation or naviga-

tion cycle.

More recently Jarvis [44] has constructed a laser range-
finder using the same configuration as the Lewis and Johnston
[43] instrument. Using a low powered infrared laser (820 nm)
with a 100 ps pulse repeatable at 10 kHz, this instrument is
capable of acquiring a noisy 64 X 64 rangepic in 4 s; a rather
better result is achieved in 40 s with a resolution in the range
1-4 m of about % cm. Example rangepics are shown in Fig.
16. Better accuracy in a shorter time can be achieved by
increasing the laser power.

The laser ranging instruments described tend to be expensive
to construct ($10 000-25 000) but with speed improvements
they represent an effective direct attack upon the ranging
problem with a wide variety of applications both on the
laboratory bench and out of doors. Computational cost is
minimal, all the complexity being delegated to a specialized
piece of optoelectronic hardware.

C. Streak Camera Range Finders

Streak cameras (temporal dispersers) [45] accelerate photo-
electrons from a photocathode (upon which incident light falls
through a slit aperture) towards a positively charged mesh, and
on passing through it, they are deflected in one direction
(transverse to the acceleration) by an electrostatic field swept
at variable speeds, the sweep being triggered by some timing
eference (see Fig. 17). The intensity variation across this
“streak” in the direction of the deflecting sweep gives the
temporal intensity profile of the incident light at a time scale
given by the sweep velocity. These cameras are capable of
1_0 ps resolution and are therefore suitable for discriminating
light transit time variations corresponding to differences of

(@)

(b)

©)

Fig. 16. Examples of 64 X 64 rangepics from a laser time-of-flight
range scanner (darker is closer). (a) Six inch diameter plastic funnel.
(b) Human hand. (c) Block scheme.

light path distances of the order of 0.1 in (light travels at
~] ft/ns). Thus light energy arrival time variation due to
reflection of a short duration laser pulse from objects at
various distances from the temporal disperser camera can be
used for time of flight range estimation. If a cylindrical lens
is used to illuminate a scene with a line of pulsed laser light,
it should be possible to obtain range information for one such
line at a time. The light “sheet” from the laser can be de-
flected transversely by a scanning mirror system to give full
coverage of the scene.
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XII. CONCLUSION

Of the various approaches to range finding covered in this
paper no one method would seem clearly superior to the rest.
All appear to have drawbacks which fall into one or more of

the following categories:

1) missing parts problem,

2) computational complexity,

3) time-consuming in improvement of signal/noise ratio,
4) limited to indoor application,

5) limited to highly textured or line structured scenes,
6) limited surface orientation,

7) limited spatial resolution.

From the viewpoint of sheer simplicity, it is hard to improve
upon triangulation schemes involving one point at a time.
In terms of potential, it would seem that direct laser time-of-
flight T range finders could, in theory, eliminate all the above
problems provided an intense enough energy source could be
provided—this would be at considerable expense and could
also create a hazardous environment for humans. In terms of
anthropomorphically posed questions, stereo disparity, occlu-
sion, photometric and texture gradient methods would prove
more interesting. From the practical standpoint of vision
driven robotics, however, these approaches would hardly
seem worthwhile as they are all, to some extent, indirect.

What is quite clear is that capturing the third dimension
through nonimage-based range finding is of great utility in
3-D scene analysis since many of the ambiguities of interpreta-
tion arising from occasional lack of correspondence between
object boundaries and inhomogeneities of intensity, texture
and color can be thus trivially resolved [46], [47].

For example, two objects of the same color and texture
but at different ranges, which are in visual juxtaposition from
the camera viewpoint may be difficult to separate through

image analysis alone but can easily be detected as separzte
through rangepic analysis. An interesting approach to 3-D
scene analysis using registered range and intensity data is given
in [48]; in this case range analysis dominates the method and
intensity data are used only when necessary. Collecting range
data independently of intensity imagery analysis strengthens
its ambiguity resolving potential. In both a technical and

literal way, range data of this sort is orthogonal to the other
data sources.

REFERENCES

[1] R. N. Haber and M. Hershenson, The Psychology of Visual Per-
ception. Holt, Rinehart and Winston, 1973.

[2] R. L. Gregory, The Intelligent Eye. New York: McGraw-Hill,

©1970.

[3] M. L.Braunstein, Depth Perception Through Motion.
Academic, 1976.

[4] Y. Shirai and M. Suwa, “Recognition of polyhedrons with a
range finder,” in Proc. 2nd Int. Joint Conf. Artificial Intell.,
London, Sept. 1971, pp. 80-87.

[5] G. J. Agin and T. O. Binford, “Computer description of curved
objects,” in Proc. Int. Joint Conf. Artificial Intell., Stanford
Univ., Aug. 20-23, 1973, pp. 629-640.

[6] T. O. Binford, “Visual perception by computer,” in Proc. IEEE
Conf. Syst. Contr., Miami, FL, Dec. 1971.

[7] R. J. Popplestone, C. M. Brown, A. P. Ambler, and G. F. Craw-
ford, “Forming models of plane-and-cylinder faceted bodies from
light stripes,” in Proc. 4th Int. Joint Conf. Artificial Intell., 1975,
pp. 664-668.

[8] G. F. Crawford, “The stripe finder hardware,” Dep Artificial
Intell., Univ. Edinburgh, 1974.

[9] F. Rocker and A. Kiessling, “Methods for analysing three dimen-

sional scenes,” in Proc. 4th Int. Joint Conf. Artificial Intell.,
1975, pp. 669-673.

[10] P. M. Will and K. S. Pennington, “Grid coding: A preprocessing
technique for robot and machine vision,” in Proc. 2nd Int. Joint
Conf. Artificial Intell., Sept. 1971, pp. 66-68.

[11] D. Rosenberg, M. D. Levine, and S W. Zucker, “Computing rela-
tive depth relationships from occlusion cues,” in Proc. 4th Int.

Joint Conf. Pattern Recognition, Kyoto, Japan, Nov. 7-10,
1978, pp. 765-769.

[12] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling

New York:

3 'IARVISZ i
by .
b\/’/’

113] S.v
moc:
Join:
721.

(4] 3. 3.
Bosto

(15] R. Bz
Comp

[16] R. M.
tures
vol. S.

(1711 1. s.
study
Syst..

(18] B. K.
May !

191 R. A
proce
1976

[20] B. K.
shape

. MAC

211 K. I}
metri
Intell

[22] M. L
deter
cessi?

[23] R. ¢
SUrve
Jan.

[24] Y.}
threc
eras.
197¢

(251 H. T
Int..

[26] H. I
Imag

[27] D. |
disp

[28] B.J
Scie

[29] D. !
und
B,v

[30] D.!

. R. &

[31] E. ¢
Age

[32] D.|

Soc
[33] M.
M.I

[34] H.

: me:

Un




\RCH 1983
131
[14]
[15]
[16]
[17]
[18}
[19]
[20]
[21]
[22]
(23]
- separate
h to 3-D [24]
a is given
thod and
ing range [25]
engthens
nical and | [26]
the other [27]
[28]
[29]
Visual Per-
Graw-Hill, [30]
New York: {31]
ns with a (32}
ial Intell.,
[33]
of curved
- Stanford [34]
roc. IEEE
. F. Craw-
rdies from
ell., 1975,
Artificial
ree dimen-
ial Intell.,
orocessing  §
Int. Joint
1ting rela-
L dth Int
Y. 7-105
-¢ labeling

] R. A. Jarvis,

JARVIS: RANGE FINDING TECHNIQUES FOR COMPUTER VISION

by relaxation operations,” IEEE Trans. Syst., Man, Cybern., voL
SMC-6, pp. 420-443, 1976.

S. W. Zucker, A. Rosenfeld, and L. S. Davis, “General purpose
models: Expectations about the unexpected,” in Proc. 4th Int.
Joint Conf. Artificial Intell., Tbilisi, Sept. 3-8, 1975, pp. 716~
721.

.J. J. Gibson, The Senses Considered as Perceptual Systems.

Boston, MA: Houghton-Mifflin, 1966.

R. Bajcsy and L. Lieberman, “Texture gradient as a depth cue,”
Comput. Graphics Image Processing, vol. 5, pp. 52-67, 1976.

R. M. Haralick, K. Shanmugan, and L. H. Dinstein, “Textural fea-
tures for image classification,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, pp. 610-621, Nov. 1973.

J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “A comparative
study of texture measures for terrain classification,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-6, pp. 269-285, Apr. 1976.

B. K. P. Horn, “Focussing,” M.L.T., Project MAC, Al Memo. 160,
May 1968.

R. A. Jarvis, “Focus optimisation criteria for computer image
processing,” Microscope, vol. 24, pp. 163-180, 2nd quarter,
1976.

B. K. P. Horn, “Shape from shading: A method for obtaining the
shape of a smooth opaque object from one view,” M.LT., Project
MAC, MAC TR-79, Nov. 1970.

K. Ikeuchi and B. K. P. Horn, “An application of the photo-
metric stereo method,” in Proc. 6th Int. Joint Conf. Artificial
Intell., Tokyo, Japan, 1979, pp. 413-415.

M. D. Levine, D. A. O’Handley, and G. M. Yagi, “Computer
determination of depth maps,” Comput. Graphics Image Pro-
cessing, vol. 2, Pp- 134-150, 1973.

“Optimisation in adaptive control: A selective
survey,” IEEE Trans. Syst., Man, Cybern., vol. SMC-5, pp. 83-94,
Jan. 1975.

Y. Yakimovsky and R. Cunningham, “A system for extracting
three-dimensional measurements from a stereo pair of TV cam-
eras,” Comput. Graphics Image Processing, vol. 7, pp. 195-210,
1978.

H. P. Moravec, “Visual mapping by a robot rover,” in Proc. 6th
Int. Joint Conf. Artificial Intell., 1979, pp. 598-620.

H. H. Baker, “Edge based stereo correlation,” in Proc. ARPA
Image Understanding Workshop, Univ. Maryland, Apr. 1980.

D. Marr and T. Poggio, “Cooperative computation of stereo
disparity,” M.L.T., A.L. Lab., Memo. 364, June 1976.

B. Julesz, “Bmocular depth perception wnhout familiarity cues,”

Science, vol. 145, pp. 356-362, 1964.

D. Marr and T. Poggio, “Computational approaches to image
understanding,” M.LT., A.L. Lab., see also Proc. R. Soc. London
B, vol. 204, pp. 301-328, 1979.

D. Marr and E. C. Hildreth, “Theory of edge detection,” in Proc.
R. Soc. London B, vol. 207, pp. 187-217, 1980.

E. C. Hildreth, “Edge detection in man and machine,” Robotics
Age, pp. 8-14, Sept./Oct. 1981.

D. Marr, “Early processing of visual information,” Phil. Trans. R.
Soc. London B, vol. 275, pp. 483-524, 1980.

M. Brady, Computational approaches to image understanding,”

M.LT., A.L Lab., A.I. Memo. 653, Oct. 1981.

H. K. lehx.hara and N. C. Larson, “Toward a real time imple-
mentation of the Marr-Poggio stereo matcher,” in Proc. Image
Understanding Workshop, Lee Bauman, Ed., 1981.

139

[35] T. D. Williams, “Depth from camera motion in a real world

[36]

(371

38} —,

(391
(40}

(41]

[42]

[43]

[44]

[4s]

[46]
[47]

(48]

scene,” IEEE Trans. Pattern Anal. Machine Intell, vol. PAMF2,

pp- 511-516, Nov. 1980.

K. Prazdny, “Motion and structure from optical flow,” in Proc.
6th Int. Joint Conf. Artificial Intell., Tokyo, Japan, 1979, pp.
702-704. :
M. Idesawa, T. Yatagai, and T. Soma, “A method for automatic
measurement of three-dimensional shape by new type of Moiré
fringe topography,” in Proc. 3rd Int. Joint Conf. Artificial Intell.,
Coronada, CA Nov. 8-11, 1976, pp. 708-712.

Moiré method and automatic measurement of
3D shapes,”Appl. Opt., vol. 16, Pp- 2152-2162, Aug. 1977.

R. A. Jarvis, ““A computer vision and robotics laboratory,”
IEEE Computer, pp. 8-24, June 1982.

—, “A mobile robot for computer vision research,” in Proc.
3rd Australian Comput. Sci. Conf., ANN.U., Canberra, A.C.T.,
Jan. 31-Feb. 1, 1980, pp. 39-51.

R. O. Duda and D. Nitzan, “Low-level processing of registered
intensity and range data,” in Proc. 3rd Int. Joint Conf. Artificial
Intell., 1976.

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and
use of registered reflectance and range data in scene analysis,”
Proc. IEEE, vol. 65, pp. 206-220, Feb. 1977.

R. A. Lewis and A. R. Johnston, ““A scanning laser rangefinder
for a robotic vehicle,” in Proc. Sth Int. Joint Conf. Artificial
Intell., 1977, pp. 762-768.

R. A. Jams “A laser time-of- fhght range scanner for robotic
vision,” Australian Nat. Univ., Comput. Sci. Tech. Rep. TR-CS- -
81-10; also in preparation for publication in IEEE Trans. Pattern
Anal. Machine Intell.

Y. Tsuchiya, E. Inuzuka, Y. Suzui, and W. Yu, “Ultrafast streak
camera,” in Proc. 13th Int. Congr. High Speed Photography and
Photonics, Tokyo, Japan, Aug. 20-25, 1978.

R. A. Jarvis, “Expedient 3D robot colour vision,” Austrahan
Nat. Univ., Comput. Sci. Tech. Rep., 1982.

—_ “V1s10n driven robotics in a partially structured environ-
ment,” Australian Nat. Univ., Comput. Sci. Tech. Rep. TR-CS-
82-03, 1982.

R. O. Duda, D. Nitzan, and P. Barrett, “Use of range and reflec-
tance data to find planar surface regions,” JEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-1, pp. 259-271, July 1979.

R. A. Jarvis received the Ph.D. degree in electri-
cal engineering from the University of Western
Australia in 1968.

He is currently a reader in computer science
at the Australian National University, Canberra,
Australia, where he was Head of the Depart-
ment of Computer Science from 1976 to 1979.
He spent 1969, 1970, and 1977 as a Visiting
Professor in Electrical Engineering at Purdue
University, West Lafayette, IN. His current
research interests include digital computing

technology, pattern recognition, image processing, computer vision,
and robotics.




