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Abstract
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Animate vision systems have gaze control mechanisms that can actively position the camera
coordinate system in response to physical stimuli. Compared to passive systems, animate
systems show that visual computation can be vastly less expensive when considered in the
larger context of behavior. The most important visual behavior is the ability to control the
direction of gaze. This allows the use of very low resolution imaging that has a high virtual
resolution. Using such a system in a controlled way provides additional constraints that
dramatically simplify the computations of early vision. Another important behavior is the
way the environment “behaves”. Animate systems under real-time constraints can further
reduce their computational burden by using environmental cues that are perspicuous in the
local context. A third source of economy is introduced when behaviors are learned. Because
errors are rarely fatal, systems using learning algorithms can amortize computational cost
over extended periods. Further economies can be achieved when the learning system uses
indexical reference, which is a form of dynamic variable binding. Animate vision is a natural
way of implementing this dynamic binding.

1. What is vision for?

We are accustomed to thinking of the task of vision as being the construction
of a detailed representation of the physical world. Furthermore, this construc-
tive process is regarded as being independent of larger tasks. From the
Encyclopedia of Artificial Intelligence:*“'the goal of an image understanding
system is to transform two dimensional dafa into a description of the three
dimensional spatiotemporal world” and such a system “must infer 3-D sur-
faces, volumes, boundaries, shadows, occlusion, depth, color, motion™ [38,
p. 389]. However, a paradigm that we term animate vision' argues that vision is

* Revised version of the paper that won the Artificial Intelligence Journal Best Paper Award at
1JCAI-89, Detroit, MI.
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' Why pick the term animate vision when there already is the notion of active vision? One
problem with active vision is that it is readily confused with active sensing, which has been used for
laser rangefinders, etc. Also it has been associated with multi-modal fusion [2] regardless of goals.
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more readily understood in the context of the visual behaviors that the system
is engaged in, and that these behaviors may not require elaborate categorical
representations of the 3-D world. Animate visual systems have anthropomor-
phic features such as binocularity, foveas, and most importantly high speed
gaze control. While it is possible to build many different kinds of visual
systems, such as those that have more than two cameras or use active sensing,
what we are calling animate vision is directed towards specific computational
advantages of having anthropomorphic features. The main purpose of this
paper is to summarize these computational advantages.

Throughout the paper we stress that whatever models are produced must
function in real time. As a research stratagem, we shun general-purpose
algorithms if they must appeal to vast increases in computing power in order to
be practical. Instead our method is to look at ways to increase computational
speed that exploit additional constraints introduced when the animate system is
allowed to interact with its environment.

The goal of animate vision is the use of vision in behaviors associated with
intelligence, and as such it has its roots in theories of robot behaviors. Brooks
has argued for behaviors that do not require internal representations in a larger
context [12, 13], and others have demonstrated the importance of active vision
systems that integrate vision with behavior (Moravec [38], Bajcsy and Allen
[4], Chen and Kak [17]) as well as demonstrating the advantages of knowing
camera motions (Aloimonos et al. [2]). Ullman has emphasized the use of
task-directed programs that operate on the optic array [62]. Animate vision
also has its roots in the study of vision of the lower animals. From studies of
the frog, Arbib [3] has long been stressing the integral role of vision in
behavior as a perception-action cycle. Many of the technical features of insect
vision can be used by animate vision systems and some of these have recently
been realized by Nelson [40]. However, our primary purpose is to develop the
advantages of animate vision that are geared towards hand-eye coordination
behaviors. (Although this paper heavily emphasizes the role of the visual
system and treats the hand only to the extent needed to explore some
interactions.) .

To start to see how animate vision might be qualitatively different from
passive vision, let us examine the structure and function of eye movements in
the human visual 'system. The human eye is distinguished from current
electronic cameras by virtue of having much better resolution in a small region
near the optical axis. This region is termed the fovea, and has a diameter
approximately one to two degrees of visual angle. Over this region the
resolution is better by an order of magnitude than that in the periphery. One
feature of this design is the simultaneous representation of a large field of view
and local high acuity. Figure 1, from a study by Sandini and Tagliasco [57],
shows graphically the kind of gains that can be achieved.

Figure 1 visually understates the situation for the human system, where the
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Fig. 1. (a) 700 x 700 image taken of a backlighted scene of industrial parts. At the given
resolution, the field of view is very small. (b) The same number of samples using a logarithmic
decrease in resolution from the optical axis. A dramatic increase in field of view is achieved at the
' price of peripheral resolution (Sandini and Tagliasco [57)).

fovea is less than 0.01% of the visual field area! With the small fovea at a
premium in a large visual field, it is not surprising that the human visual system
has special behaviors (saccades) for quickly moving the fovea to different
spatial targets [42]. The first systematic study of saccadic eye movements in the
context of behavior was done by Yarbus [68]. A selection of his data are shown
in Fig. 2. Subjects were given specific tasks pertaining to a familiar picture. The
figure shows the traces for three minutes of viewing as a subject attempts to
solve different tasks: (a) give the ages of the people; (b) surmise what the
family had been doing before the arrival of the “unexpected visitor™; and (c)
remember the position of the people and the objects in the room. This data
shows what has been confirmed by several other studies: Subjects use scanning
patterns that are highly sensitive to the particular task at hand [43-45]. Of the
traces in Fig. 2, the last is most remarkable, since it is so similar to the task of
$O many computer vision programs: we conjecture that since the eye movement
traces show a specialized signature for this task as well, it is not done routinely.
Instead, the overall impression of these traces is that the visual system is used
to subserve problem-solving behaviors and such behaviors often do not require
an accurate model of the world in the traditional sense of remembering
positions of people and objects in a room.

The above data on the fovea and saccades hint also at how dynamic a
process visual behavior must be. Saccades at the rate of three per second are
routine in visual problem solving. Furthermore most of the brain structures
that represent visual information are retinally indexed. This means that their
state is changed with each eye movement. This raises a technical puzzle for
human visual perception: How can the world appear to be stable when the data
collecting process is so dynamic? We believe that this is a profound question
with a surprising answer: The visual system provides the illusion of three-
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Fig. 2. (after [68]). Reproduction from L.E. Repin's picture “An Unexpected Visitor” and three
records of eye movements. The subject examined the reproduction with both eyes for three
minutes each time. Before the recording sessions, the subject was asked to: (a) give the ages of the
people' (b) surmise what the family had been doing before the arrival of the unexpected visitor;
and (c) remember the position of the people and objects in the room.

dimensional stability by virtue of being able to execute fast behaviors. This
point may be very difficult as it is so counter-intuitive, but it has been arrived
at in different forms by many different researchers. For example Rosenschein
has stressed the importance of implicit knowledge representation by a behaving
“situated automaton” [54, 55]. This may have been the point of Gibson's
“affordances” [24]. O'Regan and Lévy-Schoen emphasize the use of the world
as a “memory buffer” that can be accessed by visual behaviors [48]. Dick-
manns’s self-driven car makes extensive use of a dynamic model of the
roadway [20]. At any rate, having a particular embodiment forces one to deal
with performance issues: One has to act in a timely manner under resource
constraints. One way to do this would be to have an elaborate internal
representation as a form of “‘table look-up.” But in a dynamic world, the cost
of maintaining the correspondence between the representation and the world
becomes prohibitive. For this reason animate vision systems may have to travel
light and depend on highly adaptive behaviors that can quickly discover how to
use current context.
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We develop these ideas at three different levels of abstraction. Section 3
summarizes the computational advantages of an anthropomorphic gaze control,
with particular emphasis on “early vision.” In particular, we show how a
particular anthropomorphic feature, the fixation frame, vastly simplifies the
computation of physical invariances from photometric data. Section 4 shows
how such computations can be integrated into complete behaviors such as
searching for an object and recognizing an object. Section 4 also proposes a
model of local spatial memory by showing how an animate agent can use
knowledge of its recent history and extra-visual sensors to define geometric
aspects of its environment. Finally, Section 5 shows how abstractions of these
kinds of behaviors can be used in learning algorithms. The dynamic nature of
the learning algorithms can further reduce the need for elaborate internal
representations.

2. The animate vision paradigm

The central asset of animate vision is gaze control. Gaze control is the
collection of different mechanisms for keeping the fovea over a given spatial
target. The single most distinguishing feature of the human visual system is its
high-speed gaze control mechanisms. As animals, we move in relatively fixed
environments, but we also have to deal with other moving objects, animate and
inanimate. Although we must function in the presence of different kinds of
motion, our visual system works best when the imaged part of the world does
not move. However, for a variety of behaviors, such as running after moving
objects and hand-eye coordination, the complete visual field cannot be
stabilized. Instead, stabilization can be achieved for a region near a point in the
world near the optical axes that commands the viewer’s gaze.? That point is
termed the point of fixation and is defined by the intersection of the two optical
axes.

Gaze control mechanisms fundamentally change computational models of
vision. Without them the visual system must work in isolation, with the burden
of solving difficult problems with many degrees of freedom. With them a new
paradigm emerges in which the visual calculations are embedded in a sensory-
motor behavioral repertoire. Rather than thinking of visual processing as
separate from cognitive or motor processing, they are interlinked in terms of
integral behaviors. These behaviors need not always be successful but they
must be timely: Some competence may be sacrificed for timely performance.
This viewpoint has many different kinds of advantages.

“Here we are neglecting the very small motions of the eye [42, p. 95] as unimportant in a
behavioral context.
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(1) Animate vision systems can use physical search. The system can move
the cameras in order to get closer to objects, change focus, or change the
point of view [29, 49, 65]. Often this visual search is more effectlve and
less costly than algorithmic search on a single image, which may not

=+ even have the desired object in its field of view [41].

(2) Animate vision can make (approximately) known camera movements.
Since these movements are self-generated, they provide additional con-
straints on the imaging process [2]. This facilitates the computational
process dramatically: properties that are difficult to compute with a fixed
camera system are much more easily computed with a moving camera
system. One of the first demonstrations of this advantage was Ban-

- dopadhay’s computation of rigid body motion parameters [8§].

(3) Animate vision can use exocentric coordinate frames. The ability to
control the camera’s gaze, particularly the ability to fixate targets in the
world while in motion, allows a robot to choose external coordinate
frames that are attached to points in the world (see Fig. 3). Behaviors
based on fixation point relative coordinates allow visual computations to
be done with less precision.

Fig. 3. Much previous work in computational vision has assumed that the vision system is passive
and computations are performed in a viewer-centered frame (A). Instead, biological and psycho-
physical data argue for a world-centered frame (B). This frame is selected by the observer to suit
information-gathering goals and is centered at the fixation point. The task of the observer is t0
relate information in the fixation point frame to object-centered frames (C).
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(4) Animate vision can use relative (or qualitative) algorithms. The fixation
point reference frame allows visuo-motor control strategies that servo
relative to that frame. These are much simpler than strategies that use
egocentric coordinates.

Gaze control can segment areas of interest in the image precategorically.
That is, one can isolate candidate visual features without first associating
them with models using the degrees of freedom of the gaze control
mechanisms. For example, one can use the blurring introduced by
self-motion while fixating to isolate the region around the point of
fixation [16]. Similarly, one can use regions of near zero disparity
produced by a binocular vergence system.

Animate systems can exploit environmental context. Gaze control leads
naturally to the use of object-centered coordinate systems as the basis
for spatial memory. Object-centered coordinates have a great advantage
over egocentric coordinates in that they are invariant with respect to
observer motion. Keeping track of relations between object-centered
frames allows for simplified object location strategies.

Animate vision is tailor-made for learning algorithms that use indexical
reference. Gaze control with a high resolution fovea to isolate visual
features is tailor-made for systems that use indexical reference [1, 64].
Such systems provide a controlled access to the environment, making it
much easier to access stored plans. Furthermore, such systems are
tailor-made for reinforcement learning algorithms. The vast reduction in
the state space provided by indexical reference makes the use of such
brute force learning algorithms possible. In turn, learning algorithms
allow visual behaviors to learn just those features that are useful for
solving the problem in very specific contexts. This leads to further
computational economies.

3. The fixation frame

One of the most central aspects of animate vision is the use of an exocentric
coordinate frame termed the frame of fixation. This frame provides direct
access to information from a small region néar the fixated point. Of particular
importance is the information associated with early vision [33]. Early vision
builds retinotopically indexed maps of important environmental features such
as depth, color, and velocity. Despite extensive work in this area over the past
decade, the construction of such maps with computational models has proven
to be very difficult. A primary reason for this may have been the assumption of
a passive vision system. In an animate vision system, the degrees of freedom of
the cameras are under the control of the animal. Aloimonos et al. [2] show in a
general way how such assumptions can stabilize the computation of those
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features but their analysis misses the following vital point. A passive vision
system is more or less constrained to use the coordinate system dictated by the
camera optics. In contrast, an active system that can fixate an environmental
point can use an object-centered frame of reference centered at that point. The
calculations of early vision are greatly simplified given this ability. Note that
this is a very different assertion than that of Marr [33], who emphasized that
the calculations were in viewer-centered coordinates. We assert that the
calculations are more correctly represented as being in world-centered coordi-
nates. As shown in Fig. 3, the world-centered frame is viewer-oriented, but not
viewer-centered. The origin of this frame is at the point of intersection of the
two optical axes. To orient this frame one axis can be parallel to the line
joining the two camera centers; the other can be chosen as the optical axis of

the dominant eye.’

3.1. Using the fixation frame

To illustrate the advantages of using the fixation frame, we developed a
computational model of motion parallax. Motion parallax, or kinetic depth, is
the sensation of depth obtained by moving the head while fixating an en-
vironmental point in a static scene. If the observer has little forward motion,
objects in front of the fixation point appear to move in the opposite direction
to the motion while objects behind the fixation point move in the same
direction. (For a more general analysis that includes forward motion, see [52].)
The apparent velocity is proportional to the distance from the fixation point
[19]. Under these conditions it is easy to compute scaled depth (depth/fixation
depth), which is a monotonic function of spatial and temporal derivatives of the
image intensity function and has a zero value at the fixation point. By
implementing this strategy on our robot we verified that a depth estimate can
be obtained in real time over a 400 x 400 pixel image without iteration 7
This result shows that the early vision computations of animate vision, at least
in the case of kinetic depth, are decidedly simpler than fixed camera vision, as
first noted by Aloimonos et al. [2]. Table 1 compares the two paradigms.

3.2. Gaze control .* bal

The small size of the fovea, together with the rapid movements humans can
make, places a premium on gaze stabilization mechanisms. Perhaps for this

3 This can be a subtle distinction, especially since animal data show that visual information in the
cortex is retinotopically indexed. However, the distinguishing feature is the logical zero of the
coordinate system: For a system with gaze control, zero velocity and zero disparity are located at
the fixation point. :

“The local nature of the computations make them ideal for implementation by pipeline
computer architectures. Such architectures pass the digitized signals at video frame rates through a
succession of special function processors. The modularity of these architectures, together with their
video frame rate speed, is revolutionizing real-time image processing.




Animate vision

Table 1

A comparison of the computational features of fixed camera vision and animate vision.
Fixed camera vision Animate vision

Local constraints that relate physical Local constraints are sufficient.

parameters to photometric parameters are
underdetermined.

Minimalist constraints such as smoothness Maximalist constraints such as specific

used to regularize the solution. behavioral assumptions used to obtain
solution

Algorithm requires parallel iterations over Algorithm is local and has a constant time

the retinally indexed array. solution.

Frame of reference is camera-centered Frame of reference is fixation point centered

(egocentric). (exocentric).

reason a number of separate mechanisms for human gaze control have evolved.
As Table 2 shows, the eye movement system has a number of different systems
that function to control gaze under different circumstances. In addition there is
the accommodation system that acts to focus the lens.

We argue that the ability to control gaze can greatly simplify the computa-
tions of early vision, but what of the complexity of gaze control itself? If that
should turn out to be prohibitively difficult it would negate the value of this
paradigm. Fortunately, all our experimental work to date argues that this will
not be the case [6], as does work by Clark and Ferrier [18]. Figure 4 shows our
animate vision system. Currently we use a ‘“dominant eye” control protocol
whereby the dominant camera controls the system pitch and its own yaw
coordinate using a simple correlation tracking scheme [16]. The non-dominant
camera uses a novel vergence correction algorithm [47] based on the cepstral
filter [69] to correct its own yaw error. Brown [14, 15, 53] has recently shown
how these and other components can work together synergistically. These
components run in real time. At the moment there are many differences with a
reasonable human model, but the performance is sufficiently good to allow us
to explore vision while fixating in real time. Details may be found in [16].

Table 2 b

R

Summary of primate gaze control systems. N

>

Hold gaze Fixed target Vestibular-ocular reflex (VOR). A system that
uses knowledge of accommodation and vergence
state together with head accelerations to stabilize
the gaze vector.

Vergence. A binocular system for locking both
Moving target foveas over the same three-dimensional target.

Pursuit. A system for tracking moving objects
by generating smooth velocity control signals.

Change gaze Saccades. High speed precomputed movements that rapidly change gaze over
small to very large visual angles.
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Fig. 4. The University of Rochester’s animate vision system. The “robot head™ has three motors
and two CCD high-resolution television cameras providing input to a DataCube MaxVideo®
image-processing system. One motor controls pitch of the two-eye platform, and separate motors
control each camera’s yaw. The motors have a resolution of 2.500 positions per revolution and a
maximum speed of 400°/second. The robot arm, a Unimation 762, has a workspace consisting of
most of the volume of a sphere with a two-meter radius. and a top speed of about one meter per
second. The first such system, built at the University of Pennsylvania by Bajcsy [4], demonstrated
the potential for vision with controlled cameras. It had vergence and accommodation and zoom
control. The main drawbacks were its slow speed and limited workspace.

The importance of vergence in gaze control is dramatically demonstrated by
Olson and Potter [47]. Without vergence, very large disparities on the order of
half the image diménsior; can be obtained. These pose difficulties for al-
gorithms that use stereo to build depth maps. With vergence, the disparities for:
‘the objects of interest can be kept small. In fact, most models of human
stereopsis posit or require a fusional system that brings the disparities within
the range of a detailed correspondence process [21, 33, 69].

3.3. Relative vision

_The kinetic depth computation naturally produces a relative result; for
absolute depth the calculations must include direction of gaze. Since the
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relative result is easier to obtain, it motivates the question as to whether other
visual behaviors might in fact use relative vision. In fact many examples can be
found that suggest that relative quantities are used and that their computation
is simpler. For example, many psychophysical tasks suggest that the way the
image is interpreted depends on occlusion cues such as shown in Fig. 5 [39]. It
is not easy to make such judgements from an arbitrary viewing position, as
would be required by a viewer-centered hypothesis. The kinetic depth result
suggests that the notion of a fixation point may be implicit behind the analysis
even though we might not be aware of it. Our perceptual system is structured
to make accurate judgements relative to an object-centered frame at the
fixation depth. Simplistically, imagine that one keeps two maps: one for
structures that are judged to be in front of or at the fixation depth, and one for
structures that are behind the fixation depth. The different interpolation rules
can be fixed for each map. This structure is much simpler than that which
would be required for viewer-centered maps. Such maps would have to be able
to make corrections based on comparisons of all possible pairs of depth values.

The notion that the computational results of early vision are intrinsically
relative can be challenged by obvious counter-examples. We can reach our

Fig. 5. (a) Ken Nakayama's [39] illusion of subjective contours using stereo (not to scale). When
fused, if the relative disparities are such that the triangle is in front of the circles, subjective
contours are seen; if behind, then they are not. (b) The letter “A™ is easier to see if its components
result from real occluding boundaries. This can be explained if the occluders can invoke 2 fixation
depth that is in front of the plane of the A’s components.
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arms to places in space that we have recently seen but are not currently looking
at. So at least in this example the information from the gaze system must be
cast in three-dimensional coordinates. However, it may well be the case that
the behavior that controls reaching under these circumstances is separate from
behaviors that use relative visual data. One example of the latter comes from
experiments done by Erkelens and Collewijn [21]. Subjects fixated a visual
stimulus of random dot targets arranged in a fronto-parallel plane on a display.
Changing the disparity of the dots created a situation similar to that which
would have been produced by a real target moving back and forth in depth. In
fact the subjects’ vergence movements showed that they were tracking the
simulated movement. In spite of this they reported no depth change in the
perception of the plane. So even though the vergence state could in principle
have been used to create a three-dimensional percept of a moving plane it was
not done in this case. However, when another disparity was introduced into the
display that remained fixed, subjects immediately saw the movement of the
plane. The experiments of Olson and Potter [47] hint at why this might be the
case. They used the central disparity target as a servo error signal to make the
vergence system work. Owing to the small spatial extent of the binocular
foveas, the vergence system must continually correct the gaze so that both
foveas are verged on the same target. This means that the logical zero for this
system is at the fixation point, in the same way that the logical zero for the
kinetic depth system was at the fixation point.

The relative system has the virtue of requiring much less mathematical
precision than the computations done in absolute coordinates. This is because
the foveas provide the best precision only at the fixation point and an animate
vision system can control the location of its fixation point. In contrast, to
provide the same resolution everywhere, a fixed resolution system would have
to be at least ten thousand times larger. This system would require even
greater increases in computational costs, which scale by at least a low-order
polynomial factor [61]. To see how the relative measurements could be used
for three-dimensional positioning, consider visually guided reaching. An arm
out of the plane of fixation can be guided in depth to a target at the fixation
plane by using only relative disparities of the manipulator as seen by the visual
system; the three-dimensional coordinates of the target are not required. This
scheme also has the virtue of using the natural output of the stereo system
which is in terms of fixation-relative coordinates.

4. Visual behaviors

A feature of the kinetic depth result is that it is an integral part of a visual
behavior. When fixating a stationary point, the optical flow map can be
interpreted as a depth map, but when pursuing a moving target, this interpreta-
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tion is no longer valid. It could be the case that the kinetic depth result is an
isolated case where behavior makes a large difference in the complexity of a
problem in visual computation. However, a survey of the vision literature
shows that there are many examples, including some very important recent
cases, where the inclusion of behavior simplifies the computation. Behavior is
used here in a very general sense to capture the self-motion of the animate
system as well as the structure of the environment (‘“the behavior of the
environment”) in which the system operates. Table 3 summarizes some of
these results.

If these special-purpose algorithms were the rule rather than the exception,
then it may be that the visuo-motor system is best thought of as a very large
amount of distinct special-purpose algorithms where the results of a computa-
tion can only be interpreted if the behavioral state is known. Ramachandran
[51] has raised a similar point, arguing from psychophysical grounds that the
visual system may best be thought of as many different algorithms that exploit
different cues, but that do not always work and may not be simultaneously
satisfiable. Brooks [12, 13] has also noted this point, using the term “‘sensor
fission” to emphasize that different sensors may be used in different tasks.
Recent work by Pentland on the shape from shading problem has also shown
very simplified solutions for dominant special cases that depend on the
behavioral milieu [50], and there have long been special case solutions to the
motion problem that depend on behaviors. A compelling example of the
central role of behavior in an animal system comes from Maunsell and Van
Essen’s work [35] on the macaque monkey. The macaque contains a very
distinct retinotopic cortical map that is sensitive to motion. Regular electrode
sampling across this map showed that the cortical visual area where the hands
would be in hand-eye coordination, known as MT, was over-represented with

Table 3
Computations simplified by behavioral assumptions.

Agent’s behavior Behavioral assumption References

Shape from shading Light source not directly behind Pentland [50]
viewer. s .

Time to adjacency Rectilinear motion; gaze in the Lee and Lishman [70]
direction of motion. :

Kinetic depth Lateral head motion while fixating a Ballard and Ozcandarli [7]

point in a stationary world.
Wixson and Ballard [65]

Color homing Target object is distinguished by its
color spectrum.
Edge homing Target position can be described by Nelson and Aloimonos [41])

approximate directions from texture
in its surround.

WS
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Fig. 6. Maunsell and Van Essen’s [35] plot of the visual field in a macaque monkey’s representa-

tion of optic flow shows that the portion of the visual field where the hands would be in a hand-eye

coordination task is more densely represented than other areas. Numbers mark degrees. Data from
one hemifield is reflected about the midline.

respect to other areas (Fig. 6). Experiments that record from a cortical area
adjacent to area MT suggest specializations for behaviors that use foveal
motion and behaviors that use peripheral motion [28].

In contrast to the notion of collections of behaviors, much of vision research
has focused on a reductionistic approach whereby one tries to show how a
particular quantity is computed independently of the behaviors that use it.
Thus an opposing view of the results in Table 3 would be that they are too
specialized and that general solutions should be sought. However, these
general solutions have the price of an increased computational burden, and the
demand for (timely) solutions in animate systems rules out all but relatively
low complexity algorithms.?

One huge problem that remains is the real-time system problem of managing
behaviors that compete for the imaging resources, and we have little to offer
here. However, there are at least two situations where the competition is
reduced: one where the processes have complementary activating conditions
and another where they use different degrees of freedom of the motor
resources. Visually-guided hand movements are sufficiently demanding be-
haviors that the advantages of a distributed approach to their control can be
clearly demonstrated. In one of our laboratory experiments to test such a
paradigm on a small scaley a robot system was developed to keep a balloon in
the air by batting it with a paddle. The gaze control system was coupled to the
motion of the robot via five completely independent visually-guided behaviors.
Three of these controlled the position of the paddle (in height, width, and
depth, respectively), one generated a batting movement, and another was
responsible for re-acquiring the balloon visually when it escaped the field of
view. There was no executive coordination of these systems at all, and, once

* Parallel architectures help but not with infeasible algorithms [61].
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initialized, no communication between them except indirectly through their
effects on the robot and the environment. Our preliminary experiments have
revealed a remarkable level of coherent behavior using this strategy [67].

4.1. Quickly computable features

The real-time stress of animate vision requires that the kinds of visual cues

used are easily computable. In a human system, the short fixation times are
about 0.25 seconds and cortical neurons typically fire at rates of 10 spikes per
second, leaving 2.5 spikes per fixation. In a sequential computer system using a
500 x 500 pixel image at video frame rates the demand is also great as the
system must compute at roughly 10 pixels/second. Algorithms that require 10°
instructions per pixel are common, leading to a demand of 10 instructions/
second.
" One feature that is easily computed is color. Color has been neglected
recently as a useful cue, although it has been used in earlier work (Feldman
and Yakimovsky [22], Garvey [23], Beveridge et al. [9]). One reason for this
neglect may have been the lack of good algorithms for color constancy.
However, recently there has been great progress in correcting for both the
chromaticity of the illuminant [32, 56] and for geometric effects such as
specularity [27]. Another reason that color may not have been so successful is
that it has been associated with a Mondrian-like view: one color per object.
But many objects are multi-colored and this fact can prove very useful, as will
be shown in the next section. A third reason for the neglect of color may be
that it is not intrinsically related to the object’s identity in the way that other
cues, e.g., form, are. This view is well represented by Biederman [10]:

Surface characteristics such as color and texture will typically have
only secondary roles in primal access . . . we may know that a chair
has a particular color and texture simultaneously with its volumetric
description, but it is only the volumetric description that provides
efficient access to the representation of CHAIR

but it is easily challenged. There are many examples from nature where color is
used by animals and plants to send clear messages of enticement or warning.
The manufacturing sector uses color extensively in packaging to market goods
(e.g., Kodak). Animate vision systems can also use representations that are
heavily personalized to achieve efficient behaviors, and color is an important
feature for such representations. For example, it may not be helpful to model
coffee cups as being red and white, but mine is, and that color combination is
very useful in locating it. Another obvious example is commercial food
packaging. We can readily describe the color of food packages for the kind of
eggs and milk we buy even though these colors do not generalize: they will not
work for another supermarket chain.
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In summary, there have been various reasons for not using color, but most of ;
these are now less compelling, particularly in the light of recent technical &
advances in color constancy and in reconsideration of the behavioral context in :
which color can be used. More importantly, color has two very important
properties that make it a useful feature. Given that reasonable color constancy
can be achieved, color has enormous value in vision as a cue because it is a
punctate property of individual photoreceptors. This means that it is a very
useful cue under conditions of low spatial resolution; precisely the conditions
that exist in the periphery of the retina. The second useful property is view
invariance. The colors of an object typically are invariant to wide ranges in
field of view and to several different kinds of occlusion.

One way to take advantage of these properties uses the color histogram.
Given a discrete color space, the color histogram is obtained by integrating
over the image array:

h(c) = f fle, x)dx.

The color vector ¢ = (r, g, b) obtained from the tri-chromatic receptor array
can be sensitive to gross lighting changes such as the 1/r° falloff from a point
source. One way to compensate for this, observed in biological systems, is to
use an opponent color space ¢’ =(r—g, b— 1(r + g)). Figure 7 shows the

Fig. 7. Top: Red, green, and blue bands of “Arm & Hammer" image. The main body is yellow.
the circle containing the hammer is red, the stripe at the top is green, and the lettering and
hammer is blue and white. Bottom: Opponent color histogram of “Arm & Hammer" image, 16
buckets along each axis. Red-green axis runs vertically, green at the top, red at the bottom.
Blue-yellow axis runs horizontally, yellow at the left, blue at the right. The yellow (far left) peak
and black background (the center) peaks are the largest, and red and green peaks, as well as a
small blue peak, are present. From Wixson and Ballard [65].
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of : three chromatic channels from a color camera together with the opponent color
cal histogram.

o :

nt

4.2. What!/where behaviors

cy
a Returning to the challenge of Fig. 2(c), it seems that for human vision,
ry i locations and identities of objects are not routinely computed. Furthermore,
ns the saccadic traces suggest that when this is done, the resultant computation
\d requires many sequential eye movements. We further suggest that very differ-
in ent_algorithms are used depending on the task of the moment. A gross
: distinction that can be made is between identification algorithms that analyze
1. ) the foveated area during fixation and location algorithms that direct the eyes to
g new targets. Support for this WHAT/WHERE distinction, made by Mishkin [36,
37], comes from studies of human and primate brains. A major feature of the
gross organization of the primate visual brain is the specialization of the
temporal and parietal lobes of visual cortex [34, 36, 37]. The parietal cortex
seems to be subserving the management of locations in space whereas the
l)tl temporal cortex seems to be subserving the identification of objects in the case
S where location is not the issue. In a striking experiment by Mishkin [36],
. monkeys with parietal lesions fail at a task that requires using a relational cue

but have no trouble performing a very similar task that requires using a pattern
cue. The reverse is true for temporal lesions.

Why should the primate brain be specialized into two separate areas that are
crucial for different functions? If we think generally about the problem of
relating internal models to objects in the world, then one way to interpret this
dichotomy is as a suggestion that the general problem of associating many
models to many parts of the image simultaneously is too difficult. In order to
make it computationally tractable within a single fixation, it has to be sim-
plified, either into one of location (one internal model) or identification (one
world object). Table 4 makes this suggestion more concrete.

Let us try to make the value of this dichotomy clearer through two specific
examples, one involving a location behavior and one involving an identification
Table 4 R
The biological organization of cortex into WHAT/WHERE modules may have a basis in computation-

al complexity. Trying to match a large number of image segments to a large number of models at
once may be too difficult.

Models

Many

One

Image One Manipulation. Trying to do some Identification. Trying to identify
parts thing with an object whose identity an object whose location can be
and location are known. fixated.

Location. Trying to find a known Too difficult?
object that may not be in view.
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behavior.® Both of these examples use the color histogram or spectogram as a
central low-cost representation. This histogram can be used in two very
different ways for different behaviors. If the location of a single known
multicolored object is sought, the histogram of the current scene can be
matched against that of the desired object. A robot can be trained to move
toward the object by using this match function as a gradient. Let M(h_,, h;, x)
be a function that scores the match between the object histogram and scene
histogram at pose x. For example, one possible match function is simply
|, — A;]|. Now the robot can move in a direction of maximum dM/dx. This
works largely because different colors superpose in the color histogram, but if
the spectral resolution is sufficient, they will not mix. The match function acts
as a qualitative measure to direct the search. For an initial point one cannot
depend on the object being within view, but if it is potentially viewable, an
animate system can conduct a coarse saccadic scan of the view space and select
good candidates by applying the match function to all of these discrete views.
Figure 8 shows the results of doing this for two cases of looking for brightly
colored objects. _

Now let us turn to the complementary task: that of identifying an object
whose location is known. The object can be isolated in various ways; one uses
motion under fixation to blur nearby structure [46, 59]. If the image is assumed
to be obtained from a single multicolored object, the histogram can be used as
a multidimensional index into a database of multicolored objects. Given the
notion of a match function M(h,,, h;), it is easy to find the model in terms of
the best match, i.e.,

{m* [M(h,,., k)= max M(h,,, hi)} .

There are ways to perform this computation that are more efficient than a
linear search through all the models, and details may be found in [60].” Figure
9 shows the results of matching nineteen objects one at a time into a database
also of nineteen objects, but taken from different poses. Calculations by Swain
show that the three-dimensional histogram has a very large capacity, given that
the multicolored objects are distributed in color space.

These two examples of location and indexing are very simple when treated as
separate behaviors,-but would be difficult to combine into a single behavior or
algorithm using many models and many image fragments (see the “too
difficult” entry in Table 4). For example, trying to locate many objects
simultaneously forces the different objects to compete for the peripheral

®We are not offering this as a proof that the brain uses color in this way. However, it is
mterestmg that computational divisions suggested by brain architecture lead to vast simplifications
in computation.

” These indexing experiments use the red-green-—blue three dimensional histogram instead of
the opponent color histogram.
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Fig. 8. Top view of the laboratory environment for a typical test run showing the direction (but

not the distance) of each object with respect to the robot. The robot is in the center of the figure

and common objects, denoted by filled circles, are located along the gaze directions shown. (b)

4 Gaze directions produced by the object search mechanism for the “Clorox™ and “All” detergent

1 boxes. Area of circle is proportional to the confidence in that gaze. Numbers next to circles reflect
the ordering of the confidences in decreasing order. From Wixson and Ballard [65].

resources of the animate system. Also, if many different models are placed into
the model histogram h_, simultaneously, the effect of the cross-product of all

the different colors is potentially devastating.

P

4.3. Spatial memory

The previous section explored one way of managing space, and that was
homing. In the location task, a color signal was used to move the robot near a
colored object. The homing behavior can be extended to a path using several
landmarks, but each landmark must be in view at the appropriate time [41]. If
the landmarks are not in view, the animate system has to resort to some kind
of exhaustive search of visual space using its physical resources. Thus homing is
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Fig. 9. Model indexing experiment based on color cues. Each of the nineteen models (upper

image) is represented by its color histogram. Each of the unknown objects (to the right of each

known object) is identified with the database color histogram that best matches its own color

histogram. The results of matching all combinations of image and database histograms are

displayed pictorially (lower image) where the sizes of the squares are proportional to match values.

The dominance of the diagonal values shows that the correct match is always selected. From Swain
: and Ballard [60].

robust but can be expensive. To have more complicated behaviors than
homing, some additional spatial memory structure is necessary. One extremist
solution is to keep very high-resolution maps of the spatial environment and
update these maps when something is changed. But for a variety of reasons,
such a solution is not practical for animate systems. The foremost of these is
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the errors in the measurement system itself, which are a function of the relative
positions of the robot and target object. Another reason is that such maps are
very expensive in terms of size, since only a small portion of the material is
relevant to tasks that require it to be identified. A third reason is the expensive
updating introduced by self-motion when the entire environment undergoes
relative motion.

We have argued that animate vision allows the perception of properties of
the world to be related to a coordinate frame that is attached to the world by
using the abilities to fixate or pursue. However, this coordinate frame is only
valid for the duration of the camera fixation; some additional structure is
necessary for spatial memory. Thus for a variety of other reasons we need to
introduce the notion of object-centered reference frames: (1) such frames
allow the memory of objects’ locations with respect to each other; (2) objects
may be in motion; and (3) objects may not be in view. An elegant way of
relating this coordinate frame to object-centered frames (OCFs) posits an
explicit representation of transformations between OCFs and the current view.
If one assumes that the model and view have primitive parts, for example, line
segments, matches between these parts determine particular values of the
transformation that relates the stored model to the current view [5, 25].

Figure 2 can be used to summarize the proposal for spatial memory. The
current view represents similar features but with respect to a frame that is
centered on the current fixation point (as opposed to the camera frame used by
passive systems). For example, if the fixation point is the object-centered frame
origin, the transformation will only differ by a rotation, having a translation
value of zero. Spatial memory stores relationships between object-centered
frames. In a computational theory of active vision, eye movements have an
integral role in the storing and retrieval of spatial information in the following
ways:

(1) The view transform T, contains the information necessary to foveate a

visible object that has been recognized.

(2) Stored relationships between objects, T,.., can be used to transfer gaze

from one object to another.

In contrast, egocentric or camera-centered systems attempt to maintain the
transformations T, and T,., which is more computationally intensive.

As noted in the introduction, the fovea is an elegant solution to the problem
of simultaneously having high spatial resolution and a wide field of view given a
fixed amount of imaging hardware. The price paid is that the target must be
foveated. Thus small objects in a cluttered periphery can be effectively
invisible. This means that directed visual search strategies must be employed to
find objects. Think of car keys: to be useful, at any one time they must be kept
in a familiar relationship with a large object. We think this difficulty can be
minimized by having a stored model database whereby small objects are linked
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to larger objects. To illustrate this proposal, we have built a two-dimensional
eye movement simulator. Figure 10 shows the results from a test simulation,
The problem is to locate a cup that is initially invisible in the periphery.
Knowing that the cup is on the table, we first locate the table via a Hough
transform technique [5] and then use the pose information to center the gaze.
In this instance, once the gaze is centered on the table, the cup is within the
high resolution fovea and can be found by using the same Hough transform
technique, but now with the cup as the stored model. Here again, application
of a system with a high precision fovea avoids the complexity of making
fine-grained measurements over the full field of view.

Early work in vision attempted to use context in object recognition [23], but
this work languished with the introduction of the Marr paradigm and its focus
on low level vision. Since then, object recognition work has been very reluctant
to use any kinds of context, with the result that object recognition is usually
considered in a vacuum. The motivation for this is that general-purpose
techniques that make few assumptions about the world would be more useful
than special-purpose techniques. However, the disadvantage of this minimalist
position is that methods with few assumptions typically fall back on search,
which can lead to impractical computational demands. Instead of this minimal-
ist notion of generality, animate vision advocates making maximal use of all the
different kinds of constraints available. These are of two principal kinds.

(1) In a human or robot, one source of information is behavioral state.

" Humans have a vestibular system that measures linear and angular
accelerations. This provides a short-term history of movements in the
environment and also a measure of gravitational force. Another source
is the human proprioceptive system, which provides the kinematic state
as well as muscle torques.

......

Fig. 10. A foveal vision system is an elegant solution to the problem of high spatial resolution and
a wide field of view. The price paid is that small objects on the periphery are hard to see.
However, known relationships with large objects can help. In (A), the cup cannot be easily seen,
but in searching for the cup, one can first look for the table (B), which in this case brings the cup

: near the fovea, where it can be found.
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(2) A second source of information is the local context in which objects
appear. Objects are dependent on the surfaces of other objects for
support. For example, chairs are supported by the ground plane, and
pens are usually on tables. The design of objects in terms of support
relationships constrains the way in which they interact with supporting
surfaces. For example, chairs and cups usually have only three degrees
of freedom, while in contact with their supporting surface: one rotation
and two translation. If there were a way of exploiting these constraints it
should make the recognition problem computationally simpler. The
constraints supplied by behavioral state necessarily interact with those
supplied by local context since, as animals, we have our own support
needs. Thus we can use kinematics to directly measure the orientation of
a ground plane or table surface with respect to visual coordinates.

Given the goal of recovering the view transform, how can the general ideas
about context help? One of the simplest constraints that can be supplied by
context is the knowledge of a supporting surface, the simplest of which is a
plane. The viewing transformation has six parameters in general, but for most
objects, the constraint of planar support reduces the degrees of freedom to
three [71]. This is because most objects have very limited ways in which they
can be supported by a plane. A normal kind of coffee mug (with a handle) will
have four: right side up, upside down, and two ways of lying on its side. If we
look at “mug ethology”, the mug spends almost all of its time in the first
position. This means that to find a coffee mug on a table, an overwhelmingly
good bet is that it will be in one support relation with three degrees of
freedom: two translation and one rotation. Since the degrees of freedom are
the same for those of a two-dimensional planar problem, one might suspect
that a pose computation is possible using only the two-dimensional image as
advocated by Lowe [30, 31]. In fact this is possible and the mathematical form
of these constraints is developed in [66]). This use of spatial information has
emphasized the WHERE task of locating known objects. Just as important, but
given short emphasis here, is the use of geometric cues in the WHAT task of
object identification. Interestingly enough, much recent work in identification
finds ways around computing pose directly, e.g. [26, 30, 31], by using features
which are relatively view invariant. T

L -
- H

5. Coordinated behaviors

. The fixation frame with its small fovea allows the animate system to simplify
its access to the environment. The idea is that, at any given instant only a
relatively small number of features of the external world are registered but
" through perceptual actions the system can actively control the features that are
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registered. A consequence of this ability is that with animate vision or more
generally animate perception, systems can be built which learn to operate in a
complex task domain without the associated explosion in the input feature
vector required to represent all the elements of the domain.

;. Steven Whitehead has applied reinforcement learning ideas to the study of
animate vision [63, 64]. Whitehead has been studying block stacking tasks. On
each trial, the system is presented with a pile of colored blocks. A pile can
consist of any number of blocks and they can be arranged in any configuration.
Each block is uniformly colored and can be either red, green, or blue. The
system can manipulate the pile by picking and placing objects. An object can
be picked up only if its top is clear, and an object can be placed on another
object only if the target object’s top is clear. When the system arranges the
blocks into a successful configuration, it receives a positive reward ‘and the trial
ends. A successful configuration is some predefined set of states which repre-
sents a desired outcome. For example, one simple block stacking task is for the
system to learn to pick up a green block. In this case, the successful configura-
tions consist just of those states where the system is holding a green object.
The objective of the system is to learn algorithms for arranging arbitrary
configurations of blocks into successful configurations.

Most reinforcement learning systems have static sensory systems. That is, the
semantics of the feature vectors that describe the external state are defined a
priori. Further, the input vector is defined so that each state is “sufficiently
discriminable.” Unfortunately as the complexity of the task domain increases,
in particular as the number of “‘possibly relevant™ objects in the task grows, the
size of the static input vector (state representation) grows very quickly even
though the number of relevant objects remains small. The problem is that with
a static input vector if an object may be relevant to the task then it must be
represented internally.

In contrast to static systems, systems using animate vision can avoid the
combinatorial explosion of absolute representations by using “indexical repre-
sentations”. The basic idea behind an indexical representation is that the
system shouldn’t attempt to maintain an accurate representation of every item
in the universe, but instead should only register objects and aspects (features)
that are relevant to the task at hand [1]. For the block stacking problem,
instead of assigning an _aBsolute symbolic name to each item in the universe,
such as “BLOCK-44”, the system only registers objects (and their features)
according to the functional roles they play in solving the task, such as
“THE-BLOCK-I-AM-FIXATING”. Whitehead's system uses both a fixation frame
and an artention frame as shown in Fig. 11. Details may be found in [64].

Over a number of trials the system can learn to solve particular tasks. Figure
12 shows the number of steps used to solve the problem of picking up a green
block. The disadvantage of this approach is that, so far, there is no good way
to generalize it. However, that should not obscure the many important
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Fig. 11. The active perceptual system is divided into two parts: the fixation frame and an attention
frame. The information registered in the fovea (or fixation point) can be actively controlled by
executing perceptual and gaze control “acts”. For example, fixating the block as shown causes its
features to be registered in the state vector; attending to the triangle as shown causes its features to
appear in the state vector. The two degrees of freedom in the state vector that can be
independently controlled correspond to “‘markers”. One can think of placing a special marker on
an object causing its properties to appear in the appropriate place in the state vector. The system
used by Whitehead is slightly more complex but still only uses twenty bits total to represent the
state of the world.

conceptual points. We contend that searching huge state spaces such as those in
blocks world domains may be impossible without the incorporation of these
kinds of ideas in animate vision systems. First, learning by trial and error
allows the agent to amortize building a policy function over its history. Once a
good policy function is learned, applying it is cheap. Second, the reinforcement
learning algorithm we use has a limited attention span, so that it gives up after
expending a predetermined amount of resources. This is important because @)
a real-time system has to respond in a timely manner and (b) this strategy, in
the context of repeated applications, causes the agent to gradually improve its
competence [11]. The third advantage of this kind of learning derives from the
use of indexical representation. This allows (a) the access of items by property
instead of by category, and (b) run-time indexing. Access by property is
efficient in the following way. Consider the problem of hanging a picture where
a nail has to be driven into a wall. We do not really need a hammer, but
something that could serve as a hammer. Plan access by category forces the

identification of image items, followed by a check to determine the appropriate
es short circuits this process. Also, the fact that

properties. Access by properti
these properties are determined by what is in the environment at the moment
filters out the consideration of strategies that would require unavailable items.

One problem such systems will have is the well-known ‘credit assignment
problem. If the reinforcements change the problem of how to change the
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Fig. 12. The results of applying reinforcement learning to a simple block stacking task: Pick up the
green block. The system uses its fixation and attention frames to register features dynamically and
thus avoid the combinatorial cost of representing large state spaces. The lower trace shows the
smallest number of steps needed to solve the problem computed as the running average of the last
three presentations. The upper trace shows the time taken to solve the problem, also averaged

over three presentations (from Whitehead and Ballard [64]).

reinforcement schedule is completely open. However, such a system can search
local to the policy that it has fairly cheaply and this may work for an interesting
set of behaviors.

6. Conclusions

An animate visiofn system with the ability to control its gaze can make the
execution of behaviors involving vision much simpler. Gaze control confers
several advantages in the use of vision in behavioral tasks, and these have been
summarized in Section 2.

As humans we have the compelling experience of living in a three-dimen-
sional visual movie. The world appears vividly colorful and stable. One
temptation is to propose models of perception that capture this phenomenon in
very explicit ways, say as a pictorial memory buffer. If the explicit buffer seems
too crude, one can posit elaborate data structures that are equivalent in the
sense that they contain the information necessary to construct such a picture.
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However, when one examines the mechanisms of human and animal visual
perception in detail, or tries to build anthropomorphic robots, it quickly
becomes apparent that the way the apparatus works at this level of abstraction,
e.g., the fast sequential saccadic searches, is incompatible with phenomeno-
logical notions of invariance and stability. Models of the visual system that
work are compartmentalized with inconsistent representations and specialized
behaviors that compete for the resources of the system. In this milieux,
animate vision has a huge run-time component. Vision depends on the world
being sufficiently stable so that behaviors can be executed on demand. Perhaps
it is this ability to conduct behaviors that make assumptions about the world
that provides the illusion of stable perception. Another way to say this is that:
Animate systems that rapidly change their coupling with the real world place a
premium on maintaining elaborate representations of the world. However, it
may be the case that memorizing such representations is unnecessary, since they
can be rapidly and incrementally computed on demand.

The ability to have behaviors that learn to adapt to the local environment
will have a profound effect on the design of animate vision algorithms. The
discussion on color introduced the notion of a personalized representation: that
is, associating features with an object that makes the behaviors concerning it
especially easy to execute. One can think of many other cases that challenge
traditional notions of invariance. For example, we do not think of our coats as
being rigid objects, yet they appear to be to our visual systems while they are
hanging on coat racks, and this limited invariance can be exploited. The hope
is that such algorithms may be able to discover which combinations of such
features work in each problem instance. It could be the case that the general
assumptions that define categories are almost never as useful as the special
assumptions found by adaptive algorithms.

The study of animate vision is in its infancy, but we can already project that
this paradigm will extend the capabilities of all kinds of computer vision
systems, but particularly those of mobile vision platforms.
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