CMPT 820 Multimedia Systems

Introduction

Ze-Nian Li Spring 2019

Multimedia is cool

- O Media -> Multimedia
- Everywhere
- Requires broad knowledge in mathematics, signal processing, communications, networking, software, hardware, ...

□ Job opportunities

- Multimedia is a booming industry
 - in the metro Vancouver area
- Tons of opportunities created by next-generation standards and emerging applications:
 - JPEG/JPEG 2000
 - MPEG-1/2/4 H.264/265/HEVC 4K/8K TV 3D/freeview
 - 3G/4G/5G mobile communications
 - Multimedia-enabled smartphone, tablets
 - Social media, Cloud media, Crowd media
 - Online gaming

<u>Multimedia is Multidisciplinary</u>

Books and References

Recommended Textbook

 Fundamentals of Multimedia, 2nd Edition, by Z.N. Li, M.S. Drew, and J. Liu, Springer, 2014.

Reference books

 Video Processing and Communications, Y. Wang, J. Ostermann, Y-Q Zhang, Prentice Hall, 2002.

Resource

- Home page
 - www.cs.sfu.ca/CC/820/li/

Please check it regularly

Grading Scheme

Two programming assignments2×10%Presentation and class participation40%Term project40%

It is a Graduate *seminar* course !

Topics

- Introduction to Image and Video Compression
- Wavelets and JPEG-2000
- H.264/MPEG-4 AVC, H.265, and MPEG-7
- Image and Video Quality Assessment
- Content Based Image and Video Retrieval
- Visual Content Analysis
- Digital Audio Compression

Questions?

What is Multimedia?

Multimedia means that information can be represented through audio, images, graphics and animation, video, in addition to traditional media (i.e., text and graphics drawings).

Multimedia Applications

Using computers to present and process multimedia information, in an integrated manner

Examples of Multimedia Applications:

- World Wide Web
- Video conferencing
- Video-on-demand
- O Interactive TV
- Games
- Virtual reality
- Digital video editing and production systems
- Multimedia Database systems

Multimedia Applications (cont'd)

□ Fields where multimedia are useful.

- Business
- Education
- Entertainment
- Home
- Medical Applications
- Museums
- News
- Science
- o etc.

Killer Internet Applications

Web2.0/Media streaming (Internet TV)

- YouTube, Netflix, Google TV, Apple TV
- HD/UHD video ?
- 3D video, Free View Video?
- E-commerce
 - <u>Ebay</u>, <u>Amazon</u>, <u>Craigslist</u>, <u>Groupon</u>
- Online games
 - O PS3, XBOX 360, Wii
- Social networking (2004-)
 - Facebook, Twitter, Google+, WhatsApp, ...
- Mobile Internet
 - <u>iPads, tablets ...</u>

Past Five Years

- Skype/YouTube/Netflix
 - Replacing phone, movie theatre, TV !

Monitor 2

0

Camer

- □ AR/VR immersive media
 - Pokemon Go !, MS Hololens ...

- Cloud gaming
 - Onlive, Gaikai, Sony ...
- Livecast
 - Twitch.tv ...
 - eSports broadcast ...
- Drone/car
- Deep learning

Digital Media

- □ What do you mean by **digitization**?
 - Audio/visual signals from the natural world is Analog
 - Continuous in time and space
 - Conventional storage/playback: LP (audio record), tape, CRT TV (old TV), film
 - Can't be handled by digital computer
 - A/D conversion
 - to 1/0 discrete signals

Why Digital Media?

- Mass storage (space, cost, lifetime)
- Better quality (esp. for reproduction, and transmission)
- Better compression
- Better security (encryption)
- Much easier to edit
- Portability/mobility

- Film -> Polaroid -> Digital camera
- MP3 player, iPod, YouTube

Digital Media Timeline

Audio Digitization (PCM)

Data Representation \rightarrow for *digital* computers

Image/Video Digitization

- Digital image is a 2-D array of pixels
- Each pixel represented by <u>color</u>

• R:G:B

• Y:U:V

- Y = 0.299R + 0.587G + 0.114B (Luminance or Brightness)
 U = B Y (Chrominance 1, color difference)
 V = R Y (Chrominance 2, color difference)
- Video is sequence of images (frames) displayed at constant frame rate
 - e.g. 24 frames/sec in movies
 - 3D video (stereoscopic)

Data Compression

- Lossless Compression: X' = X
 - Example: Computer file compression
 - Low compression ratio
- □ Lossy Compression: X' ≠ X
 - Many applications do not require lossless compression
 - Our eyes and ears cannot identify some details
 - High compression ratio

Essentials of Compression

- Remove redundant information:
 - Spatial redundancy:
 - Neighboring samples have similar values
 - Temporal redundancy:
 - Neighboring frames in a video sequence are similar

<u>History of Video Coding Standards</u>

Figure 1. Progression of the ITU-T Recommendations and MPEG standards.

- H.264 / MPEG-4 AVC: ITU-T H.264 / MPEG-4 (Part 10) Advanced Video Coding (AVC) finalized in 2004
- Scalable Video Coding (SVC) in 2007
- Multiview Video Coding (MVC) in 2009
- HEVC/H.265 (efficient & 50% bitrate reduction from H.264) in 2013

Video Coding Standards

H.265/HEVC (High Efficiency)

<u>50% goal (bitrate reduction)</u> <u>Start from 2010</u>

February 2012: Committee Draft (complete draft of standard)

January 2013: Final Draft International Standard

April 2013: Standard released

<u>Google AV1 (open, royalty-free, succeed VP9, compete with H.265/HEVC)</u>

H266 (Future Video Codec/FVC, expected by 2021)

Coding Rate and Standards

<u>Audio coding standards</u>

Range of human' hearing: 20Hz - 20kHz ➔ Minimal sampling rate: 40 kHz (Nyquist frequency)

Format	Bit Depth	Sampling Rate	Bit Rate (2 channels)
CD Audio	16 bits	44.1 kHz	1,411,200 bps
DVD Audio	24 bits	96 kHz	4,608,000 bps

MPEG-1 or MPEG-2 audio layer 3 (MP3)
 CD quality at 10:1 compression ratio, 128 kb/s.

- MPEG-2 AAC (advanced audio coding):
 used by XM Radio (satellite radio in US)
- MPEG-4 AAC :
 - Up to 48 channels, 96KHz
- ATSC AC-3:
 - Dolby Digital (5.1 channel)
 - ATSC: Advanced Television Systems Committee
 - For DTV, DVD
- iTunes
 - AAC
 - AIFF (Audio Interchange File Format)