

An Optimized Algorithm for Fast Projected Clustering (OPTICLUS)

> Joe Zhou, Wendy Wang Dec. 10, 2003

Outline

- Introduction
- Related work ---PROCLUS
- Algorithm Analysis
- Empirical Results
- Conclusions & Future Work

Clustering in High Dimensional Space

Definition

objects within a cluster are similar between themselves and dissimilar to objects of other clusters

Challenges in High Dimension Space Dimensionality Curse

$$\lim_{d \to \infty} \frac{D \max_{d} - D \min_{d}}{D \min_{d}} = 0$$

Projected Clustering

Projected Cluster

subset – subspace pair (C, D)

data points in C are closely clustered in dimension subset D

Partitioning Clustering Algorithms
 PROCLUS
 ORCLUS

Related work----PROCLUS

- Input: number of clusters k and average subspace dimension l
- Output: k good medoids with subspaces
- Hill climbing technique
 - Take a set of k medoids
 - Find subspace for each medoid using its locality
 - Given a set of medoids and their associated subspace, partition data set
 - Change the bad medoid

PROCLUS Analysis

- Initialization Phase
 - Random select A*K data points
 - greedy select B*K piercing medoid candidates
 - random select K medoids from B*K candidates

Iterative Phase

- Find subspaces for each medoid in its associated locality
- Assign data records to each medoid to form clusters
- Evaluate and change the <u>bad medoid</u>

Refinement Phase

Refine clusters and its associated subspaces with one data pass

Our Contribution

- Analyze and find problems in existing projected clustering algorithms
- Tackle the problem and propose a new algorithm based on PROCLUS
- Implement the algorithm, called OPTICLUS, as well as PROCLUS and test on the generated synthetic data

Synthetic Data Generation

Data Parameter	Values used
Number of records(<i>N</i>)	100,000
Dataset dimensionality(d)	20-100
Number of clusters(k)	5
Cluster dimensionality	20-80% of d
Cluster size	3-70% of $\mathcal N$
Local variance \boldsymbol{s}_{ij} of relevant attributes	0-2% of the domain
Artificial outliers (o)	5%

Empirical Results--- Case 1:

 The input clusters are of the same size
 Good result of OPTOCLUS, compared with that of PROCLUS with the correct parameter I.

Bad result of PROCLUS with inaccurate paramter I.

Input	Dimensions	Points
1	0 1 2 4 5 7 9 14 18	20000
2	1 2 6 7 12 13 15 16 18	20000
3	1 2 3 4 7 8 11 13 17 19	20000
4	1 2 3 4 5 6 8 9 10 13 14	20000
5	1 2 3 4 9 10 13 15 17 18 19	20000

Output of PROCLUS with l = 11

Found	Dimensions	Points
Α	1 2 3 4 7 8 11 13 17 19	21954
В	1 2 6 7 12 13 15 16 18	20549
С	1 2 3 4 9 10 13 15 17 18 19	20457
D	1 2 3 4 5 6 8 9 10 13 14	22024
E	0 1 2 4 5 7 9 14 18	20016

Note: Proclus find the correct clusters with correct dimension set given the accurate paramter l, average number of dimensions

Input	Dimensions	Points
1	0 1 2 4 5 7 9 14 18	20000
2	1 2 6 7 12 13 15 16 18	20000
3	1 2 3 4 7 8 11 13 17 19	20000
4	1 2 3 4 5 6 8 9 10 13 14	20000
5	1 2 3 4 9 10 13 15 17 18 19	20000

Output Clusters of OPTICLUS

Found	Dimensions	Points
Α	1 2 6 7 12 13 15 16 18	20536
В	1 2 3 4 9 10 13 15 17 18 19	20481
С	1 2 3 4 5 6 8 9 10 13 14	21946
D	0 1 2 4 5 7 9 14 18	20021
E	1 2 3 4 7 8 11 13 17 19	22016

Note: Optilcus also find the correct clusters with correct dimension set without any parameter like l

Input	Dimensions	Points
1	0 1 2 4 5 7 9 14 18	20000
2	1 2 6 7 12 13 15 16 18	20000
3	1 2 3 4 7 8 11 13 17 19	20000
4	1 2 3 4 5 6 8 9 10 13 14	20000
5	1 2 3 4 9 10 13 15 17 18 19	20000

Output of PROCLUS with l = 7

Found	Dimensions	Points
А	1 2 3 4 7 8 11 13	21613
В	1 2 6 7 12 13 15 16 18	20457
С	0 1 2 4 5 7 9 14 18	20013
D	3 4 8 13	21894
E	1 3 4 9 10	21023

Note: Proclus does not perform well when given the inaccurate parameter 1.

Empirical Results--- Case 2:

- The input clusters vary much in size, from 6000 to 34000
- PROCLUS does not perform well given the accurate parameter /
- OPTICLUS find the correct clustering with right dimension sets

Input	Dimensions	Points
1	0 1 2 4 5 7 9 14 18	6000
2	1 2 6 7 11 12 13 15 16 18	24400
3	1 2 3 4 7 8 9 11 13 16 17 18 19	34000
4	1 3 4 5 6 8 9 10 13 14 16	20000
5	1 2 4 5 6 9 10 13 15 17 18 19	15600

Output of PROCLUS

Found	Dimensions	Points
А	1 4 5 6 7 9 10 13 15	16211
В	1 2 6 7 11 12 13 15 16 18	24855
С	1 2 3 4 7 8 9 11 13 16 17 18 19	36062
D	0 1 2 3 5 7 11 13 14 15 18	6043
E	1 3 4 5 6 8 9 10 11 13 14 16	21829

Note: PROCLUS does not perform well when the cluster sizes are much different.

Input	Dimensions	Points
1	0 1 2 4 5 7 9 14 18	6000
2	1 2 6 7 11 12 13 15 16 18	24400
3	1 2 3 4 7 8 9 11 13 16 17 18 19	34000
4	1 3 4 5 6 8 9 10 13 14 16	20000
5	1 2 4 5 6 9 10 13 15 17 18 19	15600

Output of OPTICLUS

Found	Dimensions	Points
А	1 2 6 7 11 12 13 15 16 18	24874
В	1 2 4 5 6 9 10 13 15 17 18 19	16030
С	1 3 4 5 6 8 9 10 13 14 16	22070
D	0 1 2 4 5 7 9 14 18	6032
E	1 2 3 4 7 8 9 11 13 16 17 18 19	35994

Note: Opticlus find the correct clusters with correct dimension set in the same case/.

Future Work

Finding low dimensional clusters OPTICIUS does not perform well for cluster

OPTICLUS does not perform well for clusters which were related to relatively fewer attibutes, like less than 20% of the total attributes.

Possible reasons

high dimension curse

outlier elimination in the initialization phase.

Questions & Discussions

Can Parameter 1 be kick out?

- Chosen dimension have a much more smaller variance than irrelevant dimensions
- Calculate "variance" on every dimension of each cluster
- Sort the variances and select *l**k dimensions with least variance for all clusters
- User input parameter *[* is hardly known in real life application

Automatic Dimension Finding

- Find the subset of dimensions independently for each cluster
- sort the variance in ascending order for each cluster
- Find the "sharp slope point" to get the set of dimensions
- Constraints: at least 2 and at most d 2 dimensions are chosen for each cluster.

Automatic Dimension Finding

Piercing V.S. Outlier ?

- Piercing: A set of medoids is drawn from different cluster
- Use greedy algorithm to find the set of medoids which has the maximum distance in between
- Problem: the algorithm tends to select many outliers as medoids.

Piercing Medoid Set

Outlier Elimination Technique

- Do a partition of the data set on the current medoids candidate
- Count the number of data points assigned to each medoid
- Eliminate the medoid that has least number of assigned data points
- The outliers are eliminated

What is a Bad Medoid ?

- Bad medoid is the medoid of the smallest cluster or clusters with size less than a specified value ---- PROCLUS
- Effectively pick out outliers
- Ineffective when two medoids are falling in one big cluster

A New Criterion for "Bad"

- Assumption: The medoid that is relatively closer to centroid can form a good cluster
- The medoid farthest to its corresponding centroid is considered to be "bad"

Facilitate finding clusters with different size

Medoid Optimization

