Intrusion Detection using a Rule-Based Classifier

Randeep S. Gakhal, BASc CMPT 740, December 2003

Overview

- Introduction
- Intrusion Detection
- The RIPPER Classifier
- The 1998 DARPA Dataset
- Intrusion Detection Results
- Conclusions

Introduction

Introduction

- Goal:
 - Develop and evaluate a system that detects computer network intrusions
 - → Intrusion Detection System
- We will be using a paradigm called "misuse detection" to detect intrusions

Intrusion Detection

Intrusion Detection [1]

- Intrusions:
 - Actions that attempt to bypass security mechanisms of computer systems.
- Attacks originate from:
 - Users on the Internet accessing the system
 - Insiders trying to gain and abuse nonauthorized privileges

Intrusion Detection [2]

Number of Vulnerabilities Reported Annually

Intrusion Detection [2]

Number of Intrusion Incidents Reported Annually

Intrusion Detection

- Detecting intrusions requires monitoring large volumes of data - data mining makes intelligent detection possible.
- Two major techniques of intrusion detection employ data mining:
 - Misuse Detection
 - Anomaly Detection

Misuse Detection

- Record and learn patterns that represent an intrusion
- Monitor network traffic and detect intrusions based on the learned patterns
- Pro: Accurate at detecting learned intrusions
- Con: Limited to learned intrusions
 - NOT adaptive

Anomaly Detection

- Build a profile of typical network traffic over some attack free training period
- Monitor deviations from this profile on live traffic
- Pro: Can detect unknown intrusions
 - Adaptive
- Con: Statistics can be slowly trained so that an attack can go through undetected
- Con: Not suited for attacks that consist of a few connections

The RIPPER Classifier

The RIPPER Classifier [3]

Generates a series of classifier rules:

```
    - Eg: { Service = ICMP Echo Request;
    # conn's in last 2 sec >= 5; }
    → SMURF attack
```

- Rules generated for each value of the target class
- Easy to read and check for "sanity" by a human

The RIPPER Classifier

- Training data randomly divided into a Growing Set and a Pruning Set
 - Ratio = ~2:1
- Repeatedly create rules in two phases:
 - Growing phase → Pruning phase
- Create rules for each class value in order of increasing prevalence

Growing Rules

- Rules are grown by adding conjectures that maximize information gain on Growing Set
- E.g., consider growing a rule R:

We add the conjecture that maximizes DL-DL'

Pruning Rules

- A rule R is grown until no further information gain is possible. It is then pruned using the Prune Set.
- Conditions are removed from the rule, trying to maximize function:

$$\frac{p + (N - n)}{P + N}$$

- Where:
 - P is number of positive examples in Prune Set
 - N is number of negative examples in Prune Set
 - p is number of positive examples covered by R
 - n is number of negative examples covered by R

The 1998 DARPA Dataset

The 1998 DARPA Dataset^[4]

- Lincoln Labs at MIT maintains datasets for testing intrusion detection systems
- DARPA 1998 dataset consists of:
 - 7 weeks of training data (~5M connections!)
 - 2 weeks of test data
- Data comprised of binary tcpdump data
- Comes with a preprocessed connection profile in text format
 - → All other features have to be extracted yourself from the binary data

The 1998 DARPA Dataset

- 4 types of attacks are present:
 - Denial of Service (DOS)
 - Eg. ping-of-death, syn flood
 - Unauthorized access (R2L)
 - Eg. guessing password
 - User abuse of privileges (U2R)
 - Eg. buffer overflow attacks
 - Probing and surveillance
 - Eg. port scans

The KDD CUP 1999 Dataset [5]

- An "easier to digest" version of the DARPA 1998 dataset
- Binary tcpdump data has been intelligently processed to construct additional features

Saved me a few months of work !!! ©

The KDD CUP 1999 Dataset

- 3 classes of features:
 - Basic features: src, dst, service, duration, src bytes, dst bytes...
 - Content features: failed logins, # shells, su attempts...
 - 2 sec window features: conn count, SYN err rate, REJ err rate...
- Time window features allow our misuse detection approach to capture attacks better suited for anomaly detection → capture temporal dependencies

The KDD CUP 1999 Dataset

- Consists of:
 - Seven weeks of training data as one text file
 - ~750 Mb!
 - Attack patterns are the same
 - A 10% subset of training data
 - Contains instances of all attacks
 - Much easier to work with because of smaller size
 - → No seg faults from running out of memory during training!
 - Two weeks of test data as another text file
 - Statistics and patterns of attacks have changed
 - Contains some new attacks

Intrusion Detection Results

Trials on DARPA 1998 Data Set

- Tried to train RIPPER using connection profile data provided on one or two days from the training set
- The resulting rules gave:
 - 100% accuracy on the data I trained on
 - 0% accuracy on everything else
- The rules completely overfit the data:
 - Connection profile did not give enough features to identify the true nature of an attack
 - Need more instances of an attack to develop more general features

 Ran RIPPER on 10% training data file and obtained rules that were general and intuitive:

```
- { Service = TELNET; Duration >= 299; Duration <= 337; Count >= 255; }
• → SPY attack
- { Failed logins >= 1; Same service rate >= 1; }
• → Guess password attack
```

Application of rules to 7 weeks of training data:

	Number	Rate
Total Connections:	4,898,431	
Number Attacks:	3,925,650	
Correctly identified attacks:	3,925,190	99.99%
False positives:	284	0.03%
False negatives:	316	0.01%

Application of rules to 2 weeks of test data:

	Number	Rate
Total Connections:	311,029	
Number Attacks:	250,436	
Correctly identified attacks:	225,939	90.22%
False positives:	301	0.50%
False negatives:	21,256	8.49%

- RIPPER was a success
- Results were in accordance with the paradigm of misuse detection:
 - Extremely high accuracy for instances with same pattern as those we trained on
 - Accuracy diminishes for attack instances with changing patterns
 - False negatives from new attacks and evolved known attacks

Confusion Matrix — Training Data

Confusion Matrix – Test Data

False Neg

Correctly identified

Attack successfully detected, however, incorrect attack predicted.

False negatives.
False positives

New attack - not present in 7 week training data

Conclusions

Conclusions

- Misuse detection clearly excels at detecting known intrusion patterns
- Accuracy diminishes as attacks mutate
- Winner of KDDCUP 1999 had detection rate of 96% on test data (I had 90%)
 - →Lots of room for improvement
- Base RIPPER algorithm is extremely powerful

Misuse Detection (MD) vs. Anomaly Detection (AD)

- MD is more apt at handling real-time data than anomaly detection
 - → Almost all commercial systems use MD
- MD can detect attacks based on temporal statistics by constructing additional features
- MD Does not handle changing attacks well
 - → System can easily be retrained

Future Research

- Try other classification approaches
 - C5, FOIL, neural networks, k-nearest-neighbor...
- Combine anomaly detection and misuse detection
 - Anomaly detection can be used to detect when RIPPER rules need to be re-trained
- Distributed IDS?
 - Who maintains the misuse detection database in a network and how is it shared?

Questions?

References

- 1. A. Lazarevic et al. *Data Mining for Computer Security Applications*, IEEE ICDM 2003 Tutorial.
- 2. http://www.cert.org/stats/cert stats.html
- 3. W. W. Cohen. *Fast Effective Rule Induction*, In Machine Learning: Proceedings of the Twelfth International Conference, Lake Tahoe, California, 1995.
- 4. http://www.ll.mit.edu/SST/ideval/data/data_index.html
- 5. http://www.kdnuggets.com/datasets/kddcup.html#1999