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Introduction

e Goal:

— Develop and evaluate a system that detects
computer network intrusions

-> Intrusion Detection System

* We will be using a paradigm called
*misuse detection” to detect intrusions



Intrusion Detection



Intrusion Detection ']

* |ntrusions:

— Actions that attempt to bypass security
mechanisms of computer systems.

 Attacks originate from:
— Users on the Internet accessing the system

— Insiders trying to gain and abuse non-
authorized privileges
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Intrusion Detection 4l
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Intrusion Detection

» Detecting intrusions requires monitoring
large volumes of data - data mining makes
intelligent detection possible.

* Two major techniques of intrusion
detection employ data mining:
— Misuse Detection
— Anomaly Detection



Misuse Detection

Record and learn patterns that represent
an intrusion

Monitor network traffic and detect
iIntrusions based on the learned patterns

Pro: Accurate at detecting learned
intrusions

Con: Limited to learned intrusions
— NOT adaptive



Anomaly Detection

Build a profile of typical network traffic over
some attack free training period

Monitor deviations from this profile on live traffic
Pro: Can detect unknown intrusions
— Adaptive

Con: Statistics can be slowly trained so that an
attack can go through undetected

Con: Not suited for attacks that consist of a few
connections
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The RIPPER Classifier

* Generates a series of classifier rules:
— Eg: { Service = ICMP Echo Request;
# conn’s in last 2 sec >=5; }
- SMURF attack
* Rules generated for each value of the
target class

« Easy to read and check for “sanity” by a
human



The RIPPER Classifier

* Training data randomly divided into a
Growing Set and a Pruning Set

— Ratio = ~2:1
* Repeatedly create rules in two phases:
— Growing phase - Pruning phase

 Create rules for each class value in order
of increasing prevalence



Growing Rules

* Rules are grown by adding conjectures that
maximize information gain on Growing Set

* E.g., consider growing a rule R:

* We add the conjecture that maximizes DL-DL’



Pruning Rules

* Arule R is grown until no further information gain is
possible. It is then pruned using the Prune Set.

« Conditions are removed from the rule, trying to
maximize function:

p+(N—n)
e Where: P+N

P is number of positive examples in Prune Set
— N is number of negative examples in Prune Set
— p is number of positive examples covered by R
— nis number of negative examples covered by R
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The 1998 DARPA Dataset!4]

Lincoln Labs at MIT maintains datasets for
testing intrusion detection systems

DARPA 1998 dataset consists of:

— 7 weeks of training data (~5M connections!)
— 2 weeks of test data

Data comprised of binary tcpdump data

Comes with a preprocessed connection profile in
text format

- All other features have to be extracted yourself from
the binary data



The 1998 DARPA Dataset

» 4 types of attacks are present:
— Denial of Service (DOS)
« Eg. ping-of-death, syn flood
— Unauthorized access (R2L)
* Eg. guessing password
— User abuse of privileges (U2R)
« Eg. buffer overflow attacks

— Probing and surveillance
* Eg. port scans



The KDD CUP 1999 Dataset [°]

* An “easier to digest” version of the DARPA
1998 dataset

* Binary tcpdump data has been intelligently
processed to construct additional features

« Saved me a few months of work !l ©



The KDD CUP 1999 Dataset

3 classes of features:

— Basic features: src, dst, service, duration, src bytes,
dst bytes...

— Content features: failed logins, # shells, su attempts...

— 2 sec window features: conn count, SYN err rate, REJ
err rate...

* Time window features allow our misuse detection
approach to capture attacks better suited for anomaly
detection - capture temporal dependencies



The KDD CUP 1999 Dataset

 Consists of:

— Seven weeks of training data as one text file
e ~750 Mb !
« Attack patterns are the same

— A 10% subset of training data
» Contains instances of all attacks
» Much easier to work with because of smaller size
- No seg faults from running out of memory during training !

— Two weeks of test data as another text file
« Statistics and patterns of attacks have changed
 Contains some new attacks



Intrusion Detection Results



Trials on DARPA 1998 Data Set

* Tried to train RIPPER using connection profile
data provided on one or two days from the
training set

* The resulting rules gave:

— 100% accuracy on the data | trained on
— 0% accuracy on everything else

* The rules completely overfit the data:

— Connection profile did not give enough features to
identify the true nature of an attack

— Need more instances of an attack to develop more
general features



Trials on KDDCUP 1999

Dataset

* Ran RIPPER on 10% training data file and
obtained rules that were general and
Intuitive:

— { Service = TELNET; Duration >= 299; Duration <= 337,
Count >= 255; }
« - SPY attack

— { Failed logins >= 1; Same service rate >=1; }
« - Guess password attack



Trials on KDDCUP 1999

Dataset

* Application of rules to 7 weeks of training data:

Total Connections:
Number Attacks:

Correctly identified attacks:
False positives:

False negatives:

Number
4,898,431
3,925,650
3,925,190
284
316

Rate

99.99%
0.03%
0.01%



Trials on KDDCUP 1999
Dataset

* Application of rules to 2 weeks of test data:

Number Rate

Total Connections: 311,029
Number Attacks: 250,436
Correctly identified attacks: 225,939 90.22%
False positives: 301 0.50%

False negatives: 21,256  8.49%



Trials on KDDCUP 1999
Dataset

« RIPPER was a success

* Results were in accordance with the
paradigm of misuse detection:

— Extremely high accuracy for instances with
same pattern as those we trained on

— Accuracy diminishes for attack instances with

changing patterns

» False negatives — from new attacks and evolved
known attacks
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Test Data

Confusion Matrix

Predicted Class
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Conclusions

Misuse detection clearly excels at
detecting known intrusion patterns

Accuracy diminishes as attacks mutate

Winner of KDDCUP 1999 had detection
rate of 96% on test data (I had 90%)

—>Lots of room for improvement

Base RIPPER algorithm is extremely
powerful



Misuse Detection (MD) vs.
Anomaly Detection (AD)

 MD is more apt at handling real-time data
than anomaly detection
- Almost all commercial systems use MD

 MD can detect attacks based on temporal
statistics by constructing additional
features

 MD Does not handle changing attacks well
-> System can easily be retrained



Future Research

 Try other classification approaches
— C5, FOIL, neural networks, k-nearest-neighbor...

« Combine anomaly detection and misuse
detection

— Anomaly detection can be used to detect when
RIPPER rules need to be re-trained

 Distributed IDS?

— Who maintains the misuse detection database in a
network and how is it shared?



Questions?
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