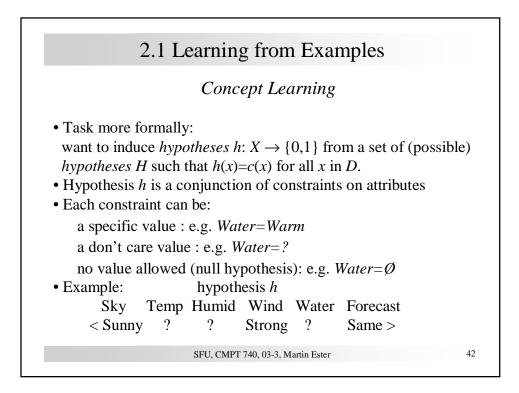
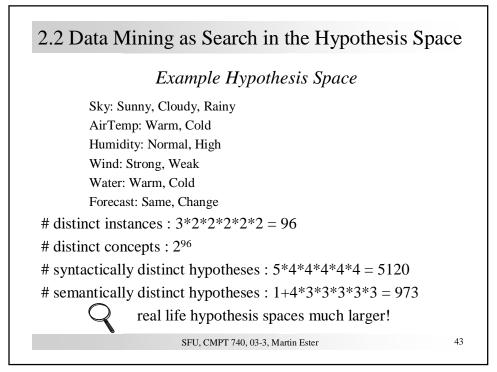
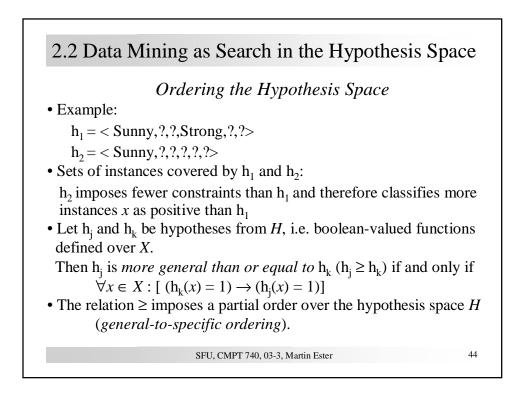
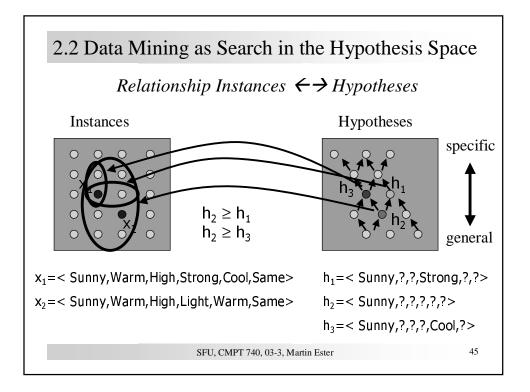


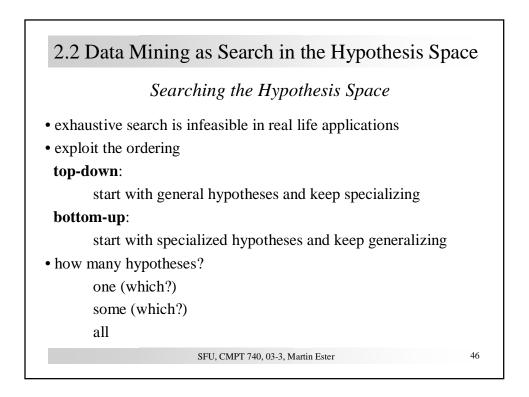
			Exam	ple		
Fask: p	water sp redict the	orts"	Enjoy Spo	rt" for an	s his favou arbitrary da	
Ua						
Sky	Temp	Humid	Wind	Water	Fore-cast	Enjoy Sport
	Temp Warm	Humid Normal	Wind	Water Warm	Fore-cast Same	•••
Sky	Ĩ					Sport
Sky Sunny	Warm	Normal	Strong	Warm	Same	Sport Yes

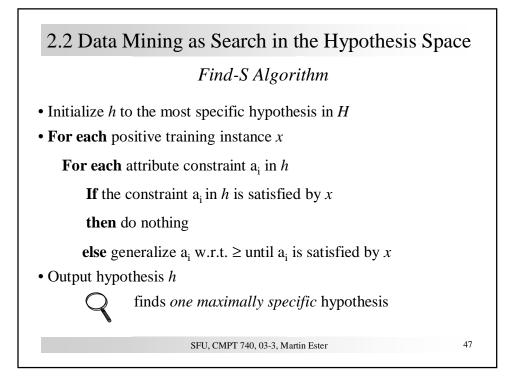


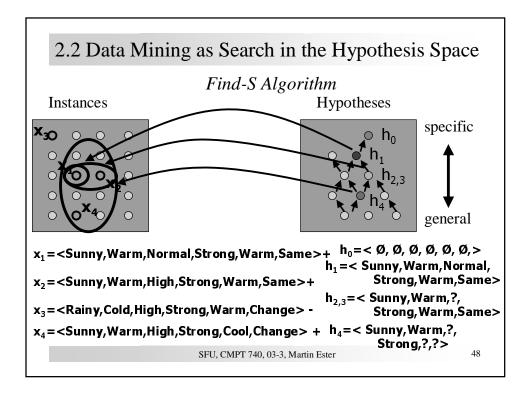












2.2 Data Mining as Search in the Hypothesis Space

Find-S Algorithm

- Algorithm is very efficient what runtime complexity?
- Ignores negative training examples
- What about the negative examples?
- Under which conditions is *h* consistent with them?
- Why prefer a most specific hypothesis?
- What if there are multiple maximally specific hypotheses?

SFU, CMPT 740, 03-3, Martin Ester

2.2 Data Mining as Search in the Hypothesis Space

Version Space

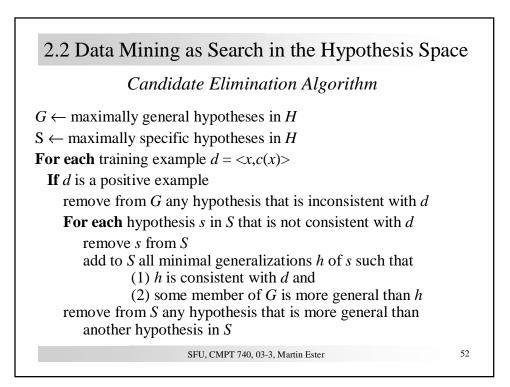
- A hypothesis *h* is *consistent* with a set of training examples *D* of target concept *C* if and only if *h*(*x*)=*c*(*x*) for each <*x*,*c*(*x*)> in *D*. consistent(*h*,*D*) := ∀<*x*,*c*(*x*)>∈*D*: *h*(*x*)=*c*(*x*)
- The *version space*, $VS_{H,D}$, with respect to hypothesis space *H* and training set *D* is the subset of hypotheses from *H* consistent with all training examples:

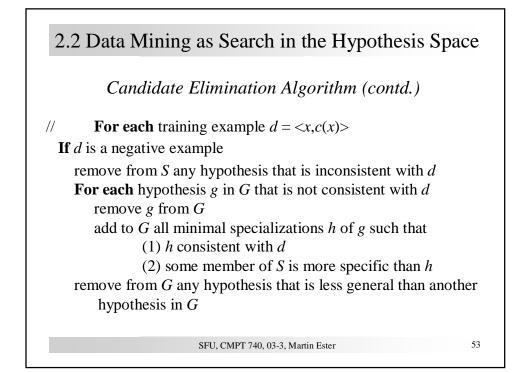
 $VS_{H,D} = \{h \in H \mid consistent(h,D) \}$

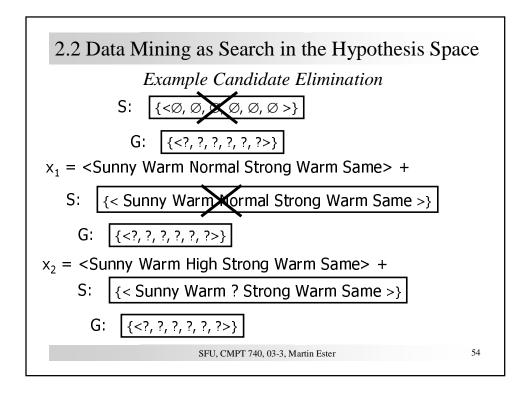
SFU, CMPT 740, 03-3, Martin Ester

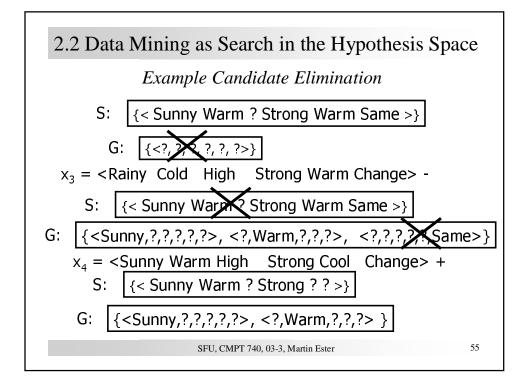
50

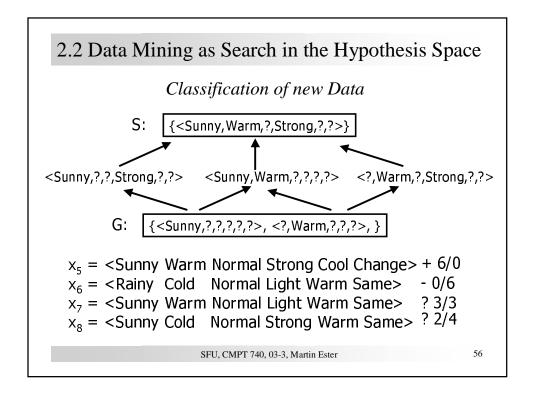
2.2 Data Mining as Search in the Hypothesis Space *Version Space*9. The *general boundary*, *G*, of version space VS_{H,D} is the set of its maximally general members. 9. The *specific boundary*, *S*, of version space VS_{H,D} is the set of maximally specific members. 9. Every member of the version space lies between these boundaries: VS_{H,D} = {h ∈ H | ∃ s ∈ S, ∃ g ∈ G: (g ≥ h ≥ s)} where x ≥ y "x is more general or equal than y" Q compact representation of the version space











2.2 Data Mining as Search in the Hypothesis Space

Candidate Elimination Algorithm

- Exploits negative training examples
- Finds all consistent hypotheses from *H*
- Can determine confidence of classification of new data
- Can detect inconsistencies in training data How?
- Algorithm is not very efficient What runtime complexity?
- What if *H* cannot represent target concept *C*?

SFU, CMPT 740, 03-3, Martin Ester

57

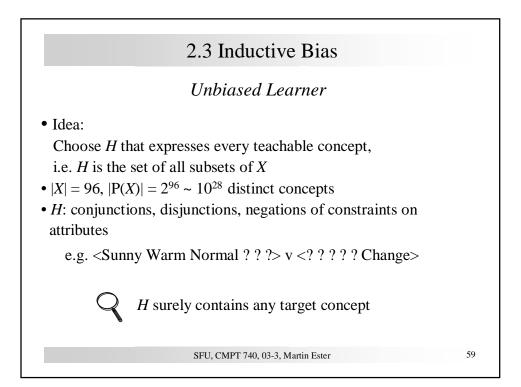
2.3 Inductive Bias
Example

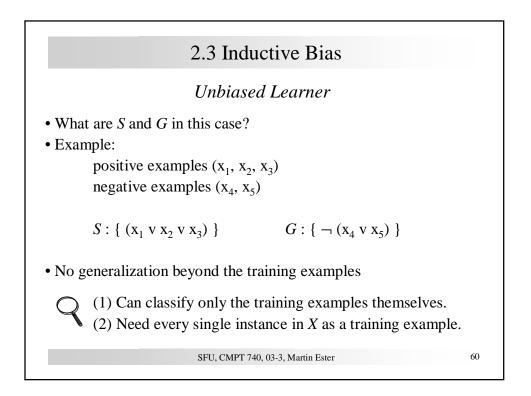
 Our hypothesis space is unable to represent a simple disjunctive target concept : (Sky=Sunny) v (Sky=Cloudy)

 x₁ = <Sunny Warm Normal Strong Cool Change> + x₂ = <Cloudy Warm Normal Strong Cool Change> + S: { <?, Warm, Normal, Strong, Cool, Change> }

 x₃ = <Rainy Warm Normal Light Warm Same> - S: {}

 y // no consistent hypothesis!





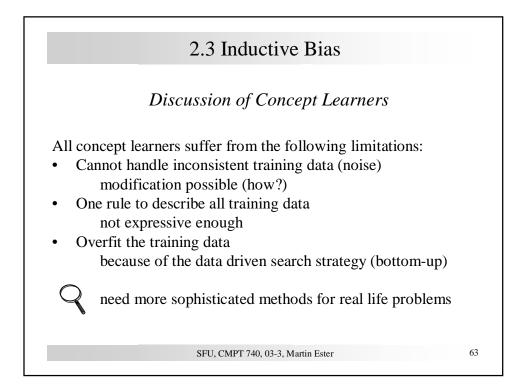
2.3 Inductive Bias

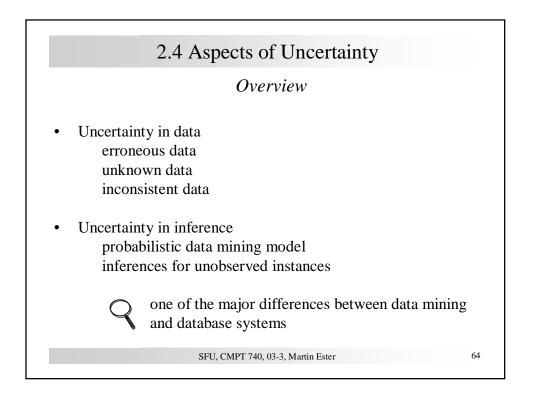
Importance of Inductive Bias

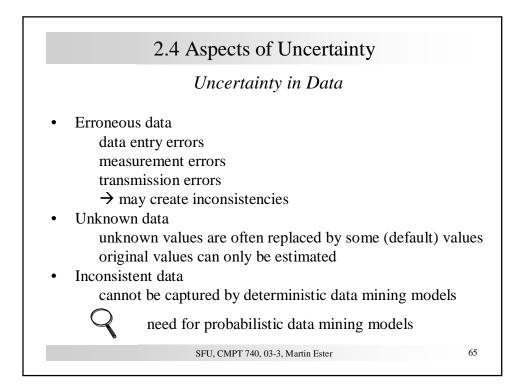
- A learner that makes no prior assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances.
- *Inductive bias*: set of assumptions that justify the inductive inferences as deductive inferences
- Use domain knowledge of KDD application to choose appropriate inductive bias.
- Too vague inductive bias: cannot generalize well Too strict inductive bias: no consistent hypothesis.

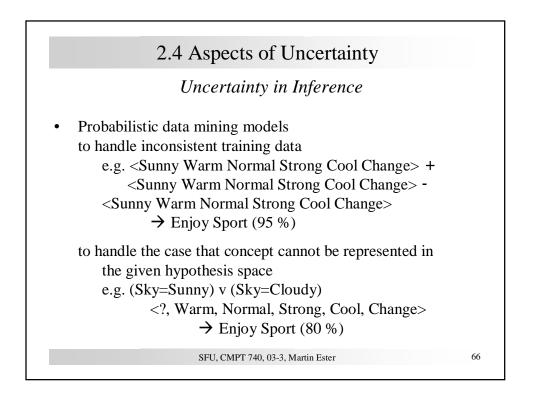
SFU, CMPT 740, 03-3, Martin Ester

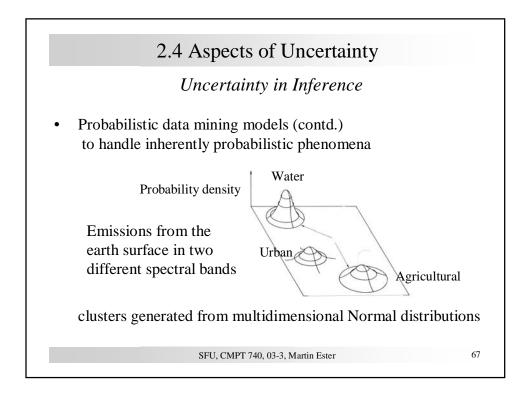
	2.3 Inductive Bias	
	Discussion of Different Learners	
Two as	pects of inductive bias	
(1)	Definition of hypothesis space	
(2)	Treatment of multiple consistent hypotheses	
Unbias	ed learner	
(1)	No restriction of formulae made from attribute constrain	ints
(2)	Unique consistent hypothesis	
Candid	ate elimination algorithm	
(1)	Target concept can be described as conjunction of attribute constraints	
(2)	Consider all consistent hypotheses	
	algorithm	
	Same as candidate elimination algorithm	
	Maximally specific hypotheses are best	
	SFU, CMPT 740, 03-3, Martin Ester	62

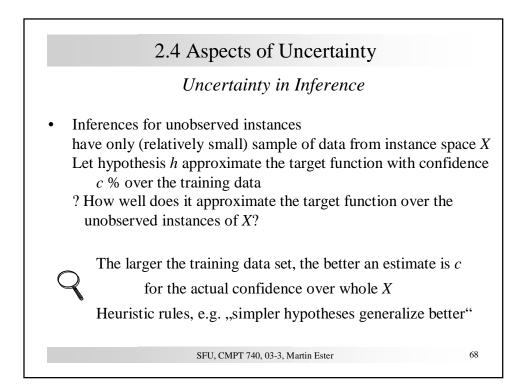


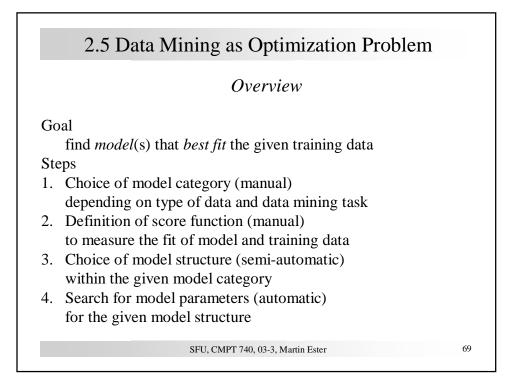


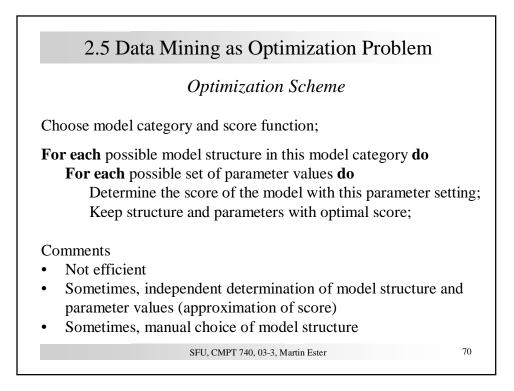




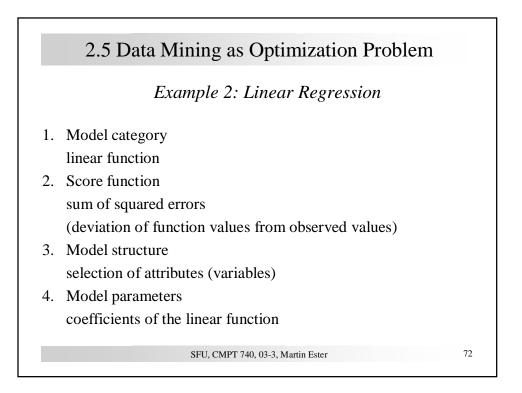


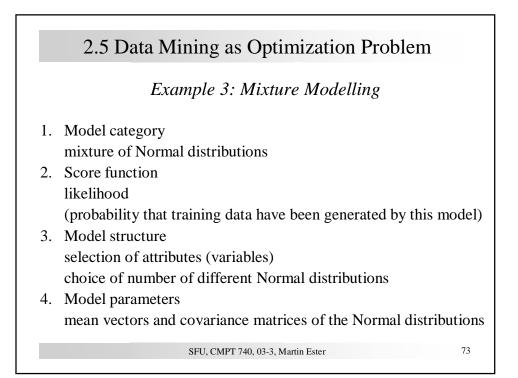


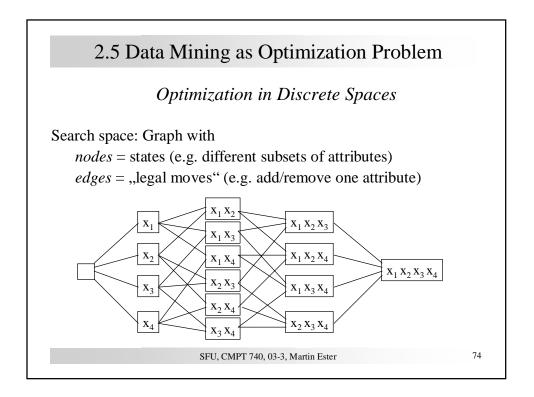


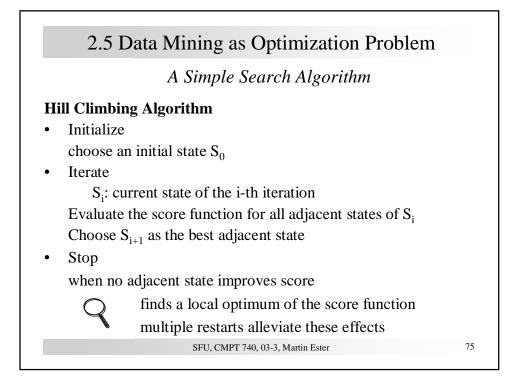


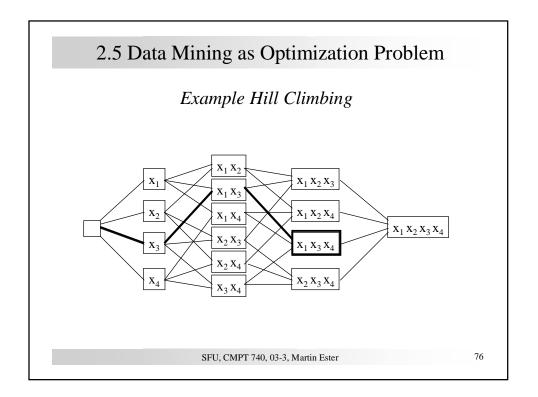
<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>











2.5 Data Mining as Optimization Problem

An Advanced Search Algorithm

Branch-and-Bound Algorithm

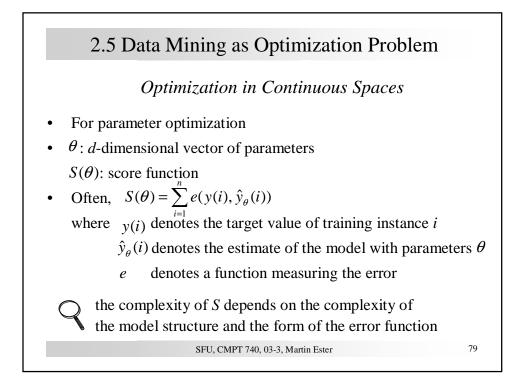
- Explore several alternative paths (solutions) in the graph and record the score of the best solution found so far
- Discard (prune) paths which cannot lead to an optimal solution because a better solution has already been found

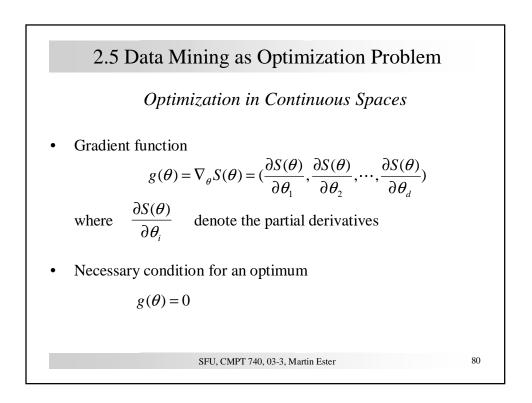
Properties

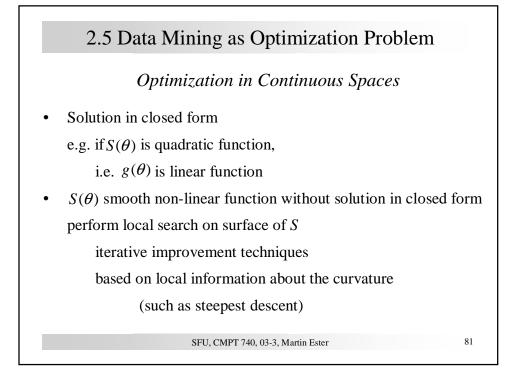
- Finds (globally) optimal solution
- Depends on availability of pruning criterion
- For very complex problems, not efficient enough

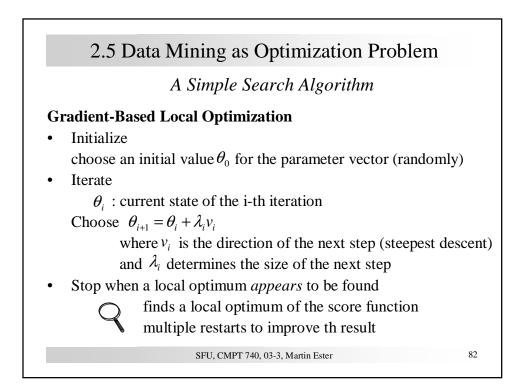
SFU, CMPT 740, 03-3, Martin Ester

77









2.6 Synopsis of Machine Learning, Statistics, Data Mining

	Statistics	Machine Learning	Data Mining
Components of training data	variables	features	attributes
Result of learning	model	hypothesis	patterns

• Model: global

• Pattern: local

• Combination of these views

 $\bigcap_{\text{data} = \text{global model (rule)} + \text{local patterns (exceptions)}}$

SFU, CMPT 740, 03-3, Martin Ester