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2. Principles of Data Mining

Contents of this Chapter

2.1 Learning from examples

2.2 Data mining as search in the hypothesis space

2.3 Inductive bias

2.4 Aspects of uncertainty

2.5 Data mining as optimization problem

2.6 Synopsis of Statistics, Machine Learning and Data Mining
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2.1 Learning from Examples

Inductive Learning

• Data are instances (records) from an instance space X

often: Di: domain of attribute i

• Given a (relatively small) sample of data from X

(training data)

• Given a target function specifying the learning goal

• Want to induce general hypotheses approximating the target

function on the whole instance space from the specific training

data

dDDX L×⊆ 1
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2.1 Learning from Examples

Inductive Learning

Fundamental assumption:

Any hypothesis approximating the target function well
over the training data will also approximate the target
function well over the unobserved instances of X.
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2.1 Learning from Examples

Concept Learning

• Concept C: subset of X

c: X → {0,1} is the characteristic function of C

• Task:

approximate the target function c using the attributes of X

in order to distinguish instances belonging / not belonging

to C

• training data D: positive and negative examples of the

concept: <x1,c(x1)>,…, <xn,c(xn)>
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2.1 Learning from Examples

Example

Yes

Yes

No

Yes

Same

Same

Change

Change

Warm

Warm

Warm

Cool

Strong

Strong

Strong

Strong

Normal

High

High

High

Warm

Warm

Cold

Warm

Sunny

Sunny

Rainy

Sunny

Enjoy
Sport

Fore-castWaterWindHumidTempSky

Concept: ”days on which my friend Aldo enjoys his favourite
water sports”

Task: predict the value of ”Enjoy Sport” for an arbitrary day
based on the values of the other attributes
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2.1 Learning from Examples

Concept Learning

• Task more formally:
want to induce hypotheses h: X → {0,1} from a set of (possible)
hypotheses H such that h(x)=c(x) for all x in D.

• Hypothesis h is a conjunction of constraints on attributes
• Each constraint can be:

a specific value : e.g. Water=Warm
a don’t care value : e.g. Water=?
no value allowed (null hypothesis): e.g. Water=Ø

• Example: hypothesis h
Sky Temp Humid Wind Water Forecast

< Sunny ? ? Strong ? Same >
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2.2 Data Mining as Search in the Hypothesis Space

Example Hypothesis Space

Sky: Sunny, Cloudy, Rainy

AirTemp: Warm, Cold

Humidity: Normal, High

Wind: Strong, Weak

Water: Warm, Cold

Forecast: Same, Change

# distinct instances : 3*2*2*2*2*2 = 96

# distinct concepts : 296

# syntactically distinct hypotheses : 5*4*4*4*4*4 = 5120

# semantically distinct hypotheses : 1+4*3*3*3*3*3 = 973

real life hypothesis spaces much larger!
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2.2 Data Mining as Search in the Hypothesis Space

Ordering the Hypothesis Space
• Example:

h1 = < Sunny,?,?,Strong,?,?>
h2 = < Sunny,?,?,?,?,?>

• Sets of instances covered by h1 and h2:
h2 imposes fewer constraints than h1 and therefore classifies more
instances x as positive than h1

• Let hj and hk be hypotheses from H, i.e. boolean-valued functions
defined over X.
Then hj is more general than or equal to hk (hj ≥ hk) if and only if

∀ x ∈ X : [ (hk(x) = 1) → (hj(x) = 1)]
• The relation ≥ imposes a partial order over the hypothesis space H

(general-to-specific ordering).
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2.2 Data Mining as Search in the Hypothesis Space

Relationship Instances�� Hypotheses

x1=< Sunny,Warm,High,Strong,Cool,Same>

x2=< Sunny,Warm,High,Light,Warm,Same>

h1=< Sunny,?,?,Strong,?,?>

h2=< Sunny,?,?,?,?,?>

h3=< Sunny,?,?,?,Cool,?>

Instances

x
2

x
1

Hypotheses

h
2

h
3

h
1

h
2

≥ h
1

h
2

≥ h
3

specific

general
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2.2 Data Mining as Search in the Hypothesis Space

Searching the Hypothesis Space

• exhaustive search is infeasible in real life applications

• exploit the ordering

top-down:

start with general hypotheses and keep specializing

bottom-up:

start with specialized hypotheses and keep generalizing

• how many hypotheses?

one (which?)

some (which?)

all
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2.2 Data Mining as Search in the Hypothesis Space

Find-S Algorithm

• Initialize h to the most specific hypothesis in H

• For each positive training instance x

For each attribute constraint ai in h

If the constraint ai in h is satisfied by x

then do nothing

else generalize ai w.r.t. ≥ until ai is satisfied by x

• Output hypothesis h

finds one maximally specific hypothesis
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2.2 Data Mining as Search in the Hypothesis Space

Find-S Algorithm
Instances Hypotheses

specific

general

h
0

h0=< Ø, Ø, Ø, Ø, Ø, Ø,>

h1

x1=<Sunny,Warm,Normal,Strong,Warm,Same>+

x
1

h1=< Sunny,Warm,Normal,
Strong,Warm,Same>

x3=<Rainy,Cold,High,Strong,Warm,Change> -

x
3

h2,3

x2=<Sunny,Warm,High,Strong,Warm,Same>+

x
2

h2,3=< Sunny,Warm,?,
Strong,Warm,Same>

h4

x4=<Sunny,Warm,High,Strong,Cool,Change> +

x
4

h4=< Sunny,Warm,?,
Strong,?,?>
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2.2 Data Mining as Search in the Hypothesis Space

Find-S Algorithm

• Algorithm is very efficient

what runtime complexity?

• Ignores negative training examples

• What about the negative examples?

Under which conditions is h consistent with them?

• Why prefer a most specific hypothesis?

• What if there are multiple maximally specific hypotheses?

SFU, CMPT 740, 03-3, Martin Ester 50

2.2 Data Mining as Search in the Hypothesis Space

Version Space

• A hypothesis h is consistent with a set of training examples D of

target concept C if and only if h(x)=c(x) for each <x,c(x)> in D.

consistent(h,D) := ∀ <x,c(x)>∈ D: h(x)=c(x)

• The version space, VSH,D , with respect to hypothesis space H and

training set D is the subset of hypotheses from H consistent with

all training examples:

VSH,D = {h ∈ H | consistent(h,D) }
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2.2 Data Mining as Search in the Hypothesis Space

Version Space

• The general boundary, G, of version space VSH,D is the set of its

maximally general members.

• The specific boundary, S, of version space VSH,D is the set of

maximally specific members.

• Every member of the version space lies between these boundaries:

VSH,D = {h ∈ H | ∃ s ∈ S, ∃ g ∈ G: (g ≥ h ≥ s)}

where x ≥ y ”x is more general or equal than y”

compact representation of the version space
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2.2 Data Mining as Search in the Hypothesis Space

Candidate Elimination Algorithm

G ← maximally general hypotheses in H
S ← maximally specific hypotheses in H
For each training example d = <x,c(x)>

If d is a positive example
remove from G any hypothesis that is inconsistent with d
For each hypothesis s in S that is not consistent with d

remove s from S
add to S all minimal generalizations h of s such that

(1) h is consistent with d and
(2) some member of G is more general than h

remove from S any hypothesis that is more general than
another hypothesis in S
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2.2 Data Mining as Search in the Hypothesis Space

Candidate Elimination Algorithm (contd.)

// For each training example d = <x,c(x)>
If d is a negative example

remove from S any hypothesis that is inconsistent with d
For each hypothesis g in G that is not consistent with d

remove g from G
add to G all minimal specializations h of g such that

(1) h consistent with d
(2) some member of S is more specific than h

remove from G any hypothesis that is less general than another
hypothesis in G
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2.2 Data Mining as Search in the Hypothesis Space

Example Candidate Elimination

{<∅ , ∅ , ∅ , ∅ , ∅ , ∅ >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm Normal Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm ? Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

x
1

= <Sunny Warm Normal Strong Warm Same> +

x
2

= <Sunny Warm High Strong Warm Same> +
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2.2 Data Mining as Search in the Hypothesis Space

Example Candidate Elimination

{< Sunny Warm ? Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm ? Strong Warm Same >}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>,  <?,?,?,?,?,Same>}G:

{< Sunny Warm ? Strong ? ? >}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?> }G:

x
3

= <Rainy  Cold   High    Strong Warm Change> -

x
4

= <Sunny Warm High    Strong Cool   Change> +
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2.2 Data Mining as Search in the Hypothesis Space

Classification of new Data

{<Sunny,Warm,?,Strong,?,?>}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, }G:

<Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?>

x
5

= <Sunny Warm Normal Strong Cool Change> 

x
6

= <Rainy  Cold   Normal Light Warm Same>

x
7

= <Sunny Warm Normal Light Warm Same> 

x
8

= <Sunny Cold   Normal Strong Warm Same>

+ 6/0

- 0/6

? 3/3
? 2/4



11

SFU, CMPT 740, 03-3, Martin Ester 57

2.2 Data Mining as Search in the Hypothesis Space

Candidate Elimination Algorithm

• Exploits negative training examples

• Finds all consistent hypotheses from H

• Can determine confidence of classification of new data

• Can detect inconsistencies in training data

How?

• Algorithm is not very efficient

What runtime complexity?

• What if H cannot represent target concept C?
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2.3 Inductive Bias

Example

Our hypothesis space is unable to represent a simple disjunctive
target concept : (Sky=Sunny) v (Sky=Cloudy)

x
1

= <Sunny Warm Normal Strong Cool Change> +

x
2

= <Cloudy Warm Normal Strong Cool Change> +

S : { <?, Warm, Normal, Strong, Cool, Change> }

x
3

= <Rainy  Warm Normal Light Warm Same> -

S : {} // no consistent hypothesis!
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2.3 Inductive Bias

Unbiased Learner

• Idea:
Choose H that expresses every teachable concept,
i.e. H is the set of all subsets of X

• |X| = 96, |P(X)| = 296 ~ 1028 distinct concepts
• H: conjunctions, disjunctions, negations of constraints on

attributes

e.g. <Sunny Warm Normal ? ? ?> v <? ? ? ? ? Change>

H surely contains any target concept
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2.3 Inductive Bias

Unbiased Learner

• What are S and G in this case?
• Example:

positive examples (x1, x2, x3)
negative examples (x4, x5)

S : { (x1 v x2 v x3) } G : { ¬ (x4 v x5) }

• No generalization beyond the training examples

(1) Can classify only the training examples themselves.
(2) Need every single instance in X as a training example.
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2.3 Inductive Bias

Importance of Inductive Bias

• A learner that makes no prior assumptions regarding the identity
of the target concept has no rational basis for classifying any
unseen instances.

• Inductive bias: set of assumptions that justify the inductive
inferences as deductive inferences

• Use domain knowledge of KDD application to choose appropriate
inductive bias.

• Too vague inductive bias: cannot generalize well
Too strict inductive bias: no consistent hypothesis.
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2.3 Inductive Bias

Discussion of Different Learners
Two aspects of inductive bias

(1) Definition of hypothesis space
(2) Treatment of multiple consistent hypotheses

Unbiased learner
(1) No restriction of formulae made from attribute constraints
(2) Unique consistent hypothesis

Candidate elimination algorithm
(1) Target concept can be described as conjunction of

attribute constraints
(2) Consider all consistent hypotheses

Find-S algorithm
(1) Same as candidate elimination algorithm
(2) Maximally specific hypotheses are best
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2.3 Inductive Bias

Discussion of Concept Learners

All concept learners suffer from the following limitations:
• Cannot handle inconsistent training data (noise)

modification possible (how?)
• One rule to describe all training data

not expressive enough
• Overfit the training data

because of the data driven search strategy (bottom-up)

need more sophisticated methods for real life problems
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2.4 Aspects of Uncertainty

Overview

• Uncertainty in data
erroneous data
unknown data
inconsistent data

• Uncertainty in inference
probabilistic data mining model
inferences for unobserved instances

one of the major differences between data mining
and database systems
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2.4 Aspects of Uncertainty

Uncertainty in Data

• Erroneous data
data entry errors
measurement errors
transmission errors
� may create inconsistencies

• Unknown data
unknown values are often replaced by some (default) values
original values can only be estimated

• Inconsistent data
cannot be captured by deterministic data mining models

need for probabilistic data mining models
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2.4 Aspects of Uncertainty

Uncertainty in Inference

• Probabilistic data mining models
to handle inconsistent training data

e.g. <Sunny Warm Normal Strong Cool Change> +

<Sunny Warm Normal Strong Cool Change> -
<Sunny Warm Normal Strong Cool Change>

� Enjoy Sport (95 %)

to handle the case that concept cannot be represented in
the given hypothesis space
e.g. (Sky=Sunny) v (Sky=Cloudy)

<?, Warm, Normal, Strong, Cool, Change>
� Enjoy Sport (80 %)
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2.4 Aspects of Uncertainty

Uncertainty in Inference

• Probabilistic data mining models (contd.)
to handle inherently probabilistic phenomena

clusters generated from multidimensional Normal distributions

Water

Urban

Agricultural

Probability density

Emissions from the
earth surface in two
different spectral bands
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2.4 Aspects of Uncertainty

Uncertainty in Inference

• Inferences for unobserved instances
have only (relatively small) sample of data from instance space X
Let hypothesis h approximate the target function with confidence

c % over the training data
? How well does it approximate the target function over the

unobserved instances of X?

The larger the training data set, the better an estimate is c

for the actual confidence over whole X

Heuristic rules, e.g. „simpler hypotheses generalize better“
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2.5 Data Mining as Optimization Problem

Overview

Goal
find model(s) that best fit the given training data

Steps
1. Choice of model category (manual)

depending on type of data and data mining task
2. Definition of score function (manual)

to measure the fit of model and training data
3. Choice of model structure (semi-automatic)

within the given model category
4. Search for model parameters (automatic)

for the given model structure
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2.5 Data Mining as Optimization Problem

Optimization Scheme

Choose model category and score function;

For each possible model structure in this model category do
For each possible set of parameter values do

Determine the score of the model with this parameter setting;
Keep structure and parameters with optimal score;

Comments
• Not efficient
• Sometimes, independent determination of model structure and

parameter values (approximation of score)
• Sometimes, manual choice of model structure
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2.5 Data Mining as Optimization Problem

Example 1: Concept Learning

1. Model category

conjunction of attribute constraints

2. Score function

confidence of hypotheses on training data

3. Model structure

selection of attributes (features)

4. Model parameters

actual attribute constraints for each attribute
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2.5 Data Mining as Optimization Problem

Example 2: Linear Regression

1. Model category

linear function

2. Score function

sum of squared errors

(deviation of function values from observed values)

3. Model structure

selection of attributes (variables)

4. Model parameters

coefficients of the linear function
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2.5 Data Mining as Optimization Problem

Example 3: Mixture Modelling

1. Model category
mixture of Normal distributions

2. Score function
likelihood
(probability that training data have been generated by this model)

3. Model structure
selection of attributes (variables)
choice of number of different Normal distributions

4. Model parameters
mean vectors and covariance matrices of the Normal distributions
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2.5 Data Mining as Optimization Problem

Optimization in Discrete Spaces

Search space: Graph with
nodes = states (e.g. different subsets of attributes)
edges = „legal moves“ (e.g. add/remove one attribute)

x1

x2

x3

x4

x1 x2

x1 x3

x1 x4

x2 x3

x2 x4

x3 x4

x1 x2 x3

x1 x2 x4

x1 x3 x4

x2 x3 x4

x1 x2 x3 x4
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2.5 Data Mining as Optimization Problem

A Simple Search Algorithm

Hill Climbing Algorithm
• Initialize

choose an initial state S0

• Iterate
Si: current state of the i-th iteration

Evaluate the score function for all adjacent states of Si

Choose Si+1 as the best adjacent state

• Stop

when no adjacent state improves score

finds a local optimum of the score function

multiple restarts alleviate these effects
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2.5 Data Mining as Optimization Problem

Example Hill Climbing

x1

x2

x3

x4

x1 x2

x1 x3

x1 x4

x2 x3

x2 x4

x3 x4

x1 x2 x3

x1 x2 x4

x1 x3 x4

x2 x3 x4

x1 x2 x3 x4



21

SFU, CMPT 740, 03-3, Martin Ester 77

2.5 Data Mining as Optimization Problem

An Advanced Search Algorithm

Branch-and-Bound Algorithm
• Explore several alternative paths (solutions) in the graph

and record the score of the best solution found so far
• Discard (prune) paths which cannot lead to an optimal solution

because a better solution has already been found

Properties
• Finds (globally) optimal solution
• Depends on availability of pruning criterion
• For very complex problems, not efficient enough
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2.5 Data Mining as Optimization Problem

An Advanced Search Algorithm

Example application
• Goal: Selection of k best attributes for the task of classification
• Top-down search starting from set of all attributes
• Score: training error rate
• Find first subset of k attributes and record its score
• Discard all subgraphs where root has higher error than currently

best solution (why does this not exclude optimal solution?)
• Rank remaining subgraphs in increasing order of training error

rate
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2.5 Data Mining as Optimization Problem

Optimization in Continuous Spaces

• For parameter optimization

• : d-dimensional vector of parameters

: score function

• Often,

where denotes the target value of training instance i

denotes the estimate of the model with parameters

e denotes a function measuring the error

the complexity of S depends on the complexity of
the model structure and the form of the error function

θ
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2.5 Data Mining as Optimization Problem

Optimization in Continuous Spaces

• Gradient function

where denote the partial derivatives

• Necessary condition for an optimum
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2.5 Data Mining as Optimization Problem

Optimization in Continuous Spaces

• Solution in closed form

e.g. if is quadratic function,

i.e. is linear function

• smooth non-linear function without solution in closed form

perform local search on surface of S

iterative improvement techniques

based on local information about the curvature

(such as steepest descent)

)(θg

)(θS

)(θS
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2.5 Data Mining as Optimization Problem

A Simple Search Algorithm

Gradient-Based Local Optimization
• Initialize

choose an initial value for the parameter vector (randomly)
• Iterate

: current state of the i-th iteration
Choose

where is the direction of the next step (steepest descent)
and determines the size of the next step

• Stop when a local optimum appears to be found
finds a local optimum of the score function
multiple restarts to improve th result

0θ

iθ
iiii vλθθ +=+1

iλ
iv
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2.6 Synopsis of Machine Learning, Statistics, Data Mining

• Model: global
• Pattern: local
• Combination of these views

model = set of (all) patterns
data = global model (rule) + local patterns (exceptions)

patternshypothesismodelResult of learning

attributesfeaturesvariablesComponents of
training data

Data
Mining

Machine
Learning

Statistics


