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4.1 Introduction

Goal of Cluster Analysis

* ldentification of afinite set of categories, classes or groups (clugters) in the
dataset

* Objects within the same cluster shall be as smilar aspossible
* Objects of different clusters shall be as dissimilar as possible

clusters of different szes, shapes, densities
hierarchical clusters
digoint / overlapping clusters
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4.1 Introduction

Goal of Outlier Analysis

* ldentification of objects (outliers) in the dataset which are
significantly different from the rest of the dataset (global outliers)
or significantly different from their neighborsin the dataset (local outliers)

local outlier ——*

L
global outliers

Q outliers do not belong to any of the clugters

SFU, CMPT 740, 03-3, Martin Ester 113

4.1 Introduction
Clustering as Optimization Problem
Definition

* dataset D, |D| = n
* clustering C of D:

c={C,....C;}
where C, D and | JC =D
Goal i,1<i<k
find clustering that best fits the given training data
Search Space
space of all clusterings
sizeis O(2")

q local optimization methods (greedy)
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4.1 Introduction

Clustering as Optimization Problem

Steps

1. Choice of model category

partitioning, hierarchical, density-based
2. Definition of score function

based on distance function
3. Choice of model structure

feature selection / number of clusters
4. Search for model parameters

clusters/ cluster representatives
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4.1 Digtance Functions

Basics

Formalizing similarity
» sometimes: similarity function
* typically: distance function dist(o,,0,) for pairs of objects o, and o,
» small digance = similar objects
* large distance = dissmilar objects

Requirements for distance functions

(1) dist(o,, 0,) =d O IR

(2) dist(o,, 0,) =0iff 0,=0,

(3) dist(o,, 0,) = dist(0,, 0,) (Symmetry)

(4) additionally for metric distance functions (triangle inequality)
dist(o,, 0,) < dist(0,, 0,) + dist(0,, 0,).
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4.1 Digance Functions

Distance Functions for Numeric Attributes
objects X = (Xq, ..., Xg) andy = (Y4, -+, Yg)

d
L,-Metric (Minkowski-Distance) dist(x,y) =5 iZZI:(M -yi)P

d

Euclidean Digtance (p = 2) dist(x,y) =,/>(x —y)?
i=1
d
Manhattan-Distance (p = 1) dist(x,y) = >_|x - yi|
i=1
Maximum-Metric (p = o)  dist(x,y) = max{|x - yi|[1<i <d}

apopular similarity function: Correlation Coefficient [ [-1,+1]
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4.1 Digtance Functions

Other Distance Functions

d
« for categoric attributes ~ dist(x,y) =>"d(x, y1) where 3(x, yi) =

i=1

Oif x=¥
1 dse

« for text documents D (vectors of frequencies of termsof T)

d={f(t,D)|tOT} f(t,, D): frequency of term t; in document D

cosine amilarity
<X, y>

[x[Oy]
cosdist( %, y) =1-cossm(x, y) corresponding distance function

cossim(x,y) =

with <.,.> dot product and |.| length of the vector

q adequate distance function is crucial for the clustering quality
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4.1 Typical Clustering Applications

Overview

» Market segmentation
clustering the set of customer transactions

* Determining user groups on the WWW
clustering web-logs

* Structuring large sets of text documents

hierarchical cdustering of the text documents

* Generating thematic maps from satellite images

clustering sets of raster images of the same area (feature vectors)
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4.1 Typical Clustering Applications

Determining User Groups on the WWW

Entries of aWeb-Log

romblon.informatik.uni-muenchen.de lopa - [04/M ar/1997:01:44:50 +0100] " GET /~lopa/ HTTP/1.0" 200 1364
romblon.informatik.uni-muenchen.de lopa - [04/M ar/1997:01:45:11 +0100] " GET /~lopa/x/ HTTP/1.0" 200 712
fixer .sega.co.jp unknown - [04/M ar/1997:01:58:49 +0100] " GET /dbs/porada.html HTTP/1.0" 200 1229

scooter .pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] " GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

Sessions
Session::= <IP-Adress, User-1d, [URL,, . . ., URL,]>

==) which entries form a session?

Distance Function for Sessions .
d(x,y) = IxOyl=Ixayl Jaccard Coefficient
[xOy|
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4.1 Typical Clustering Applications

Generating Thematic Maps from Satellite Images

(12),(17.5)

Cluster 1
m - Cluster 2

(85)(187)

165 180 200 22.0
Band 2

Surface of the Earth Feature Space

Assumption

Different land usages exhibit different / characteristic properties of
reflection and emission
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4.1 Types of Clustering Methods

Partitioning Methods
» Parameters: number k of clusters, distance function
* determinesa ,flat* clustering into k clusters (with minimal costs)

Hierarchical Methods
» Parameters. distance function for objects and for clusters

* determines a hierarchy of clusterings, merges always the most similar
clusters

Density-Based Methods

» Parameters: minimum density within a clugter, digance function

» extends clugter by neighboring objects aslong asthe dendty is large enough
Other Clustering Methods

* Fuzzy Clustering

» Graph-based Methods

* Neural Networks
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4.2 Partitioning Methods
Basics
Goal
a (digoint) partitioning into k clusters with minimal costs
Local optimization method
» choose k initial cluster representatives
* optimize these representatives iteratively
* assign each object to itsmost similar cluster representative
Types of cluster representatives
» Mean of a cluster (construction of central points)
» Median of a cluster (selection of representative points)
* Probahility density function of a cluster (expectation maxi mization)
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4.2 Construction of Central Points

Example

Cluster Cluster Representatives

bad clustering

optimal clustering
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4.2 Construction of Central Points

Basics [Forgy 1965]
* objects are points p=(x,, ..., X°) in an Euclidean vector space
* Euclidean digance

* Centroid p: mean vector of al objectsin cluster C
» Measure for the cogts (compactness) of a clusters C

TD*(C) = 2_dist(p, 46)?
pCC

» Measure for the cogs (compactness) of a clustering

k
TD? = TD*(C)
i=1
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4.2 Construction of Central Points

Algorithm

Cl usteringByVarianceM ni m zati on(dataset D, integer k)
create an ,initial" partitioning of dataset Dinto k
cl usters;
calculate the set C={C, ..., G} of the centroids
of the k clusters;
C={}
repeat until C=C
c=0C,;
formk clusters by assigning each object to the
cl osest centroid from C

re-calculate the set C={C, ..., C,} of the
centroids for the newly determ ned clusters;

return C
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4.2 Construction of Central Points

Example
7N T
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4.2 Construction of Central Points

Variants of the Basic Algorithm

k-means [MacQueen 67]

* ldea: the relevant centroids are updated immediately when an object changes
its cluster membership

» K-means inherits most properties from the basic algorithm

» K-means depends on the order of objects

ISODATA

* based on k-means

* post-processing of the resulting clustering by
—elimination of very small clusters
— merging and splitting of clusters

* user hasto provide several additiona parameter values
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4.2 Construction of Central Points

Discussion

+ Effiziency
Runtime: O(n) for oneiteration,
number of iterationsistypically small (~ 5 - 10).
+ simple implementation
=) K-meansisthe most popular partitioning clustering method

- sengitivity to noise and outliers
all objects influence the calculation of the centroid
- dl clugershave a convex shape
- the number k of clustersisoften hard to determine
- highly dependent from theinitial partitioning
clustering result aswell asruntime
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4.2 Selection of Representative Points

Basi CS [Kaufman & Rousseeuw 1990]
» Assumes only a distance function for pairs of objects
» Medoid: arepresentative dement of the cluster (representative point)

* Measurefor the costs (compactness) of a clusters C
TD(C) = 2_dist(p,me)

pCC
* Measure for the costs (compactness) of a clustering
k

TD =Y TD(C)

i=1
* Search space for the clustering a gorithm:
all subsets of cardinality k of the dataset D with [D|= n

q runtime complexity of exhaustive search O(n¥)
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4.2 Selection of Representative Points

Overview of the Algorithms

PAM [Kaufman & Rousseeuw 1990]

* greedy algorithm:
in each step, one medoid isreplaced by one non-medoid

« dways select the pair (medoid, non-medoid) which implies the largest reduction
of the costs TD

CLARANS [Ng & Han 1994
two additional parameters. maxneighbor and numlocal

* at most maxneighbor many randomly chosen pairs (medoid, non-medoid)
are considered

* the firg replacement reducing the TD-value is performed
* the search for k ,optimum* medoidsisrepeated numlocal times
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4.2 Selection of Representative Points

Algorithm PAM

PAM dat aset D, integer k, float dist)
initialize the k nedoids;
TD Update := -—oo;
while TD Update < 0 do

for each pair (medoid M non-nedoid N),
cal cul ate the val ue of TDy

choose the pair (M N) with mnimum val ue for
TD Update := TDy.y — TD;
if TD Update < O then
repl ace nmedoid M by non-nedoid N,

record the set of the k current nedoids as the
currently best clustering;

return best k medoi ds;
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4.2 Selection of Representative Points

Algorithm CLARANS

CLARANS( dat aset D, integer k, float dist,
integer num ocal, integer naxnei ghbor)

for r from1l to numocal do
choose randomy k objects as nmedoids; i := 0;
while i < maxnei ghbor do
choose random y(medoid M non-nedoid N);
calculate TD Update := TDy. , — TD;
if TD Update < O then
replace Mby N

TD := TDy.w | = 0;
elsei:= i + 1;
if TD < TD best then
TD best := TD; record the current medoi ds;

return current (best) nedoids;
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4.2 Selection of Representative Points

Comparison of PAM and CLARANS
Runtime complexities
* PAM: O(n® + k(n-k)? * #Iterations)
* CLARANS O(numlocal * maxneighbor * #replacements * n)
in practice, O(n?)

Experimental evaluation

Quality | | s Runtime [ . T

ruatime (in ®

TD(CLARANS)
TD(PAM)

""‘"l ‘:‘ . _"""‘ - number of sbjects
percentags of asighbors

SFU, CMPT 740, 03-3, Martin Ester

134

12



4.2 Expectation Maximization

Basics [Dempster, Laird & Rubin 1977]
* objects are points p=(x,, ..., X°) in an Euclidean vector space
* acluster isdesribed by a probability density distribution
* typically: Gaussian distribution (Normal distribution)
* representation of a clustersC

—mean g of al cluster points
— dxd covariance matrix X for the points of cluster C

* probability dendty function of cluster C

2ot () e )

1
PO = [emzel®
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4.2 Expectation Maximization

Basics
* probability densty function of clusteringM ={C,, ..., C}
P(x) = iV\A P(x|C)
with W, percentage of points of D1 inC

* assignment of pointsto clusters P(X|C)
PG =W B~

point belongs to several clusters with different probabilities
» measure of clustering quality (likelihood)
E(M) =2 log(P(x))
xOD
==) thelarger the value of E, the higher the probability of dataset D
E(M) isto be maximized
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4.2 Expectation Maximization

Algorithm

Cl ust eri ngByExpect ati onMaxi m zati on
(dataset D, integer k)

create an ,initial" clustering M = (C’,
repeat // re-assignnent

o G

calculate P(x|G), P(x) and P(C|x) for each

object x of D and each cluster G;
/1 re-calculation of clustering

calculate a new clustering M ={C, ...,
re-cal culating W, g-.andZ.for each i;

M =M
until |E(M - E(M)]| <g¢
return M
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4.2 Expectation Maximization

Discussion
* converges to a (possibly local) minimum

* runtime compl exity:

q O(n Ok * #iterations)
#iterations istypically large

* clustering result and runtime strongly depend on
—initial clustering
—,correct” choice of parameter k
» modification for determining k digoint clusers.
assign each object x only to cluster C; with maximum P(C |x)
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4.2 Choice of Initial Clusterings

|dea
* in general, clustering of a small sample yields good initial clusters
* but some samples may have a significantly different distribution

Method [Fayyad, Reina & Bradley 1998]
* draw independently m different samples

* cluster each of these samples
= m different estimates for the k cluster means
A=A, A, ...,A),B=B4..,BY),C=(C,...,C),...
e cluster thedataset DB= AOBI [©
with mdifferent initial clusteringsA, B, C, . ..

« from the m clusterings obtained, choose the one with the highest clustering
quality asinitia clustering for the whole dataset
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4.2 Choice of Initial Clusterings

Example
A D3
A3 X C3

c1 D2 B3

Al B2 x
x D1 A2 c2

Bl
whole dataset DB

from m=4 samples
k=3 &
¥ true cluster means
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4.2 Choice of Parameter k

Method

o for k=2, ..., n-1, determine one clustering each
» choose the clustering with the highest clugtering quality

Measure of clustering quality
* independent from k
» for k-means and k-medoid:
TD?and TD decrease monotonically with increasing k
o for EM:

E decreases monotonically with increasing k
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4.2 Choice of Parameter k

Slhouette-Coefficient [Kaufman & Rousseeuw 1990]

» measure of clustering quality for k-means- and k-medoid-methods
* a(0): disgtance of object o toits cluster representative
b(0): distance of object o to the representative of the ,, second-best” cluster
* silhouette s(0) of o b(0) - a(0)
X0 (o). bio)

s(0) =-1/0/+1: bad / indifferent / good assignment
» silhouette coefficient s. of clustering C

average slhouette over al objects
* interpretation of silhouette coefficient

Sc> 0,7: drong cluster structure,

Sc> 0,5: reasonable clugter structure, . . .
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4.3 Hierarchical Methods

Basics

Goal

construction of a hierarchy of clusters (dendrogram)
merging clusters with minimum distance

Dendrogram
atree of nodes representing clusters, satisfying the following properties:

* Root represents the whole DB.
* Leaf node represents singleton clusters containing a single object.

* Inner node represents the union of all objects contained in its
corresponding subtree.
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4.3 Hierarchical Methods

Basics

Example dendrogram

2

, distance between
clusters

12 3456 789

Types of hierarchical methods
* Bottom-up construction of dendrogram (agglomer ative)
* Top-down construction of dendrogram (divisive)
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4.3 Single-Link and Variants

Algorithm Sngle-Link [Jin & Dubes 1988

Agglomerative Hierarchichal Clustering

1. Forminitia dusters consigting of a sngleton object, and compute
the distance between each pair of clusters.

2. Merge the two clusters having minimum distance.

3. Calculate the distance between the new cluster and all other clusters.

4. If thereis only one cluster containing al objects:
Stop, otherwise go to step 2.

SFU, CMPT 740, 03-3, Martin Ester 145

4.3 Single-Link and Variants
Distance Functions for Clusters

¢ Let digt(x,y) be adisance function for pairs of objects x, y.
*Let X, Y beclusters, i.e. sets of objects.

Single-Link dist_d(X,Y)= min disi(xy)
Complete-Link dist_cl(X,Y)= mex dist(x.y)
: dist_al(X,Y)=—— 1 03 dist(x,y)
Average-Link - ; XY ] g
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4.3 Single-Link and Variants
Discussion

+ does not require knowledge of the number k of clusters
+ findsnot only a ,flat“ clustering, but a hierarchy of clusters (dendrogram)

+ agngle clustering can be obtained from the dendrogram
(e.g., by performing ahorizontal cut)

- decisions (merges/splits) cannot be undone
- sengitive to noise (Single-Link)
a,line" of objects can connect two clusters
- inefficient
runtime complexity at least O(n?) for n objects
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4.3 Single-Link and Variants

CURE [Guha, Rastogi & Shim 1998]

* representation of a cluster
partitioning methods: one object
hierarchical methods. all objects

* CURE: representation of a duster by ¢ representatives
* representatives are stretched by factor of a w.r.t. the centroid

% %
detects non-convex clusters
avoids Single-Link effect
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4.4 Density-Based Clustering

Basics
|dea
* clusters as dense areasin a d-dimensional dataspace
* separated by areas of lower density
Requirements for density-based clusters
« for each clugter object, the local density exceeds some threshold
» the set of objects of one cluster must be spatially connected
Strenghts of density-based clustering
* clusters of arbitrary shape
* robust to noise

* efficiency
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4.4 Density-Based Clustering

° o

Basics [Ester, Kriegd, Sander & Xu 1996]

* object o O D iscore object (w.r.t. D):
IN;(0)| = MinPts, with N,(0) ={0’ O D |dist(0,0')<¢€}. o °@

o o

* object p O D is directly density-reachable from g 0 D w.r.t. € and MinPts:
p O Ng(q) and q isa core object (w.r.t. D).

e object p is dendty-reachable from q. there is a chain of directly
density-reachabl e objects between g and p.

border object: no core object,
but densty-reachable from other object (p)
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4.4 Density-Based Clustering
Basics

* objects p and q are density-connected: both are density-reachable from athird
object o.

* cluster C w.r.t. € and MinPts: anon-empty subset of D satisfying

Maximality: Op,q O D: if p O C, and g density-reachable from p,
then g OC.
Connectivity: Op,q O C: p isdensity-connected to q.
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4.4 Density-Based Clustering
Basics

* Clustering

A density-based clugtering CL of a dataset D w.r.t. € and MinPts is the
set of all dendity-based clustersw.r.t. € and MinPtsin D.
* The set Noise,, (,noise") isdefined asthe set of all objectsin D which do not
belong to any of the clugters.
* Property

Let C be a dendty-based cluster and p O C a core object. Then:
C ={o0 0D | o density-reachable from p w.r.t. € and MinPts}.
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4.4 Density-Based Clustering

Algorithm DBSCAN

DBSCAN(dat aset D, float ¢ integer MnPts)
/1 all objects are initially unclassified,
/1 o0.d1ld = UNCLASSIFIED for all o OD

Clusterld : = nextld(NJ SE);
for i froml to |D do
object := D.get(i);
if Cbjekt.d ld = uUNCLASSIFIED t hen

i f ExpandC uster (D, object, Custerld, ¢,
M nPt s)

then Custerld: =nextld(C usterld);
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4.4 Density-Based Clustering

Choice of Parameters

* cluster: density above the ,minimum density” defined by € and MinPts
» wanted: the cluster with the lowest density
* heurigic method: consider the distances to the k-nearest neighbors

—> 3-distance(p)
3-distance(q)

)

[ ]
« function k-distance: distance of an object to its k-nearest neighbor

* k-distance-diagram: k-distances in descending order

SFU, CMPT 740, 03-3, Martin Ester
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4.4 Density-Based Clustering

Choice of Parameters

A

‘:./firs ,valley*

threshold object 0

Example

3-distance

objects

Heuristic Method

* User specifiesavaluefor k (Defaultisk = 2*d - 1), MinPts = k+1.
 System cal cul ates the k-distance-diagram for the dataset and visualizesit.
eUser chooses a threshold object from the k-distance-diagram,

€ := k-digance(0).
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4.4 Density-Based Clustering

Problems with Choosing the Parameters

* hierarchical clugers
« significantly differing densitiesin different areas of the dataspace

* clusters and noise are not well-separated

B, D',F, G
e D1, D2,

\/ Gl, G2, G3

156

3-digtance
/J
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4.4 Hierarchical Density-Based Clustering

BasiCS [Ankerd, Breunig, Kriegel & Sander 1999]

«for constant MinPts-value, density-based clusters w.r.t. a smaller € are
completely contained within dengity-based clustersw.r.t. alarger €

*the clusterings for different density parameters can be determined
smultaneously in asingle scan:

first dense sub-cluster, then less dense rest-cluster

» does not generate a dendrogramm, but a graphica visualization of the
hierarchical cluster structure
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4.4 Hierarchical Density-Based Clustering

Basics
Core distance of object p w.r.t. € and MinPts

UNDEFINED, if | N, (0) < MinPts

CoreDistance, s (0) = . .
’ MinPtsDistance(0), else

Reachability distance of object p relative zu object o

UNDEFINED, if |N,(0)|< MinPts

Reachability Distance, ;s (P,0) = . )
' max{Core Distancg(0) dist(o, p)}, else

—> Coredistance(o)
—> Reachability distance(p,0)
—> Reachability distance(q,0)

MinPts= 5
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4.4 Hierarchical Density-Based Clustering

Cluster Order

* OPTICS does not directly return a (hierarchicha) clustering,
but orders the objects according to a,,cluster order” w.r.t. € and MinPts

e cluster order w.r.t. € and MinPts

— start with an arbitrary object
— visit the object that has the minimum reachability distance from the set
of already visited objects
T(/ 1y T o
3 16 18 .
Core digtance 4 7\}‘ - a H
Reachability /4 ” 2 as A7
distance "
(Mt i ianlil > 25
cluster order
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4.4 Hierarchical Density-Based Clustering

Reachability Diagram
« depictsthe reachability distances (w.r.t. € and MinPts) of all objects
in abar diagram
* with the objects ordered according to the cluster order

8 8

8

g g

ko] ko]

2 2

3 3

g % cluster

= > = order
SFU, CMPT 740, 03-3, Martin Ester 160

25



4.4 Hierarchical Density-Based Clustering

Sensitivity of Parameters

MinPts=10,e=10 MinPts=10,e=5 MinPts=2,£=10
1 24 3

1 2 3

“optimum” parameters smaller € smaller MinPts

Q cluster order isrobust against changes of the parameters
good results aslong as parameters ,,large enough”
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4.4 Hierarchical Density-Based Clustering

Heuristics for Setting theParameters

* choose largest MinPts-distance in asample or
« calculate average MinPts-distance for uniformly distributed data

MinPts
» smooth reachahility-diagram
* avoid “single-link” effect

/ %
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4.4 Hierarchical Density-Based Clustering

Manual Cluster Analysis

Based on Reachability-Diagram
* arethere clugers?

» how many clusters?

* how large arethe clusters?

* arethe clugters hierarchically nested?

Reachahility-Diagram

Based on Attribute-Diagram
» why do clusters exist?
* what attributes allow

to diginguish the

different clusters? Attribute-Diagram
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4.4 Hierarchical Density-Based Clustering

Automatic Cluster Analysis

MLd il

&-Cluster

» subsequence of the cluster order

o startsin an area of &-steep decreasing
reachability distances

* endsin an area of §-steep increasing
reachability distances a approximately
the same absol ute value

* contains at |east MinPts objects

Algorithm
 determines dl &-clusters
» marksthe &-clustersin the reachability
diagram
* runtime compl exity O(n)
SFU, CMPT 740, 03-3, Martin Ester 164
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4.5 Database Techniques for Scalable Clustering

Goal

So far

* small datasets
* in main memory

Now

* very large datasets which do not fit into main memory
» data on secondary storage (pages)
random access orders of magnitude more expensve than in main memory

Q scalable clustering algorithms
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4.5 Database Techniques for Scalable Clustering

Use of Spatial Index Sructures or Related Techniques

* index structures obtain a coarse pre-clustering (micro-clusters)
neighboring objects are stored on the same / a neighboring disk
block

* index structures are efficient to construct
based on simple heuristics

» fast access methods for similarity queries
e.g. region queries and k-nearest-neighbor queries
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4.5 Region Queries for Density-Based Clustering

* basic operation for DBSCAN and OPTICS:
retrieval of e-neighborhood for a database object o

« efficient support of such region queries by spatial index structures such as
R-tree, X-treg, M-tres, . . .

* runtime compl exities for DBSCAN and OPTICS:

singlerange query whole agorithm
without index o(n) o(n?)
with index O(log n) O(nlog n)
with random access 0(1) O(n)

q gpatial index structures degenerate for very high-dimensiona data
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4.5 Index-Based Sampling

Method [Ester, Kriegel & Xu 1995]

* build an R-tree (often given)

* select sample objects from the data pages of the R-tree

* apply the clustering method to the set of sample objects (in memory)
» transfer the clugtering to the whole database (one DB scan)

R

sample has similar
distribution as DB

data pages
of an R-tree
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4.5 Index-Based Sampling

Transfer the Clustering to the whole Database

* For k-means- and k-medoid-methods;

apply the cluster representatives to the whole  database
(centroids, medoids)
* For density-based methods:
generate arepresentation for each cluster (e.g. bounding box)
assign each object to closest cluster (representation)
* For hierarchichal methods:
generation of ahierarchical representation (dendrogram or
reachability-diagram) from the sampleis difficult
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4.5 Index-Based Sampling

Choice of Sample Objects

How many objects per data page?

* depends on clustering method

* depends on the data digtribution

» e.g. for CLARANS: one object per data page

q good trade-off between clustering quality and runtime

Which objectsto choose?
» simple heurigtics: choose the ,, central” object(s) of the data page
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4.5 Index-Based Sampling

Experimental Evaluation for CLARANS

~

TD
PpoWwbh o
relative runtime

256 513 1027 2054 4108

256 513 1027 2054 4108

sample size sample size

e runtime of CLARANS is approximately O(n?)
* clustering quality stabilizes for more than 1024 sample objects
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4.5 Data Compression for Pre-Clustering

BasiCS [zhang, Ramakrishnan & Linvy 1996]

Method

* determine compact summaries of “micro-clusters’ (Clustering Features)
* hierarchical organization of clustering features
in a balanced tree (CF-tree)

* apply any clustering algorithm, e.g. CLARANS

to the leaf entries (micro-clusters) of the CF-tree
CF-tree
 compact, hierarchichal representation of the database

» conserves the “cluster structure”’
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4.5 Data Compression for Pre-Clustering
Basics

Clustering Feature of aset C of pointsX;: CF = (N, LS S§

N=|C]| number of pointsin C
N

LS=>_ X linear sum of the N points
i=1
N

SSEDIG square sum of the N points

i=1

CFs sufficient to calculate

* centroid q

» measures of compactness
» and distance functions for clusters
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4.5 Data Compression for Pre-Clustering
Basics
Additivity Theorem
CFs of two digoint clusters C, and C, are additive:

CF(C,0C,)=CF(C)+CF(Cy)=(N;+ N, LS +LS, QS +QS)
i.e. CFscan beincrementally calculated

Definition
A CF-treeisaheight-balanced tree for the storage of CFs.
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4.5 Data Compression for Pre-Clustering

Basics
Properties of a CF-tree
- Each innne node contains a most B entries [CF, child]
and CF; isthe CF of the subtree of child.
- A leaf node contains at most L entries [CF].
- Each leaf node has two pointers prev and next.
- The diameter of each entry in aleaf node (micro-cluster) does not exceed T.
Construction of a CF-tree
- Transform an object (point) p into clustering feature CF,=(1, p, p?).
- Insert CFjinto closest leaf of CF-tree (sSmilar to B*-tree insertions).

- If diameter threshold T isviolated, split the leaf node.
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4.5 Data Compression for Pre-Clustering

Example B=7L=5
| CR | O | CR | ] R root
child, | child,| childg childg
e CFE\\
O [ CRg | CRo | ] Fo | inner nodes
child; | childg| childg childy,
CF / CFy + N
prev 90 CF91 .......... CF99 next : wa nOd%
Il
SFU, CMPT 740, 03-3, Martin Ester 176

33



4.5 Data Compression for Pre-Clustering

BIRCH

Phase 1

* one scan of the whol e database

* construct a CF-tree B, w.r.t. T, by successive insertions of all data objects
Phase 2

¢ if CF-tree B, istoo large, choose T, > T,

* construct a CF-tree B, w.r.t. T, by inserting all CFs from the leaves of B,
Phase 3

capply any clustering agorithm to the CFs  (micro-clusters)
of the leaf nodes of the resulting CF-tree (instead to all database objects)

* clustering algorithm may have to be adapted for CFs
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4.5 Data Compression for Pre-Clustering
Discussion
+ CF-tree size / compression factor isa user parameter
+ efficiency
congtruction of secondary storage CF-tree: O(n log n) [page accesses)

congtruction of main memory CF-tree : O(n) [page accesses|

q additionally: cost of clustering algorithm

- only for numeric data
Euclidean vector space

- result depends on the order of data objects
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4.6 Special Requirements and M ethods

Overview

* categoric attributes

ana ogue to means as clugter representatives (see assignment)

* spatially extended objects
generalised dendty-based clustering

» clusters only in subspaces of the data space

subspace clustering
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4.6 Clustering of Spatially Extended Objects

Motivation
[S) . .
A4 . .
L[]
14 ° hd ° .
© center .
A4 ® .
Q —» ° [ ] [ ] o
transformation ° .
1% o o
v .
=Y U . . .
\4 .

center transformation destroys cluster structure
have to consider the spatial extenson of objects
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4.6 Clustering of Spatially Extended Objects

Generalized Density-Based Clustering
[Sander, Egter, Kriegel & Xu 1998]

»E-neighborhood contains at least MinPts objects’

dist(o,p) <€ IN;(0)] = MinPts
generdize l generdize
NPred(o,p) MinWeight(N,(o))
reflexive monotone
symmetric
Nipreg(0) = {p 1 D | NPred(o, p)} MinWei ght(Nyere(0))
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4.6 Clustering of Spatially Extended Objects

Examples
QT )
oo o v
NPred
dist(p,g) <¢ intersect(p,q) neighboring cell
with same color
MinWeight
cardinality(. . .) = MinPoints  sum of areas > true

5% of total area

SFU, CMPT 740, 03-3, Martin Ester

36



4.6 Clustering of Spatially Extended Objects
Algorithm GDBSCAN

* same agorithmic scheme as DBSCAN
* Nypreg-qQuery instead of N-query
* evaluate MinWei ght—predicate

instead of condition [N,| = MinPts
* runtime complexity O(n log n)

if Nypreg-Query efficiently supported, i.e. O(log n)

SFU, CMPT 740, 03-3, Martin Ester 183

4.6 Subspace Clustering

Motivation

salary
x10000

O 1 2 3 4 5 6 7 8 9 10
L J
01 2 3 4 5 6 7 8B 9 10

g
"%

R

clustersonly in
1-dimens onal subspace
2saary”

c!

O

20 25 30 35 40 45 50 55 60 65 T
age
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4.6 Subspace Clustering

CLIQUE [Agrawal, Gehrke, Gunopulos & Raghavan 1998]

1. identification of subspaces with clusters
2. identification of clusters
3. generation of cluster descriptions

e clugter: ,dense area’ in dataspace
* dendity-threshold 7

region isdense, if it contains more than 7 objects
* grid-based approach

each dimension isdivided into< intervals

cluster isunion of connected dense regions (region = grid cell)
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4.6 Subspace Clustering

| dentification of Subspaces with Clusters

* task: detect dense base regions

* naive approach:
calculate histograms for all subsets of the set of dimensions

== infeasible for high-dimensional datasets (O (2% for d dimensions)
* greedy algorithm (Bottom-Up)

start with the empty set

add one more dimension at atime

» foundation of this agorithm: monotonicity property
if aregion Rin k-dimensiona space is dense, then each projection of Rin
(k-1)-dimensional subspace is dense aswell (morethan7 objects)
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4.6 Subspace Clustering
Example

B | 2-dim. denseregions

Il | 3-dim. candidate region

[] | 2dim.region to betested

PRy | -

-

» runtime complexity of greedy algorithm O(¢* +n(k)

for n database objects and k = maximum dimension of a dense region
* heurigtic reduction of the number of candidate regions

application of the ,, Minimum Description Length“- principle
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4.6 Subspace Clustering

| dentification of Clusters

» task: find maximal sets of connected dense base regions
* given: all dense baseregionsin ak-dimensonal subspace
»  depth-first“-search of the following graph (search space)
nodes. dense base regions
edges: joint edges/ dimensions of the two base regions
* runtime complexity
dense base regionsin main memory (e.g. hash tree)
for each dense base region, test 2 k neighbors
= number of accesses of data structure: 2k n
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4.6 Subspace Clustering

Generation of Cluster Descriptions

* given: acluster, i.e. aset of connected dense base regions

» task: find optimal cover of this cluster

by a set of hyperrectangles I:I

» standard methods

infeasible for large values of d
the problem is NP-hard

* heurigic method
1. cover the cluster by maximal regions
2. remove redundant regions

O 1 2 3 4 56 7 8 9 10

01 23 45678 9 10
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4.6 Subspace Clustering

Experimental Evaluation

runtime

T T T T T 1
20000 [~ sec "tups-scale” ©—

15000

10000

5000

no. of tuples (x1000)
1 1 1 1 1

ol—1 1
100 150 200 250 300 350 400 450 500

q runtime complexity of CLIQUE
linear inn, superlinear

runtime

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

ind

@
g

T 1 1T 1T 1T 1T 1
*dim-scale” ©—

no. of dimensions—
[ N N N N B |

-
o

20 30 40 50 60 70 80 90 100
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4.6 Subspace Clustering
Discussion

+ automatic detection of subspaces with clusters
+ no assumptions on the data distribution

+ independent from the order of the data objects
+ scalable w.r.t. the number n of data objects

- accuracy crucially depends on parameter &
- needs a heurigtics to reduce the search space (all subsets of dimensions)
==) method isnot complete
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4.7 Outlier Detection

Overview

Definition

Outliers: objects significantly dissimilar from the remainder of the data
Applications

* Credit card fraud detection

» Telecom fraud detection

» Medical analysis
Problem

* Find top k outlier points
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4.7 Outlier Detection

Satistical Approach

Assumption
Statistical model that generates data set (e.g. normal distribution)

Use tests depending on

» data distribution £

. o - NN
» distribution parameter E 95%
(e.g., mean, variance) £ 0f \
. 2.5% 5%

S . nubrr;t;i of expected outliers ] 5\ 495%%21%28&\ }

raw S Data Values

» most tests are for single attribute

* data distribution may not be known
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4.7 Outlier Detection

Distance-Based Approach

Idea
outlier analysis without knowing data distribution
Definition
DB(p, t)-outlier:
object 0 in adataset D such that at least afraction p of the objectsin D has
adistance greater than t from o
Algorithms for mining distance-based ouitliers
* Index-based algorithm
* Nested-loop algorithm
* Cell-based algorithm
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4.7 Outlier Detection

Deviation-Based Approach

|dea
* ldentifies outliers by examining the main characterigtics of objectsin a
group
» Objectsthat “deviate” from this description are considered outliers
Sequential exception technique

» simulates the way in which humans can distinguish unusual objects from
among a series of supposedly like objects

OLAP data cube technique

* uses data cubes to identify regions of anomaliesin large multidimensional
data

» Example: city with sgnificantly higher salesincrease than itsregion
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