

4.1 Introduction

Clustering as Optimization Problem

Steps

1. Choice of model category
partitioning, hierarchical, density-based
2. Definition of score function
based on distance function
3. Choice of model structure
feature selection / number of clusters

4. Search for model parameters clusters / cluster representatives

SFU, CMPT 740, 03-3, Martin Ester

115

$$TD^2 = \sum_{i=1}^{k} TD^2(C_i)$$

SFU, CMPT 740, 03-3, Martin Ester

4.2 Selection of Representative Points
Algorithm PAM
<pre>PAM(dataset D, integer k, float dist) initialize the k medoids;</pre>
TD_Update := $-\infty$;
for each pair (medoid M, non-medoid N), calculate the value of TD _{N↔M} ;
choose the pair (M, N) with minimum value for TD_Update := $TD_{N\leftrightarrow M} - TD;$
<pre>if TD_Update < 0 then</pre>
replace medoid M by non-medoid N;
record the set of the k current medoids as the currently best clustering;
return best k medoids;
SFU, CMPT 740, 03-3, Martin Ester 132

4.7 Outlier Detection

Deviation-Based Approach

Idea

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers

Sequential exception technique

• simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects

OLAP data cube technique

- uses data cubes to identify regions of anomalies in large multidimensional data
- Example: city with significantly higher sales increase than its region

SFU, CMPT 740, 03-3, Martin Ester

195