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7. Mining Biological Data
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7.1 Introduction

Motivation

Many biological processes are not well-understood
Biological knowledge is

• Highly complex

• Descriptive and experimental
� Different from physics / chemistry

Wide availability of biological data
• Genome sequencing

• Protein sequencing

• Microarray expression data

Data mining methods to gain biological insights
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7.1 Proteins

Function

Structural Proteins

• Building blocks of various tissues

Enzymes

• Catalyze chemical reactions

Transporters

• Carry chemical elements from one part of organism to another

Antibody Proteins

• Part of the immune system

SFU, CMPT 740, 03-3, Martin Ester 330

7.1 Proteins

Structure

1D Structure
• Chains of amino-acids: AVFAMLCNFQDMAQSWKKKAVFAAGDE . . .

• 20 different amino-acids (one / three letter codes)

• Typical length of proteins: 3 to 400 amino-acids

Physico-chemical properties
• Hydrophic / hydrophile

• Charged / uncharged

• Polar / non-polar

same properties imply

similarity of proteins . . .. . .. . .. . .

PolarQGlnGlutamine

ChargedKLysLusine

HydrophobicAAlaAlanine

Physico-
chemical
Properties

One-
Letter

Code

Three-
Letter
Code

Amino-acid
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7.1 Proteins

Structure

2D Structure
• Subsequences of the 1D structure form 2D structures such as sheets, strands,

. . .

3D Structure
• Coordinates of the atoms in 3D space

• Known only for small subset of all sequenced
proteins

• Protein surface important for many
biological processes

Protein-Protein Docking
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7.1 Proteins

Databases

Swiss-Prot (http://www.ebi.ac.uk/swissprot/)

• Proteins with their 1D structure

• Entries have been checked for sequencing errors

• Entries have a textual description (annotation): organism, function,
references to publications, other related information

• Currently, 120‘960 entries

Protein Data Bank (PDB) (http://www.rcsb.org/pdb/)

• Proteins with their 1D, 2D and 3D structure

• Plus annotations

• Currently, 17‘828 protein entries



4

SFU, CMPT 740, 03-3, Martin Ester 333

7.1 DNA (Desoxyribonucleic Acid)
Basics

Function
• Genetic information (genome)

• Codes proteins

Structure
• Chain of nucleotides (bases)

• Four different nucleotides:
Adenine (A), Guanine (G), Cytosine (C), Thymine (T)

• Two interconnected parallel strands of nucleotides (double helix)

• Second strand is redundant

DNA can be represented as sequence of nucleotides
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7.1 DNA
DNA and Proteins

Structure
• Triplets of nucleotides code one amino-acid

• Genetic code: 64 different nucleotide triplets� 20 different amino-acids

redundancy

• genome� chromosomes� genes� triplets

= =

protein amino-acid

Genes
• Protein coding region (exon / expressed region)

• Delimited by start / stop codons

• Largest part of genome is non-coding (introns)

95% of human genome is non-coding
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7.1 DNA

Mutations

Types

• Substitutions
one base�� another base

• Insertions
of one or more bases

• Deletions
of one or more consecutive bases

At gene level or (less frequently) at protein level

Protein mutations may destroy function / create new function
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7.1 Sequence Alignment

Goal
• Given two or more input sequences

• Identify similar sequences with long conserved subsequences

Method
• Use substitution matrices (probabilities of substitutions of amino-acids / bases)

and probabilities of insertions and deletions

• Optimal alignment problem: NP-hard

• Heuristic method to find good alignments

• Many algorithms, e.g. BLAST

• Result:
Alignment of the input sequences
Similarity measures, score and % sequence identity (for two input sequences)
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7.1 Sequence Alignment

Example

Input: ABFGRP, BDFLRP, AFRP

AB-FGRTP

-BDFLR-P - gap

A--F-R-P

Output: abdFlR-P (capital letters conserved in all sequences)

� Consensus sequence
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7.1 Sequence Alignment

Example

Input: AAAAABBBBB, BBBBBAAAAA

Solution 1: -----AAAAABBBBB Output: AAAAA

BBBBBAAAAA-----

Solution 2: -----BBBBBAAAAA Output: BBBBB

AAAAABBBBB-----

� One of the two domains (AAAAA, BBBBB) will always be missed
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7.1 Mining Biological Data

Data Mining Tasks

Tissue classification from micro-array data

• Input: micro-array data for a small number of tissues from two classes

(e.g., cancer and normal)

• Goals: (1) accurate classification and (2) discovery of responsible genes

Protein subcellular localization prediction

• Input: protein sequences with their subcellular localization types

(e.g., cytoplasmic, periplasmic and extracellular)

• Goals: (1) accurate classification and (2) insight into the determining factors
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7.1 Mining Biological Data

Data Mining Tasks

Protein secondary structure prediction

• Input: set of proteins with sequences and 3D structures

• Goal: accurate prediction of the (unknown) 3D structure based on the

(known) sequence

� Structure is a strong indicator of function

Detection of protein families

• Input: set of protein sequences

• Goal: hierarchical structure of protein superfamilies, families, . . .

� Clustering problem
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7.1 Mining Biological Data

Challenges
• Ambiguity of genetic and protein sequences

Same sequence can have different functions, different sequences same function

• High percentage of noise

Large portions of genetic data seem to carry no information

• Representation of sequence and 3D data

No straightforward mapping to a feature space

• Integration of different datatypes

Sequence, 3D, textual, micro-arrays, . . .

• High precision

Required for biological applications

• Understandability of discovered knowledge (biological insights!)
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Motivation

• Similar sequences have the same or similar function with a high probability

• Typically large portions of DNA or protein sequences are considered to be noise

• Sequential patterns determining the function are expected to be relatively short
and to occur much more frequently than (random) noise patterns

Find frequent (sub)sequences / patterns

• Many frequent sequences

• Find only interesting frequent sequences

E.g., find maximal frequent patterns,
(all of its superpatterns are infrequent)

7.2 Mining Frequent Sequential Patterns
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7.2 Mining Frequent Sequential Patterns

Approaches

Bottom-Up Enumeration
• Begin with empty pattern

• Extend in all possible ways A B D K

• If extension has minimum support, AA AD DA DD

then continue extending it, AAD ADD

else discard the extended pattern

Top-Down Alignment
• Align all pairs of sequences ABDDKA BADDKDFF BBADD

• Continue aligning the alignments ADDK BADD

until their support reaches minimum support ADD
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7.2 Frequent Sequential Patterns in Transactional Data

Overview
Data

• Sequences of transactions
• Transaction: set of items or attribute-value pairs (with timestamp)

Patterns

((T = 90F) → (H=60%, P=1.1atm))

time t1 Later time t2

attribute value

item

itemitem

itemset

• k-sequence: sequence /pattern with k items

Examples: T1→H2P1T3→P2 and P1T2→H4P2T5 are 5-sequences

• S1 is subsequence of S2 (S1 ≤ S2)

T1→P1T2 ≤ H1T1→P2→H2P1T2 (T1 ⊆ H1T1 , P1T2 ⊆ H2P1T2)
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7.2 Frequent Sequential Patterns in Transactional Data

Example
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7.2 Frequent Sequential Patterns in Transactional Data

GSP [Srikant & Agrawal 1996]

Problem Specification
• Sliding window model with maximum gap / minimum gap

• Item taxonomy / graph

Bottom-Up Enumeration
• Candidate generation

Generate (join) k-candidates from two k-1 frequent patterns
(a) (b) (c) and (b) (c) (d)� (a) (b) (c) (d)

• Support counting

Hash-tree for storing candidates
Transform data sequences using item taxonomy
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7.2 Frequent Sequential Patterns in Transactional Data

Discussion

Breadth-first search
• Generate all k-1-patterns before starting with the k-candidates

• Number of patterns may become very large

� Not all candidates fit into memory

Support counting
• Requires one DB scan for each level / length of patterns

• Very expensive operation

� Need more efficient method
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SPADE [Zaki 2001]

Depth-first search
• Extend a frequent k-sequence until it becomes infrequent

before considering another k-sequence

• Need only the path from the root of the lattice (of all patterns) to the
current sequence in main memory

Less pruning possible

Vertical representation
• For a candidate sequence, store list of occurrences

(sequence, position) or (lid, time) resp.
• Initially, representation of the database:

For each 1-sequence, store its occurrences
• Support counting: merge of two lists� no DB access

7.2 Frequent Sequential Patterns in Transactional Data
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Example

7.2 Frequent Sequential Patterns in Transactional Data
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Comparison with Mining Biological Data

• Data is sequences of sets of items instead of sequences of single

symbols.

• Sequential order represents temporal, not spatial relationship.

• Many short data sequences, instead of few long ones.

• No explicit gaps in patterns (gaps do not matter).

• Typically, these methods discover all frequent patterns.

7.2 Frequent Sequential Patterns in Transactional Data
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Pattern Types

Concrete patterns
• Strings from the alphabet Σ (nucleotides or amino-acids)

ABDAWWF

With rigid gaps

• Introduce “.” (matches one arbitrary symbol from Σ)

A. . .BDA..W.WF

With unrestricted gaps
• Introduce “*” (matches zero or more arbitrary symbols from Σ)

ABD*AWW*F

7.2 Frequent Sequential Patterns in Biological Data
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Pattern Types

With concepts
• Introduce concepts (subsets of Σ), e.g. “unchargedBLLApositivenegative”

• With a tree structure or even a graph structure

ALL

charged uncharged

positive negative E G K W

A D P Q B C F

7.2 Frequent Sequential Patterns in Biological Data
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TEIRESIAS [Rigoutsos & Floratos 1998]

• Pattern class: Σ (Σ U {‘.’})* Σ

e.g. A.CH..E or SA.CH..E

• Restricted to <l,w> patterns with l <= w: every subpattern of length w or more

contains at least l symbols from Σ

patterns must be “dense enough”

• Finds all maximal <l,w> patterns

with support of at least min-supp

7.2 Frequent Sequential Patterns in Biological Data
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Method

Scanning phase

• Determine all elementary patterns: frequent <l,w> patterns with exactly l

symbols from Σ

• Ex.: <3,4> patterns F.AS, AST, AS.S, STS, A.TS

Convolution phase

• Join pairs of elementary patterns P1 and P2 where the suffix of P1 is identical

to the prefix of P2 (convolution)

• Ex.: F.AS and AST� F.AST and AST

F.AST and STS� F.ASTS

7.2 Frequent Sequential Patterns in Biological Data
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Example

QK...LLI.K.PFQ...R.I FQ...R.IAQ..K.D.R

3 / 50 1 / 78

5 / 48 3 / 62

7 / 51 3 / 89

9 / 51 8 / 47

9 / 63

QK...LLI.K.PFQ...R.IAQ..K.D.R

3 / 50

9 / 51

+

7.2 Frequent Sequential Patterns in Biological Data
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Discussion

Properties

• Can extend patterns by more than one symbol at a time

• Maximal patterns generated before non-maximal subpatterns

• Compare new frequent pattern with all frequent patterns already discovered

� Use hash table to efficiently locate superpatterns

• Returns only maximal patterns

• Generates all such patterns

• Can also handle concept trees / graphs

7.2 Frequent Sequential Patterns in Biological Data
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Top-Down Alignment Method [Martinez 1988]

• Align all pairs of input sequences

• Pairwise alignments have (at least) a support of two

• Score all pairwise alignments and order them according to decreasing score

place similar alignments close together

• Iteratively, keep aligning the alignments

until their support reaches minimum support

7.2 Frequent Sequential Patterns in Biological Data
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Other Alignment Methods

• Use pairwise alignments to create dendrogram

and apply hierarchical clustering algorithm

• Perform multiple sequence alignment

and create consensus sequence directly

Generates only one pattern (consensus pattern)

7.2 Frequent Sequential Patterns in Biological Data
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Overview

Feature Selection

Support Vector Machines (SVM)

• Application for sequence classification

Markov Models

• Markov chains

• Hidden Markov models

7.3 Sequence Classification
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Types of Features

Amino-acid / Nucleotide Composition
• 20 dim. / 4 dim. vectors

Physico-chemical properties

• Hydrophobicity, charge, polarity, size, . . .

Subsequences

• All possible subsequences of length k

• All frequent subsequences

7.3 Sequence Classification
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Feature Selection

Method

• Measure the relevance of features w.r.t. classification:

T-test for continuous attributes

Mutual information for categorical attributes

• Consider the redundancy of features

Minimize correlation among selected features

�Weighted combination of relevance and redundancy

• Greedily, select top k features

7.3 Sequence Classification

σ
µµ 21 −=t
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SVM for Protein Classification [Leslie et al 2002]

• Two sequences are similar when they share many common substrings
(subsequences)

•

and |s| denotes the length of string s

• Very high classification accuracy for protein sequences

• Variation of the kernel (when allowing gaps)

length(s,x): length of the subsequence of x matching s

parameteraiswhere)',( || λλ∑=
substringcommons

sxxK

∑
+=

substringcommons

xslengthxslengthxxK )',(),()',( λ

7.3 Sequence Classification
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SVM for Prediction of Translation Initiation Sites [Zien et al 2000]

• Translation initiation site (TIS): starting position of a protein coding region in DNA

all TIS start with the triplet “ATG”

• Problem: given an “ATG” triplet, does it belong to a TIS?

• Representation of DNA

window of 200 nucleotides around candidate “ATG”

encode each nucleotide with a 5 bit word (00001, 00010, . . ., 10000) for

A, C, G, T and unknown

� Vectors of 1000 bits

7.3 Sequence Classification
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SVM for Prediction of Translation Initiation Sites

• Kernels

d = 1: number of common bits

d = 2: number of common pairs of bits

. . .

locally improved kernel: compare only small window around “ATG”

• Experimental results

long range correlations do not improve performance

locally improved kernel performs best

outperforms state-of-the-art methods

d)(x.x')',( =xxK

7.3 Sequence Classification
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Markov models

• Markov chains (Markov models)

Symbol in a sequence depends only on its preceding symbol(s)

Can be used for classification

[Deshpande & Karypis 2002]

• Hidden Markov Models

Symbol in a sequence depends on a hidden state

State depends on preceding state

7.3 Sequence Classification
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1-order Markov Chains

• For each class, determine the conditional probabilities P(si|sj)

� For each pair of symbols si and sj

• For each class ci, calculate the probability P(s| ci)

of observing the given sequence

• Choose the class with the highest likelihood

• Decision function for two classes (+ and -)

Lssss L21=

)|(),|(),|()|( 1121 iiiLLi csPcssPcssPcsP ⋅⋅⋅= − L

∑
= −

−

−
+=

L

i ii

ii
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1

),|(
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7.3 Sequence Classification
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Higher-order Markov Chains

Idea

• Symbol in a sequence depends on all its k preceding symbols

Discussion

• In general: higher classification accuracy than 1-order Markov chains

• But

Exponential number of transition probabilities

Hard to accurately estimate these probabilities

7.3 Sequence Classification
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Hidden Markov Models

• Goal: distinguish patterns (motifs) from background in a sequence

motif: relatively short highly conserved region in a biological sequence

• Hidden Markov Model (HMM)

Generative process for motifs/patterns of length L with

consensus pattern (motif)

noise level ε

frequency F

• Hidden states: one for each position of the motif, one for the background

Determines the next symbol to be generated (multinomial distribution)

Determines the next state (transition probabilities)

7.3 Sequence Classification



22

SFU, CMPT 740, 03-3, Martin Ester 369

Basics

• Background state: probability of symbols = frequency in background

• Pattern states

Symbol at position i in consensus pattern: probability

Other symbols: probability

• Example (consensus pattern ABBD, uniform background)

LiPi ≤≤1,

ε−1
ε

B P1 P2 P3 P4

1.0 1.0 1.0

1.0

0.99
0.01

A B C D

0.25 0.25 0.25 0.25

A

0.9

B

0.9

B

0.9

D

0.9

7.3 Sequence Classification
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Overview

Alignment-Based Methods
• Pairwise alignment allows to define similarity / distance

• Hierarchical agglomerative clustering

• Connected components of graph

Frequent-Sequence-Based Methods

• No alignment, but mining of frequent subsequences

• Use vector space model and any applicable algorithm

7.4 Sequence Clustering
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Alignment-Based Methods

Hierarchical agglomerative clustering [Barton & Sternberg 1987]

• Perform all pairwise alignments

• Define appropriate similarity measure:

percentage identity, normalised alignment score (raw score divided by

the length of the alignment), etc.

• Apply agglomerative hierarchical clustering

Runtime complexity > O(n2)

7.4 Sequence Clustering
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Alignment-Based Methods

Connected components of graph [Bolten et al 2000]

• Homologue proteins: share an ancestor

• Many homologue proteins do not have a significant sequence similarity

• Need to consider transitivity of homology

• Construct a graph: nodes = sequences, edges = significant sequence similarity

• Clusters: connected components of this graph

� Runtime for clustering SwissProt: 600 CPU days

7.4 Sequence Clustering
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Frequent-Sequence-Based Methods

Method [Guralnik & Karypis 2001]

• Determine all frequent subsequences

• Efficiently select relevant subset of these sequences (features)

• Count occurrences of features (vector space model)

• Apply any clustering algorithm for vector spaces

e.g. k-means

Very efficient

But feature selection is difficult

7.4 Sequence Clustering
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