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7.1 Introduction
Motivation

Many biological processes are not well-understood
Biological knowledgeis
* Highly complex
» Descriptive and experimental
—> Different from physics/ chemidiry
Wide availability of biological data
» Genome sequencing
» Protein sequencing
* Microarray expression data

q Data mining methods to gain biological insights
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7.1 Proteins

Function

Structura Proteins

* Building blocks of various tissues

Enzymes

» Catalyze chemical reactions

Transporters

» Carry chemical elements from one part of organism to another
Antibody Proteins

» Part of theimmune system
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7.1 Proteins

Sructure

1D Structure

» Chainsof amino-acids: AVFAMLCNFQDMAQSWKKKAVFAAGDE . ..
» 20 different amino-acids (one/ threeletter codes)

» Typical length of proteins: 3 to 400 amino-acids

Physico-chemical properties |*™"™¢ | e |Dne | Feee.

« Hydrophic/ hydrophile Code | cCode | Properties

» Charged/ uncharged Alanine Ala A Hydrophobic

» Polar / non-polar Lusine Lys K Charged
same propertiesimply Glutamine | GIn Q Polar
similarity of proteins
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7.1 Proteins

Sructure

2D Structure
» Subsequences of the 1D gructure form 2D structures such as sheets, strands,

3D Structure

» Coordinates of the atomsin 3D space

*  Known only for small subset of all sequenced
proteins

* Protein surface important for many
biological processes

Protein-Protein Docking
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7.1 Proteins

Databases

Swiss-Prot (http://www.ebi.ac.uk/swissprot/)
» Proteinswith their 1D structure
» Entries have been checked for sequencing errors

» Entries have atextua description (annotation): organism, function,
references to publications, other reated information

» Currently, 120°960 entries

Protein Data Bank (PDB) (http://www.rcsb.org/pdby/)
» Proteinswith their 1D, 2D and 3D gructure

* Plusannotations

» Currently, 17828 protein entries
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7.1 DNA (Desoxyribonucleic Acid)
Basics

Function
* Genetic information (genome)
» Codes proteins

Structure
» Chain of nucleotides (bases)
» Four different nuclectides:
Adenine (A), Guanine (G), Cytosine (C), Thymine (T)
» Two interconnected parallel strands of nucleotides (double helix)
» Second strand isredundant
Q DNA can be represented as sequence of nucleotides
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7.1 DNA

DNA and Proteins

Structure

» Triplets of nucleotides code one amino-acid

» Genetic code: 64 different nucleotide triplets > 20 different amino-acids
redundancy

e genome—>  chromosomes > genes > triplets

protein amino-acid
Genes
» Protein coding region (exon / expressed region)
» Deimited by start / stop codons
» Largest part of genome isnon-coding (introns)
95% of human genomeis non-coding
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7.1 DNA

Mutations

Types

Substitutions
one base <—> another base

Insertions
of one or more bases

Deletions
of one or more consecutive bases

At geneleve or (less frequently) at protein level
{ Protein mutations may destroy function / create new function
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7.1 Sequence Alignment

Goal

Given two or more input sequences
Identify similar sequences with long conserved subsequences

Method

Use substitution matrices (probabilities of substitutions of amino-acids/ bases)
and probabilities of insertions and del etions

Optimal alignment problem: NP-hard
Heurigtic method to find good alignments
Many algorithms, e.g. BLAST

Result:
Alignment of the input sequences
Similarity measures, score and % sequence identity (for two input sequences)
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7.1 Sequence Alignment

Example

Input: ABFGRP, BDFLRP, AFRP
AB- FGRTP
- BDFLR- P - gap
A--F-RP

Output: abdFIR-P (capital letters conserved in al sequences)

- Consensus sequence
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7.1 Sequence Alignment

Example

Input: AAAAABBBBB, BBBBBAAAAA

Solution1:  ----- AAAAABBBBB Output: AAAAA
BBBBBAAAAA- - - - -

Solution2:  ----- BBBBBAAAAA Output: BBBBB
AAAAABBBBB- - - - -

—> One of thetwo domains (AAAAA, BBBBB) will always be missed
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7.1 Mining Biological Data

Data Mining Tasks

Tissue classification from micro-array data

* Input: micro-array data for a small number of tissues from two classes
(e.g., cancer and normal)

*» Goals: (1) accurate classification and (2) discovery of responsble genes

Protein subcellular localization prediction

* Input: protein sequences with their subcellular localization types
(e.g., cytoplasmic, periplasmic and extracel lular)

*» Goals: (1) accurate classification and (2) indght into the determining factors
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7.1 Mining Biological Data
Data Mining Tasks

Protein secondary structure prediction
* Input: set of proteins with sequences and 3D structures

* Goal: accurate prediction of the (unknown) 3D structure based on the
(known) sequence

- Structureisastrong indicator of function

Detection of protein families

* Input: set of protein sequences

* Goal: hierarchical gructure of protein superfamilies, families, . . .
—> Clustering problem
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7.1 Mining Biological Data

Challenges
» Ambiguity of genetic and protein sequences
Same sequence can have different functions, different sequences same function
* High percentage of noise
Large portions of genetic data seem to carry no information

* Representation of sequence and 3D data
No straightforward mapping to a feature space

* Integration of different datatypes
Sequence, 3D, textual, micro-arrays, . . .
* High precision
Required for biological applications
* Undersgtandability of discovered knowledge (biological insights!)
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7.2 Mining Frequent Sequential Patterns

Motivation

» Similar sequences have the same or similar function with ahigh probability
* Typically large portions of DNA or protein sequences are considered to be noise

* Sequential patterns determining the function are expected to be relatively short
and to occur much more frequently than (random) noise patterns

q Find frequent (sub)sequences/ patterns

» Many frequent sequences
* Find only interesting frequent sequences

E.g., find maximal frequent patterns,
(all of its superpatterns are infrequent)
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7.2 Mining Freguent Sequential Patterns

Approaches
Bottom-Up Enumeration
* Begin with empty pattern
 Extend in &l possible ways A B D K
* If extension has minimum support, AA AD DA DD
then continue extending it, AAD ADD
€l se discard the extended pattern
Top-Down Alignment
* Align all pairs of sequences ABDDKA BADDKDFF BBADD
* Continue digning the dignments ADDK BADD
until their support reaches minimum support ADD
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7.2 Freguent Sequential Patternsin Transactional Data

Overview
Data
* Sequences of transactions
* Transaction: set of items or attribute-value pairs (with timestamp)

Patterns  timet1

Later timet2
— | |
(T=90F) - (H=60%, P=1.1am))
attribute  value _item item
i | itemset
item

* k-sequence: sequence /pattern with k items

Examples; T1- H2P1T3- P2 and P1T2- H4P2T5 are 5-sequences
* Slissubsequenceof S2 (S1 < S2)
T1-PIT2<HIT1-P2-H2P1T2 (T10OH1T1,P1T20H2P1T2)
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7.2 Freguent Sequential Patternsin Transactional Data

DATABASE
| Lid Time FEvent | Lid  Time Event Lid Time FEvemt | Lid  Time Event
0 0 H2 4 0 H2 8 0 PIH2 12 0 I
0 1 2 4 1 12 8 1 12 12 1 H3
0 2z P3T3 4 2 P31 8 2 P3T3 12 2 P2
1 0 H2T3 5 0 I 9 0 H2T3 13 0 I
| 1 2 5 1 H3PI 9 1 2 13 1 H3P
1 2 I3 5 2 P2 9 2 HIT3 13 2 P2
2 0 PIH2 6 0 Il 10 0 I'l 14 0 H2
2 1 I2 6 1 H3PI 10 1 H3P1 14 1 r2
2 2z HIT3 (1] 2 P2 10 2 P2 14 2 3
k] 0 H2 1 0 Il 11 0 Il 15 0 I
3 1 T2 7 1 H3PI 11 1 H3PI 15 1 3P
3 2 HIT3 7 2 P2 11 2 P2 15 2 P2
_ FREQUENT SEQUENCES
Frequent Frequent Frequent
| I-sequences  2-sequences | 3-sequences
H2 8 1212 8 [ H2ST2-T3 &
H3 8  pH2—13 8 | TI—H3P1 8
Example Pl 8 12,73 8 [TI>H3»P2 8
P2 8 1,13 8 | TIoPIoP2 8
I 8 11,p1 8| H3PI>P2 8|
Ti g I'l—-p2 8 Frequent
! H3PL 8 I-sequences
H3=P2 8 | TI=aH3PI-P2 8
Pl»pP2 8
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7.2 Freguent Sequential Patternsin Transactional Data

GSP [Srikant & Agrawal 1996]

Problem Specification
* Sliding window model with maximum gap / minimum gap
* Item taxonomy / graph

Bottom-Up Enumeration
* Candidate generation
Generate (join) k-candidates from two k-1 frequent patterns
(@ (b) (c) and (b) (c) (d) > (&) (b) (c) (d)
* Support counting
Hash-tree for storing candidates
Transform data sequences using item taxonomy
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7.2 Freguent Sequential Patternsin Transactional Data

Discussion

Breadth-first search
» Generate al k-1-patterns before starting with the k-candidates
» Number of patterns may become very large

- Not al candidates fit into memory

Support counting
* Requires one DB scan for each level / length of patterns
* Very expensive operation

- Need more efficient method

SFU, CMPT 740, 03-3, Martin Ester 347

7.2 Freguent Sequential Patternsin Transactional Data

SPADE [zaki 2001]

Depth-first search
» Extend afrequent k-sequence until it becomes infregquent
before considering another k-sequence
* Need only the path from theroot of thelattice (of all patterns) to the

current sequence in main memory
Less pruning possible

Vertical representation
» For acandidate sequence, storelist of occurrences
(sequence, position) or (lid, time) resp.
 Initialy, representation of the database;
For each 1-sequence, storeits occurrences
» Support counting: merge of two lists > no DB access

SFU, CMPT 740, 03-3, Martin Ester 348

11



_Sequential Patterns in Transactional Data

CETET-T -1
R BRI B R R R |

_Sequential Patterns in Transactional Data

Comparison with Mining Biological Data

» Datais sequences of sets of items instead of sequences of single
symbols.

* Sequential order represents temporal, not spatial relationship.
» Many short data sequences, instead of few long ones.

* No explicit gaps in patterns (gaps do not matter).

» Typically, these methods discover all frequent patterns.
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7.2 Frequent Sequential Patternsin Biological Data

Pattern Types
Concrete patterns
* Strings from the al phabet Z (nucleotides or amino-acids)
ABDAWWF
With rigid gaps

* Introduce “.” (matches one arbitrary symbol from %)
A...BDA.W.WF

With unrestricted gaps
* Introduce “*” (matches zero or more arbitrary symbols from %)
ABD* AWW*F
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7.2 Frequent Sequential Patternsin Biological Data
Pattern Types

With concepts
* Introduce concepts (subsets of %), e.g. “unchargedBL L Apositivenegative’
* With atree structure or even a graph structure

ALL
charged uncharged
T
positive negative E G KW
e /N
A D P Q B C F
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7.2 Frequent Sequential Patternsin Biological Data

TEIRES AS[Rigoutsos & Floratos 1998

s Patterncdlass: = (Z U {".'})* =
eg. A.CH..Eor SA.CH..E

* Restricted to <l,w> patternswith | <= w: every subpattern of length w or more

contains at least | symbolsfrom =
q patterns must be “ dense enough”

* Finds all maximal <l,w> patterns

with support of at least min-supp
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7.2 Frequent Sequential Patternsin Biological Data
Method

Scanning phase

» Determine all elementary patterns. frequent <I,w> patternswith exactly |
symbols from &

* Ex.: <3,4> patterns F.AS, AST, AS'S, STS A.TS

Convolution phase

* Join pairs of elementary patterns P1 and P2 where the suffix of P1 isidentical
to the prefix of P2 (convolution)

*Ex.. F.ASand AST - F.AST and AST
F.AST and STS > F.ASTS

SFU, CMPT 740, 03-3, Martin Ester 354

14



7.2 Frequent Sequential Patternsin Biological Data

Example
QK...LLI.K.PFQ..RII FQ..RIAQ.K.D.R
3/50 1/78
5/48 3/62
7/51 3/89
9/51 8/47
9/63
QK...LLI.K.PFQ..RIAQ..K.D.R
3/50
9/51
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7.2 Frequent Sequential Patternsin Biological Data
Discussion

Properties

* Can extend patterns by more than one symbol at atime

» Maximal patterns generated before non-maximal subpatterns

» Compare new freguent pattern with al frequent patterns aready discovered
- Use hash table to efficiently locate superpatterns

* Returns only maximal patterns

» Generates al such patterns

* Can also handle concept trees/ graphs

SFU, CMPT 740, 03-3, Martin Ester 356

15



7.2 Frequent Sequential Patternsin Biological Data

Top-Down Alignment Method [Martinez 1988]

* Align all pairs of input sequences

* Pairwise alignments have (at |east) a support of two

* Score all pairwise alignments and order them according to decreasing score
place similar alignments close together

o Iteratively, keep aligning the alignments

until their support reaches minimum support

SFU, CMPT 740, 03-3, Martin Ester 357

7.2 Frequent Sequential Patternsin Biological Data
Other Alignment Methods
* Use pairwise alignmentsto create dendrogram
and apply hierarchical clustering algorithm

* Perform multiple sequence alignment
and create consensus sequence directly

q Generates only one pattern (consensus pattern)
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7.3 Sequence Classification
Overview
Feature Selection

Support Vector Machines (SVM)
* Application for sequence classification

Markov Models
* Markov chains

» Hidden Markov models
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7.3 Sequence Classification
Types of Features
Amino-acid / Nucleotide Composition
* 20dim. / 4 dim. vectors
Physico-chemical properties
 Hydrophobicity, charge, polarity, size, . . .

Subsequences
* All possible subsequences of length k
* All frequent subsequences
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7.3 Sequence Classification

Feature Sdlection

Method
» Measure the relevance of features w.r.t. classification:

T-test for continuous attributes (= M=

Mutual information for categorica attritites

* Consider the redundancy of features
Minimize correlation among selected features
- Weighted combination of relevance and redundancy
* Greedily, select top k features

SFU, CMPT 740, 03-3, Martin Ester

361

7.3 Sequence Classification
SVM for Protein Classification [Ledieet a 2002]

» Two sequences are Smilar when they share many common substrings
(subsequences)
‘K(x,x)= > A where A is a parameter

s common substring

and |g| denotes the length of string s

* Very high classification accuracy for protein sequences
* Variation of the kernel (when allowing gaps)

K(X, XI) — Z/]Iength(s,x)ﬂength(s,x')

s common substring
length(sx): length of the subsequence of x matching s
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7.3 Sequence Classification

SVM for Prediction of Trandation Initiation Stes[zien et a 2000]

* Trandation initiation site (T1S): starting position of a protein coding region in DNA
al TIS gart with the triplet “ATG”
* Problem: given an “ATG” triplet, doesit belongtoaTIS?

* Representation of DNA
window of 200 nuclectides around candidate “ATG”

encode each nucleotide with a 5 bit word (00001, 00010, . . ., 10000) for
A, C, G, T and unknown

- Vectors of 1000 hits

SFU, CMPT 740, 03-3, Martin Ester 363

7.3 Sequence Classification
SVM for Prediction of Translation Initiation Stes

* Kernels
K(x,X') = (xx")* d = 1: number of common bits
d = 2: number of common pairs of bits

locally improved kernel: compare only small window around “ATG”
* Experimental results
long range correl ations do not improve performance
locally improved kernel performs best
outperforms state-of-the-art methods
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7.3 Sequence Classification

Markov models

» Markov chains (Markov models)

Symbol in a sequence depends only on its preceding symbol(s)
Can be used for classification
[Deshpande & Karypis 2002]

* Hidden Markov Models

Symbol in a sequence depends on ahidden state
State depends on preceding state
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7.3 Sequence Classification

1-order Markov Chains

» For each class, determine the conditional probabilities P(s|s)
— For each pair of symbols s and 5
» For each class ¢, calculate the probability P(s| ¢)
of observing the given sequence S=SS,--+S
P(slc) =P(s [s.4.6) L-P(s, |s,6) P(s | )
¢ Choose the class with the highest likelihood
* Decision function for two classes (+ and -)

-tz
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7.3 Sequence Classification

Higher-order Markov Chains

|dea
» Symboal in a sequence depends on all its k preceding symbols
Discussion
* In general: higher classification accuracy than 1-order Markov chains

* But

q Exponential number of transition probabilities
Hard to accurately estimate these probabilities
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7.3 Sequence Classification
Hidden Markov Models

* Goal: digtinguish patterns (motifs) from background in a sequence
motif: relatively short highly conserved region in a biological sequence
* Hidden Markov Model (HMM)
Generative process for motifs/patterns of length L with
consensus pattern (motif)
noiselevel €
frequency F
* Hidden states: one for each position of the motif, onefor the background
Determines the next symbol to be generated (multinomial distribution)
Determines the next state (transition probabilities)
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7.3 Sequence Classification
Basics
 Background state: probahility of symbols = frequency in background
* Paternstates P 1<i<L

Symbol at position i in consensus pattern: probability 1— &
Other symbols:  probability €

» Example (consensus pattern ABBD, uniform background)

A B B D

001 [99] 10[99] 100910 |09
0.99 <\ @ P P, P; P,

A &

A B C D
0.250.25 0.25 0.25 1.0
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7.4 Sequence Clustering
Overview

Alignment-Based Methods
* Pairwise alignment allows to define similarity / distance

* Hierarchical agglomerative clustering
» Connected components of graph

Frequent-Sequence-Based Methods
» No alignment, but mining of frequent subsegquences

* Use vector space model and any applicable algorithm
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7.4 Sequence Clustering

Alignment-Based Methods

Hierarchical agglomerative clustering [Barton & Sternberg 1987

* Perform all pairwise aignments

* Define appropriate Smilarity measure:
percentage identity, normalised alignment score (raw score divided by
the length of the dignment), etc.

» Apply agglomerative hierarchical clustering

q Runtime complexity > O(n?)
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7.4 Sequence Clustering
Alignment-Based Methods

Connected components of graph [Bolten et al 2000]

» Homologue proteins. share an ancestor

» Many homol ogue proteins do not have a significant sequence similarity

* Need to consider trangtivity of homol ogy

» Congtruct a graph: nodes = sequences, edges = significant sequence similarity

* Clugters: connected components of this graph

- Runtime for clustering SwissProt: 600 CPU days
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7.4 Sequence Clustering

Frequent-Sequence-Based Methods

Method [Guralnik & Karypis 2001]

* Determine dl frequent subsequences

« Efficiently select relevant subset of these sequences (features)
» Count occurrences of features (vector space model)

* Apply any clustering algorithm for vector spaces

e.g. k-means
q Very efficient
But feature sdlection isdifficult
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