_ and Frequent Pattern Analysis

Contents of this Chapter

6.1 Introduction
6.2 Basic Association Rules

6.3 Generalized Association Rules

I s, ompT 740,033, marin estr 218

Motivation
{ butter, bread, milk, sugar}
{butter, flour, milk, sugar}
{ butter, eggs, milk, salt} DB of Sales Transactions
> {eggs}
{butter, flour, milk, salt, sugar}

Market basket analysis
» Which products are frequently purchased together?
* Applications

— Improvement of store layouts

— Cross marketing
— Attached mailings/add-on sales
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Association Rules

Rule form Buy both
“Body —» Head [support, confidence]”
Examples Buy beer
Buy diapers

buy(X, “diapers’) — buy(X, “beer”) [0.5%, 60%]
major(X, “cs’) a takes(X, “db”) — grade(X, “A”) [1%, 75%]

98% of all customersthat buy car tires and assecories, bring their carsfor
service
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Frequent Patterns

Inductive bias of association rules
Frequent patterns are more interesting than infrequent ones

Major challenge
Efficiently finding (all) frequent patterns

Types of frequent patterns

* Frequent item sets (bool ean attributes)

* Generalized frequent item sets (bool ean attributes with concept hierarchies)
* Quantitative frequent sets (numerical attributes)

* Frequent sequences (seguence data)
—> 7. Mining biological data
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_c Association Rules

Basic Concepts [Agrawal & Srikant 1994]

o ltems| ={i,, ..., i} aset of literals

o I[temset X set of items X O |

+ Database D: set of transactions T, where T, O |

e TcontainsX: XOT

* Itemsin transactions or item sets are sorted in lexicographic order:

[tem set X = (X;, Xp, ey X ), WHEreX; S X oo S %
* Length of item set: number of e ements of item set
o k-itemset: item set of length k
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_c Association Rules

Basic Concepts

» SQupport of itemset X in D: percentage of transactionsin D containing X
* Frequent itemset X in D: item set X with support = minsup

HTOD|XOT}|

= minsup
|D]

* Association rule: implication of theform X =Y,

where XO L, YOland X n Y= 0
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_c Association Rules

Basic Concepts
» Support s of association rule X = Yin D: - HTODI(XDOY)OT}|
D
supportof X YinD D]
« Confidence c of association rule X = Yin D: c-{TODIXOYOT}|
. - {TOD|XOT}]
percentage of transactions containing Y
in the subset of all transactionsin D that contain X
* Task: discover all association rules that have support = minsup
and confidence = minconf in D
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_c Association Rules

Example
TransactionlD Items
2 A,B .
000 .B.C minsup = 50%,
1000 A,C minconf = 50%
4000 A,D
5000 B,E,F

Support

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

(A, C):  50%, (A,B), (A, D) (B,C),(B,E),(B,F),(E F):25%
Association rules

A = C (support = 50%, confidence = 66.6%)

C = A (support = 50%, confidence = 100%)
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_sic Association Rules

Two-Sep Approach

1. Determine the frequent item sets in the database

»Naive" algorithm:
count the frequencies of all k-itemsets [ |
inefficient, since [T} such item sets

2. Generate the association rules from the frequent item sets
Item set X frequent and A O X
A = (X - A) satisfies minimum support constraint
—> confidence hasto be checked
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_on of the Frequent Item Sets

Basics

Monotony property
Each subset of afrequent item set is also frequent
If subset is not frequent, then superset cannot be frequent

Method

* Determinefirst the frequent 1-item sets, then the frequent 2-item sets, . . .

* To determine the frequent k+1-item sets:
consider only the k+1-item sets for which all k-subsets are frequent
* Calculation of support:

one DB scan counting the support for al , relevant” item sets
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_n of the Frequent Item Sets

C¢ st of candidate item sets of length k
L setof al frequent item sets of length k

Apriori (D, minsup)

L, := {frequent 1-itemsets in DO};

k := 2;

while L, _,#0 do
C. : = AprioriCandi dateCGeneration(L, _;);
for each transaction T O D do

CT := subset(CG, T); // all candidates fromGC, that are
/!l contained in transaction T;

for each candidate ¢ O CT do c.count ++;
Ly :={c O0G | (c.count / |Dl) =mnsup};
K++;
return O, L
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_n of the Frequent Item Sets

Candidate Generation

Requirements for set C, of candidate itemsets
* Superset of L,
* Significantly smaller than set of all k-subsets of |
Step 1: Join
Frequent k-1-item setspand q
p and q are joined, if they agree in ther fird k-2 items
p g Lk—l (11 21 f)
(1,2,3,4) 0C,
/
qgOL., (1,249
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_on of the Frequent Item Sets

Candidate Generation
Step 2: Pruning
Remove all elements from C, having a k—1-subset not contained in L,
Example
L;={(123),(124),(134),(135),(234)}
After join step: C,={(1234),(1345)}
In pruning step: remove (1345)

=) C,={(1234)}
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_on of the Frequent Item Sets

minsup = 2 Exampl e
TID [Items = itemset|sup. L; [itemset sup.
100(1 3 4 ay | 2 ar | 2
200[235 | Scanb 2 | 3 N 2 | 3
300(1235 3 | 3 % 2
400|2 5 4 |1
{51 | 3
L. itemset| sup ©2 [itemset[sup C, fitemset
{13} | 2 {12} | 1 {12}
23| 2 - {13} | 2 {13}
{25 | 3 {15y | 1 Scan D {15}
351 | 2 {23} | 2 | {23}
{35} @25} | 3 25
{35t [ 2 {3 5}
C.r
°ltemset D Ls [itemset| sup
{235 —/—/— 3|2
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_i on of the Frequent Item Sets

Efficient Support for the Subset Function

* Subset (C,, T)
==) -> all candidates from C,, that are contained in transaction T

* Problems
— Very large number of candidateitem sets
— One transaction may contain many candidates
* Hash tree as data structure for C,
— Leaf node recordsligt of item sets (with frequencies)
— Inner node consigts of hash table
each hash bucket at level d references son node at level d+1

—Root haslevd 1

I s, ompT 740,033, marin estr 22

_i on of the Frequent Item Sets

Example

h(K) = K mod 3

for 3-item sets

(367) (1411) (256)
(257)
179) (567) / o)
/o
(3415) 3711 4a6)| @47
((:; t 181)) 279] |5710)
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_on of the Frequent Item Sets

Hash Tree

Finding an item set
» Start from the root
* At level d: apply hash function h to the d-th element of the item set

Inserting an item set
* Search the corresponding leaf node and insert new item set
* In case of overflow:
— Convert leaf node into inner node and create adl its son nodes

(new leaves)
— Didtribute all entries over the new leaf nodes according to hash

function h
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_on of the Frequent Item Sets

Hash Tree
Find all candidates contained in T = (t; t,... t.)
* At root
Determine hash values h(t;) for eachitemt; in T
Continue search in al corresponding son nodes
* Atinner node of level d
Assumption: inner node has been reached by hashing t;
Determine hash values and continue search for all itemst, in Twith k>

» At leaf node
For each item set X in thisnode, test whether X O T
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_i on of the Frequent Item Sets

Example

Transaction (1, 3, 7, 9, 12) h(K) = Kmod 3

9,12
LT T [ofr]z i
367) 141 (789 1| (238) 2] :gg%
11112)1 (56 7)1 I
f )I : ( )| I5811),

9,12
A N | N O P
(3415) : I:(37ll)| D Leaf node to be tested :(246) |: (247 |: |
| 341, 1 279) 1,(5710), I
I ||(348)| I | Pruned subtree | I I 1
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_i on of the Frequent Item Sets

Methods of Efficency Improvement

Support counting using a hash table [Park, Chen & Yu 1995]

» Hash table instead of hash tree, support countersfor hash buckets

* k-item set with corresponding bucket counter < minsup cannot be frequent
E==> more efficient access to candidates but inaccurate counts

Reduction of transactions [Agrawal & Srikant 1994]

* Transactionsthat do not contain any frequent k-item set are irrel evant

» Remove such transactions for future phases
E=> moreefficient DB scan, but additional writing of DB
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_on of the Frequent Item Sets

Methods of Efficency Improvement

Partitioning of the database [Savasere, Omiecinski & Navathe 1995]
* Item set isonly frequent if frequent in at least one partition
» Form memory-resident partitions of the database

==) more efficient on partitions, but expensive combination of intermediate results

Sampling [Toivonen 1996]

* Apply algorithm to sampleto find frequent item sets

* Count support of these frequent item setsin the whole database
 Determine further candidates and support counting on the whole database
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_ion of the Association Rules

Method

* Frequent item set X

* For each (frequent!) subset A of X, form therule A = (X - A)

» Compute confidence of therule A= (X — A)
support(X)

confidence(A= (X — A)) =
A= ( ) support(A)

* Discard rules that do not have minimum confidence
* Store frequent item setswith their supportsin ahash table

==) no DB accesses (no disk 1/0)
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_gn&ss of Association Rules

Motivation
Application
* Data about the behavior of students at a school 5000 with students
Example
* Item sets with support:
60% of the students play soccer, 75% of the sudents eat candy bars
40% of the students play soccer and eat candy bars
* Association rules:
»play soccer* =, eat candy bars’, confidence = 67%
TRUE = ,eat candy bars*, confidence = 75%

q »play soccer” and ,, eat candy bars* are negatively correlated
I sru, owPT 740,033, Martin Ester
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_gnas of Association Rules

Method

* Filter out mideading association rules
* Rquirement for rule A= B

P(An B)
P(A)

>P(B)-d

for aconstant d> 0
* Interestingness measure for rule A = B

P(An B)
P(A)

- P(B)

» The larger this measure, the more interesting the discovered relationship

between A and B.
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lon of Association Rules

Body | Implies | Head | Supp i) [Conf) | F | & | W | 1 [T
1 [costfx) = 0.00~1000 00" ==> ravanue(x) = TLO0~E00 010 26 45 404 | |
T2 |costfy) = 0.00~1000.00' > ravanuetx) = '500.00~1000.00 046 2905
3 |costfy) = 0.00~1000.00' = order_giy(x) = 0.00~100.00 5917 8404
T4 |costy) = 0.00~1000.00 > revenue(y) = "1000.00~1500.00 045 1484
5 |eostx) = 1.00~1000 00 > region(x) = Unitad Statas’ WEE 3204
6 |costpx) = 1000 00~2000 00 > omer_giy(x) = 000100 0 1291 B934
7 |order giyf) = n0~ionn0 > ravanus() = TLO0~E00 010 45 3454
78 [order giyix] = 0.00~100.0 1 == cost(x) = '1000,00~2000.00 1291 1567
_ 9 Jorder_gty(x) = 0.00~100.00" > region(x) = United States’ 259 31.45
10 |arder_gtyx) = 0.00~100.00° > castx] = 0.00~1000 00 8917 7186
A1 |arder_gtyix) = 0O0~10000° = product_line(x) = Tents’ 1352 1642
12_|order_gty(x) = 0.00~100.00" > ravanue() = ‘500 00~1000 0 1967 2388
13 [product_line(x) = Tents' = order_gty(x) = 0.00~100.00° 13.52 9872
region(x) = United States’ = order_gty(x) = 0.00~100.00° 259 61.94
region(x) = United States’ = cost(x) = 0.00~1000.00° 2256 7139 .
revenus(x) = 0.00~500.00° > cost() = 0.00~1000.00 .45 mw  DBMiner %/gen]
revenua(x] = 1) O0~500 O > omer_giy(x) = 000100 O 26 .45 00
3| revenua(x) = 1000.00~1500.00° > cost(y) = 0.00~100000° 045 9675 [Han et a. ]_996]
48 |revenue(x) = 500.00~1000.00" > eostix) = 0.00~1000.00 20,46 100
20 |revenue(x) = 500.00~1000.00" = order_gty(x) = 0.00~100.000 19.67 96.14
21
7
23 |costtn) = 0.00~1000.00 = ’;‘:;E”:'_Eq('xy)(;) E-?]DSSQ?-D%DD’S“ND 2.5 104
24 |eostp) = D.00~1000.00 = ’E"’;Qr“j(fy)(;) e B4 104
25 |cost(x) = 0.00~1000.00' ==» ’2"’52;'79;‘?(;) Eﬁ;gg:}gg%@?’ AND 1987 2793
26 |cost(x) = 0.00~1000.00 = ’E‘:sg”f_eq(‘*y)(;) 50000 1000 00 AN e o
27 Eo”rz‘é;‘zc;y?}{?D:”SDUDS_E'EUAU"E'I.D == revenue(x) = '500.00~1000.00° 1967 BA =
™ sheett / =il =
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_ati on of Association Rules

£ DEMiner Enlerprise - [#1- Associator]
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_ nts for Association Rules

Motivation

» Too many frequent item sets
mining isinefficient

» Too many association rules
hard to evaluate

» Constraints may be known apriori

,»only association rules on product A but not on product B*

,only association rules with total price > 100"

== Constraints on the frequent item sets

I s ompT 740,033, Marin eser 0
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_ nts for Association Rules

Types of Constraints
[Ng, Lakshmanan, Han & Pang 1998]

Domain Constraints
—-SOv, 0 0{=4%#<¢5,>2}, e.g. Sprice< 100
-vas 6 0{0, 1, e.g. snacks [ Stype

-Vsao sev, e0{0,0,0,=#}, eg{snacks wines} (I Stype

Aggregation Constraints
ago(S) @ vwhere
* agg O {min, max, sum, count, avg}
e 80{=%<5>2}

eg. count(Si.type) =1,
avg(S.price) > 100

I s, ompT 740,033, marin estr 06

_ nts for Association Rules

Application of the Constraints

When determining the association rules
* Solves the eval uation problem
* But not the efficiency problem

When determining the frequent item sets
* Can a so solve the efficiency problem
* Challenge for candidate generation:

q Which candidate item sets can be pruned using the congtraints?

I s ompT 740,033, Marin eser 07
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_tsfor Association Rules

Anti-Monotony

Definition

If an item set Sviolates an anti-monotone constraint C,

then all supersets of Sviolate this congraint.

Examples

* sum(Sprice) < v isanti-monotone
* sum(S. price) = v isnot anti-monotone

» sum(S price) = v is partly anti-monotone

Application

==) Push anti-monotone congtraintsinto candidate generation

I s, ompT 740,033, marin estr
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_tsfor Association Rules

Sev,00{==x,2} yes
vOsS no
sgov no
sav yes
S=V partly

min(S) <v no
min(S) 2v yes
Typ% of min(S)=v partly
. max(S)sv yes
Congtraints max(S) 2 v no
max(S) =v partly
count(S) s v yes
count(S) 2 v no
count(S) =v partly
sum(S) sv yes
sum(S) 2 v no
sum(S) =v partly
avg(9ov,e0{=x2} no
(frequent constraint) (yes)
I 55, T 720,053, Martin s

anti-monotone?

309
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_Iized Association Rules

Motivation

* In many applications; taxonomies of items (is-a hierarchies)

Clothes

P20 N /L S /| —

M AN

» Search for association rulesat amore abstract level
e.g., between product categories
m=) Higher support

I s, ompT 740,033, marin estr
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_Iized Association Rules

Motivation
Example
Anorak — Hiking boots } ,
Support < minsup
Windcheater = Hiking boots
Jacket = Hiking boots Support > minsup
Properties

» Support of ,Jacket = Hiking boots “ may be different from support of
» Anorak = Hiking boots* + support of , Windcheaster = Hiking boots"

« If ,Jacket = Hiking boots* has minimum support,
then also ,, Outerwear = Hiking boots"

I s ompT 740,033, Marin eser
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_Iized Association Rules

Basics [Srikant & Agrawal 1995]

ol ={i, ..., i} asetof literdls (,, Items")
* H adirected acyclic graph over |
* EdgeinH fromitoj :
i isageneralization of j,
i iscalled father or direct predecessor of j,
j isason or direct sucessor of i.
* Xis predecessor of X (x successor of X) w.r.t. H:
thereisapath from Xtoxin H
* Set of items Z is predecessor of set of items Z:
at least oneitem in Z predecessor of anitemin Z

I s, ompT 740,033, marin estr 22

_Iized Association Rules

Basics

* Disaset of transactions T, where T O |
* Typicaly:
Transactions T contain only elements from the leaves of graph H

* Transaction T supportsitemi O 1:

i OToriispredecessor of anitemj O T
» Tsupportsset X O 1 of items.

T supportseachitem in X
» SQupport of set X O | of itemsinD :

Percentage of transactionsin D supporting X

I s ompT 740,033, Marin eser a3
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_ized Association Rules

Basics

* Hierarchical association rule:
X=YwhaeXOIl,YOILXnY=0
and noitemin Yis predecessor w.r.t. H of an itemin X
» SQupport sof a hierarchical association ruleX=YinD:

Support of set X YinD
» Confidence ¢ of a hierarchical association rule X = Yin D:

Percentage of transactions containing Y in the subset of all transactionsin D

that contain X

I s, ompT 740,033, marin estr
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_ized Association Rules

Example

TransaktionsID Items
1 Anorak
Windcheater, Hiking boot
Anorak, Hiking boot
Walking-shoes
Walking-shoes
Windcheater

o0 wWwN

Support of { Jackets}: 4 of 6 = 67%
Support of { Jackets, Hiking boots}: 2 of 6 = 33%

»Hiking-boots = Jackets':  Support 33%, Confidence 100%

» Jackets = Hiking-boots*:  Support 33%, Confidence 50%

I s, Pt 740,033, Marin eser
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_i ng the Frequent Item Sets

Idea

* Extend database transactions by all predecessors of items contained in that
transaction

» Method

— Insert each item in transaction T together with all its predessorsw.r.t. H
into new transaction T’

— Do not insert duplicates
* Then:

Determine  frequent item sas for basic  association  rules
(e.g. Apriori agorithm)

==) Basic algorithmfor generalized association rules

I s, ompT 740,033, marin estr a6

_i ng the Frequent Item Sets

Optimizations of the Basic Algorithm

Materialization of Predecessors
» Additiona data structure H
Item — list of all its predecessors

» More efficient access to the predecessors

Filtering the predecessors to be added

*» Add only those predecessors that occur in an e ement of candidate set C,
» Example: C, = {{ Clothes, Shoes}}
replace ,, JacketXY* by ,, Clothes'

I s ompT 740,033, Marin eser a
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-i ng the Frequent Item Sets

Optimizations of the Basic Algorithm

Discard redundant item sets

o Let X an k-item set, i anitem and i a predessor of i.
X ={i,i,..}

* Support of X — {i} = support of X

* X can be discarded during candidate generation

* Do not need to count support of k-item set that containsitem i and predecessor i
of i

==) Algorithm Cumulate

I s, ompT 740,033, marin estr a8

-i ng the Frequent Item Sets

Stratification

* Alternative to the basic agorithm (Apriori-algorithm)
* Stratification = form layers in the candidate sets
* Property
q Item set X isinfrequent and X is predecessor of X:
Xisinfrequent
e Method
— Do not count all k-itemsets at the same time
— Count support first for the more general item sets
and count more special item setsonly if necessary

I s Pt 740,033, Marin estr a9
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-i ng the Frequent Item Sets

Stratification

Example
C, = {{Clothes Shoes}, { Outerwear Shoes}, { Jackets Shoes} }
Count support first for { Clothes Shoes}

Count support for Support fir { Outerwear Shoes} only
if { Clothes Shoes} is frequent

Notations
* Depth of an item set:

For item sets X in candidate set C, without direct predecessor in C,:
Depth(X) = 0.
For all other item sets X in C,;
Depth(X) = max{Depth(X) | X O C, isdirect predecessor of X} + 1.

* (C): Set of item sets from C, with depth n, 0 < n < maxima depth t

I s, ompT 740,033, marin estr 20

-i ng the Frequent Item Sets

Stratification

Algorithm Stratify

* Count item setsin C,°

» Remove all sucessors of infrequent € ements of (C,0)
* Count support for remaining elements of (C,2)

Trade-off between number of item sets for which the support is counted
(memory requirements) and the number of database scans (I/O cost)

=) if |C,"| small, then count candidates of depths (n, n+1, ..., t) at the sametime

s 21




_ni ng the Frequent Item Sets

Sratification

Problems of Stratify
If many item sets of small depth are frequent:
Can discard only few item sets of larger depths

Improvements of Stratify
* Estimate support of all item setsin C, usng asample
» C./: dl item sets which have estimated support exceeding minimum support
* Determine actual support of all item setsin C,’ in one database scan
» Remove all successors of infrequent ements of C,’ from C.”,
c'’'=C-C
* Determine support for the remaining elements of C’° in a
second database scan

I s, ompT 740,033, marin estr 2

- of Generalized Association Rules

Notations

« X =Y ispredecessor of X =Y :
Item set Xis predecessor of item set X and/or item setY is predecessor
of setY

« X =Y direct predecessor of X =Y ina set of rules:

X =Y is predecessor of X =Y , and there is no rule X'=Y',
such that X' = Y’ predecessor of X = Yand X = Y predecessor of X' =Y’

* Generdlized association rule X =Y isR-interesting:
Has no direct predecessors or
Actual support (confidence) > R times the expected support (confidence)
And the direct predecessor isaso R-interesting.

I s ompT 740,033, Marin eser 2




_ of Generalized Association Rules

Example
Item Support
Clothes 20 _
Outerwear 10 R=2
Jackets 4
Rule-No Rule Support R-interesting?
1 Clothes = Shoes 10 yes, no predecessor
2 Outerwear = Shoes 9 yes, support = R * expected
support (w.r.t. rule 1)
3 Jackets = Shoes 4 no, support < R* expected
support (w.r.t. rule 2)
P sru,CMPT 740, 03-3, Martin Ester 324

-Iized Association Rules

Choice of minsup

Fix support Soarer |
Support = 10 % minsup = 5 %
Jackets T Frousers _
: ! minsup=5%
Support=6% | | Support=4%
Variable support — |
Support = 10 % minsup = 5 %
e Trousers minsup =3 %
Support=6% | | Support=49%

I s Pt 740,033, Marin estr 5




_alized Association Rules

Discussion
Fix support
» Same minsup value for al levels of the item taxonomy
+ Effiziency: pruning successors of infrequent item sets
- Reduced effectiveness
minsup too high = no low-level associations
minsup too low = too many high-level associations

Variable support
* Different minsup values for different levels of the item taxonomy
+ Good effectiveness
Find association rules at appropriate support level
- Inefficient: no pruning of successors of infrequent item sets

I s, ompT 740,033, marin estr
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