
1

SFU, CMPT 740, 03-3, Martin Ester 278

6. Association Rules and Frequent Pattern Analysis

Contents of this Chapter

6.1 Introduction

6.2 Basic Association Rules

6.3 Generalized Association Rules

SFU, CMPT 740, 03-3, Martin Ester 279

6.1 Introduction

Motivation

{butter, bread, milk, sugar}

{butter, flour, milk, sugar}

{butter, eggs, milk, salt} DB of Sales Transactions

{eggs}

{butter, flour, milk, salt, sugar}

Market basket analysis
• Which products are frequently purchased together?

• Applications
– Improvement of store layouts

– Cross marketing

– Attached mailings/add-on sales

2

SFU, CMPT 740, 03-3, Martin Ester 280

6.1 Introduction

Association Rules

Rule form
“Body → Head [support, confidence]”

Examples

buy(X, “diapers”) → buy(X, “beer”) [0.5%, 60%]

major(X, “cs”) ^ takes(X, “db”) → grade(X, “A”) [1%, 75%]

98% of all customers that buy car tires and assecories, bring their cars for
service

Buy diapers

Buy both

Buy beer

SFU, CMPT 740, 03-3, Martin Ester 281

6.1 Introduction

Frequent Patterns

Inductive bias of association rules
Frequent patterns are more interesting than infrequent ones

Major challenge
Efficiently finding (all) frequent patterns

Types of frequent patterns
• Frequent item sets (boolean attributes)
• Generalized frequent item sets (boolean attributes with concept hierarchies)
• Quantitative frequent sets (numerical attributes)
• Frequent sequences (sequence data)
� 7. Mining biological data

• . . .

3

SFU, CMPT 740, 03-3, Martin Ester 282

6.2 Basic Association Rules

Basic Concepts [Agrawal & Srikant 1994]

• Items I = {i1, ..., im} a set of literals

• Item set X: set of items X ⊆ I

• Database D: set of transactions Ti where Ti ⊆ I

• T contains X: X ⊆ T

• Items in transactions or item sets are sorted in lexicographic order:

Item set X = (x1, x2, ..., xk), where x1 ≤ x2 ≤ ... ≤ xk

• Length of item set: number of elements of item set

• k-itemset: item set of length k

SFU, CMPT 740, 03-3, Martin Ester 283

6.2 Basic Association Rules

Basic Concepts

• Support of item set X in D: percentage of transactions in D containing X

• Frequent item set X in D: item set X with support ≥ minsup

• Association rule: implication of the form X⇒ Y,

where X ⊆ I, Y ⊆ I and X ∩ Y = ∅

supmin
||

|}|{| ≥⊆∈
D

TXDT

4

SFU, CMPT 740, 03-3, Martin Ester 284

6.2 Basic Association Rules

Basic Concepts

• Support s of association rule X⇒ Y in D:

support of X ∪ Y in D

• Confidence c of association rule X⇒ Y in D:

percentage of transactions containing Y

in the subset of all transactions in D that contain X

• Task: discover all association rules that have support ≥ minsup

and confidence ≥ minconf in D

||

|})(|{|

D

TYXDT
s

⊆∪∈=

|}|{|

|}|{|

TXDT

TYXDT
c

⊆∈
⊆∪∈=

SFU, CMPT 740, 03-3, Martin Ester 285

6.2 Basic Association Rules

Example

TransactionID Items
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Support

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

(A, C): 50%, (A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Association rules

A⇒ C (support = 50%, confidence = 66.6%)

C⇒ A (support = 50%, confidence = 100%)

minsup = 50%,
minconf = 50%

5

SFU, CMPT 740, 03-3, Martin Ester 286

6.2 Basic Association Rules

Two-Step Approach

1. Determine the frequent item sets in the database

„Naive“ algorithm:

count the frequencies of all k-itemsets ⊆ I

inefficient, since such item sets

2. Generate the association rules from the frequent item sets
Item set X frequent and A ⊆ X

A⇒ (X − A) satisfies minimum support constraint

� confidence has to be checked

m

k

SFU, CMPT 740, 03-3, Martin Ester 287

6.2 Computation of the Frequent Item Sets

Basics

Monotony property
Each subset of a frequent item set is also frequent

If subset is not frequent, then superset cannot be frequent

Method

• Determine first the frequent 1-item sets, then the frequent 2-item sets, . . .

• To determine the frequent k+1-item sets:

consider only the k+1-item sets for which all k-subsets are frequent

• Calculation of support:

one DB scan counting the support for all „relevant“ item sets

6

SFU, CMPT 740, 03-3, Martin Ester 288

6.2 Computation of the Frequent Item Sets

Ck: set of candidate item sets of length k
Lk: set of all frequent item sets of length k

Apriori(D, minsup)
L1 := {frequent 1-item sets in D};
k := 2;

while Lk-1 ≠ ∅ do
Ck := AprioriCandidateGeneration(Lk − 1);

for each transaction T ∈ D do
CT := subset(Ck, T); // all candidates from Ck, that are

// contained in transaction T;

for each candidate c ∈ CT do c.count++;
Lk := {c ∈ Ck | (c.count / |D|) ≥ minsup};
k++;

return ∪ k Lk;

SFU, CMPT 740, 03-3, Martin Ester 289

6.2 Computation of the Frequent Item Sets

Candidate Generation

Requirements for set Ck of candidate itemsets

• Superset of Lk

• Significantly smaller than set of all k-subsets of I

Step 1: Join
Frequent k-1-item sets p and q

p and q are joined, if they agree in their first k−2 items

p ∈ Lk-1 (1, 2, 3)

(1, 2, 3, 4) ∈ Ck

q ∈ Lk-1 (1, 2, 4)

7

SFU, CMPT 740, 03-3, Martin Ester 290

6.2 Computation of the Frequent Item Sets

Candidate Generation

Step 2: Pruning

Remove all elements from Ck having a k−1-subset not contained in Lk-1

Example

L3 = {(1 2 3), (1 2 4), (1 3 4), (1 3 5), (2 3 4)}

After join step: C4 = {(1 2 3 4), (1 3 4 5)}

In pruning step: remove (1 3 4 5)

C4 = {(1 2 3 4)}

SFU, CMPT 740, 03-3, Martin Ester 291

6.2 Computation of the Frequent Item Sets

Example

Scan D

itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

C1

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

C2

Scan D

Scan D
L3 itemset sup

{2 3 5} 2

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

L1

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2 itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

C2

C3 itemset
{2 3 5}

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

minsup = 2

8

SFU, CMPT 740, 03-3, Martin Ester 292

6.2 Computation of the Frequent Item Sets

Efficient Support for the Subset Function

•Subset(Ck,T)

� all candidates from Ck, that are contained in transaction T

• Problems

– Very large number of candidate item sets

– One transaction may contain many candidates

• Hash tree as data structure for Ck

– Leaf node records list of item sets (with frequencies)

– Inner node consists of hash table

each hash bucket at level d references son node at level d+1

– Root has level 1

SFU, CMPT 740, 03-3, Martin Ester 293

6.2 Computation of the Frequent Item Sets

Example

0 1 2 h(K) = K mod 3

(3 5 7)
(3 5 11)

(3 6 7) (7 9 12)
(1 6 11)

(2 4 6)
(2 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(2 4 7)
(5 7 10)

(1 4 11)
(1 7 9)

0 1 2 0 1 2 0 1 2

0 1 2

(3 7 11)
(3 4 11)

(3 4 15)

(3 4 8)

0 1 2

for 3-item sets

9

SFU, CMPT 740, 03-3, Martin Ester 294

6.2 Computation of the Frequent Item Sets

Hash Tree

Finding an item set

• Start from the root

• At level d: apply hash function h to the d-th element of the item set

Inserting an item set
• Search the corresponding leaf node and insert new item set

• In case of overflow:

– Convert leaf node into inner node and create all its son nodes
(new leaves)

– Distribute all entries over the new leaf nodes according to hash
function h

SFU, CMPT 740, 03-3, Martin Ester 295

6.2 Computation of the Frequent Item Sets

Hash Tree

Find all candidates contained in T = (t1 t2 ... tm)

• At root

Determine hash values h(ti) for each item ti in T

Continue search in all corresponding son nodes

• At inner node of level d

Assumption: inner node has been reached by hashing ti

Determine hash values and continue search for all items tk in T with k > i

• At leaf node

For each item set X in this node, test whether X ⊆ T

10

SFU, CMPT 740, 03-3, Martin Ester 296

6.2 Computation of the Frequent Item Sets

Example

0 1 2

(3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(2 4 6)
(2 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(3 6 7)

(2 4 7)
(5 7 10)

(1 4 11)
(1 7 9)

0 1 2 0 1 2 0 1 2

0 1 2

(3 7 11)
(3 4 11)

(3 4 15)

(3 4 8)

0 1 2

Transaction (1, 3, 7, 9, 12)

3, 9, 12 1, 7

9, 12 7

9, 12

3, 9, 12 7

h(K) = K mod 3

Pruned subtree

Leaf node to be tested

SFU, CMPT 740, 03-3, Martin Ester 297

6.2 Computation of the Frequent Item Sets

Methods of Efficency Improvement

Support counting using a hash table [Park, Chen & Yu 1995]

• Hash table instead of hash tree, support counters for hash buckets

• k-item set with corresponding bucket counter < minsup cannot be frequent

more efficient access to candidates but inaccurate counts

Reduction of transactions [Agrawal & Srikant 1994]

• Transactions that do not contain any frequent k-item set are irrelevant

• Remove such transactions for future phases

more efficient DB scan, but additional writing of DB

11

SFU, CMPT 740, 03-3, Martin Ester 298

6.2 Computation of the Frequent Item Sets

Methods of Efficency Improvement

Partitioning of the database [Savasere, Omiecinski & Navathe 1995]

• Item set is only frequent if frequent in at least one partition

• Form memory-resident partitions of the database

more efficient on partitions, but expensive combination of intermediate results

Sampling [Toivonen 1996]

• Apply algorithm to sample to find frequent item sets

• Count support of these frequent item sets in the whole database

• Determine further candidates and support counting on the whole database

SFU, CMPT 740, 03-3, Martin Ester 299

6.2 Computation of the Association Rules

Method

• Frequent item set X

• For each (frequent!) subset A of X, form the rule A⇒ (X − A)

• Compute confidence of the rule A⇒ (X − A)

• Discard rules that do not have minimum confidence

• Store frequent item sets with their supports in a hash table

no DB accesses (no disk I/O)

)(

)(
))((

Asupport

Xsupport
AXAconfidence =−⇒

12

SFU, CMPT 740, 03-3, Martin Ester 300

6.2 Interestingness of Association Rules

Motivation

Application

• Data about the behavior of students at a school 5000 with students

Example

• Item sets with support:

60% of the students play soccer, 75% of the students eat candy bars

40% of the students play soccer and eat candy bars

• Association rules:

„play soccer“ ⇒ „eat candy bars“, confidence = 67%

TRUE ⇒ „eat candy bars“, confidence = 75%

„play soccer“ and „eat candy bars“ are negatively correlated

SFU, CMPT 740, 03-3, Martin Ester 301

6.2 Interestingness of Association Rules

Method

• Filter out misleading association rules

• Rquirement for rule A⇒ B

for a constant d > 0

• Interestingness measure for rule A⇒ B

• The larger this measure, the more interesting the discovered relationship
between A and B.

P A B

P A
P B d

()

()
()

∩
> −

P A B

P A
P B

()

()
()

∩
−

13

SFU, CMPT 740, 03-3, Martin Ester 302

6.2 Presentation of Association Rules

DBMiner System
[Han et al. 1996]

SFU, CMPT 740, 03-3, Martin Ester 303

6.2 Presentation of Association Rules

Condition

Consequent

DBMiner System
[Han et al. 1996]

14

SFU, CMPT 740, 03-3, Martin Ester 304

6.2 Presentation of Association Rules

DBMiner System
[Han et al. 1996]

SFU, CMPT 740, 03-3, Martin Ester 305

6.2 Constraints for Association Rules

Motivation

• Too many frequent item sets

mining is inefficient

• Too many association rules

hard to evaluate

• Constraints may be known apriori

„only association rules on product A but not on product B“

„only association rules with total price > 100“

Constraints on the frequent item sets

15

SFU, CMPT 740, 03-3, Martin Ester 306

6.2 Constraints for Association Rules

Types of Constraints
[Ng, Lakshmanan, Han & Pang 1998]

Domain Constraints
– Sθ v, θ ∈ { =, ≠, <, ≤, >, ≥ }, e.g. S.price < 100
– vθ S, θ ∈ {∈ , ∉ }, e.g. snacks ∉ S.type
– Vθ S or Sθ V, θ ∈ { ⊆ , ⊂ , ⊄ , =, ≠ }, e.g.{snacks, wines} ⊆ S.type

Aggregation Constraints
agg(S) θ v where

• agg ∈ {min, max, sum, count, avg}
• θ ∈ { =, ≠, <, ≤, >, ≥ }

e.g. count(S1.type) = 1,
avg(S2.price) > 100

SFU, CMPT 740, 03-3, Martin Ester 307

6.2 Constraints for Association Rules

Application of the Constraints

When determining the association rules
• Solves the evaluation problem

• But not the efficiency problem

When determining the frequent item sets
• Can also solve the efficiency problem

• Challenge for candidate generation:

Which candidate item sets can be pruned using the constraints?

16

SFU, CMPT 740, 03-3, Martin Ester 308

6.2 Constraints for Association Rules

Anti-Monotony

Definition

If an item set S violates an anti-monotone constraint C,

then all supersets of S violate this constraint.

Examples

• sum(S.price) ≤ v is anti-monotone

• sum(S. price) ≥ v is not anti-monotone

• sum(S. price) = v is partly anti-monotone

Application

Push anti-monotone constraints into candidate generation

SFU, CMPT 740, 03-3, Martin Ester 309

6.2 Constraints for Association Rules

S θ v, θ ∈ { =, ≤, ≥ }
v ∈ S
S ⊇ V
S ⊆ V
S = V

min(S) ≤ v
min(S) ≥ v
min(S) = v
max(S) ≤ v
max(S) ≥ v
max(S) = v

count(S) ≤ v
count(S) ≥ v
count(S) = v
sum(S) ≤ v
sum(S) ≥ v
sum(S) = v

avg(S) θ v, θ ∈ { =, ≤, ≥ }
(frequent constraint)

yes
no
no
yes

partly
no
yes

partly
yes
no

partly
yes
no

partly
yes
no

partly
no

(yes)

Types of
Constraints anti-monotone?

17

SFU, CMPT 740, 03-3, Martin Ester 310

6.3 Generalized Association Rules

Motivation

• In many applications: taxonomies of items (is-a hierarchies)

• Search for association rules at a more abstract level

e.g., between product categories

Higher support

Clothes Shoes

Outerwear Underwear

Jackets Trousers

Walking-Shoes Hiking boots

SFU, CMPT 740, 03-3, Martin Ester 311

6.3 Generalized Association Rules

Motivation

Example

Anorak ⇒ Hiking boots

Windcheater ⇒ Hiking boots

Jacket ⇒ Hiking boots Support > minsup

Properties

• Support of „Jacket ⇒ Hiking boots “ may be different from support of
„ Anorak⇒ Hiking boots“ + support of „Windcheater ⇒ Hiking boots“

• If „Jacket⇒ Hiking boots“ has minimum support,

then also „Outerwear⇒ Hiking boots“

Support < minsup

18

SFU, CMPT 740, 03-3, Martin Ester 312

6.3 Generalized Association Rules

Basics [Srikant & Agrawal 1995]

• I = {i1, ..., im} a set of literals („Items“)

• H a directed acyclic graph over I

• Edge in H from i to j :

i is a generalization of j,

i is called father or direct predecessor of j,

j is a son or direct sucessor of i.

• is predecessor of x (x successor of) w.r.t. H:

there is a path from to x in H

• Set of items is predecessor of set of items Z:

at least one item in predecessor of an item in Z

x x

x

Z

Z

SFU, CMPT 740, 03-3, Martin Ester 313

6.3 Generalized Association Rules

Basics

• D is a set of transactions T, where T ⊆ I

• Typically:

Transactions T contain only elements from the leaves of graph H

• Transaction T supports item i ∈ I:

i ∈ T or i is predecessor of an item j ∈ T

• T supports set X ⊆ I of items:

T supports each item in X

• Support of set X ⊆ I of items in D :

Percentage of transactions in D supporting X

19

SFU, CMPT 740, 03-3, Martin Ester 314

6.3 Generalized Association Rules

Basics

• Hierarchical association rule:

X⇒ Y where X ⊆ I, Y ⊆ I, X ∩ Y = ∅

and no item in Y is predecessor w.r.t. H of an item in X

• Support s of a hierarchical association rule X⇒ Y in D :

Support of set X ∪ Y in D

• Confidence c of a hierarchical association rule X⇒ Y in D:

Percentage of transactions containing Y in the subset of all transactions in D

that contain X

SFU, CMPT 740, 03-3, Martin Ester 315

6.3 Generalized Association Rules

Example

Support of {Jackets}: 4 of 6 = 67%

Support of {Jackets, Hiking boots}: 2 of 6 = 33%

„Hiking-boots⇒ Jackets“: Support 33%, Confidence 100%

„ Jackets⇒ Hiking-boots“: Support 33%, Confidence 50%

TransaktionsID Items
1 Anorak
2 Windcheater, Hiking boot
3 Anorak, Hiking boot
4 Walking-shoes
5 Walking-shoes
6 Windcheater

20

SFU, CMPT 740, 03-3, Martin Ester 316

6.3 Determining the Frequent Item Sets

Idea

• Extend database transactions by all predecessors of items contained in that
transaction

• Method

– Insert each item in transaction T together with all its predessors w.r.t. H
into new transaction T’

– Do not insert duplicates

• Then:

Determine frequent item sets for basic association rules
(e.g. Apriori algorithm)

Basic algorithm for generalized association rules

SFU, CMPT 740, 03-3, Martin Ester 317

6.3 Determining the Frequent Item Sets

Optimizations of the Basic Algorithm

Materialization of Predecessors
• Additional data structure H

Item → list of all its predecessors

• More efficient access to the predecessors

Filtering the predecessors to be added

• Add only those predecessors that occur in an element of candidate set Ck

• Example: Ck = {{Clothes, Shoes}}

replace „JacketXY“ by „ Clothes“

21

SFU, CMPT 740, 03-3, Martin Ester 318

6.3 Determining the Frequent Item Sets

Optimizations of the Basic Algorithm

Discard redundant item sets

• Let X an k-item set, i an item and a predessor of i.

•

• Support of X − { } = support of X

• X can be discarded during candidate generation

• Do not need to count support of k-item set that contains item i and predecessor

of i

Algorithm Cumulate

i

i

X i i= { , ,...}

i

SFU, CMPT 740, 03-3, Martin Ester 319

6.3 Determining the Frequent Item Sets

Stratification

• Alternative to the basic algorithm (Apriori-algorithm)

• Stratification = form layers in the candidate sets

• Property

Item set is infrequent and is predecessor of X:

X is infrequent

• Method

– Do not count all k-itemsets at the same time

– Count support first for the more general item sets

and count more special item sets only if necessary

X X

22

SFU, CMPT 740, 03-3, Martin Ester 320

6.3 Determining the Frequent Item Sets

Stratification

Example
Ck = {{Clothes Shoes}, {Outerwear Shoes}, {Jackets Shoes} }

Count support first for {Clothes Shoes}

Count support for Support für {Outerwear Shoes} only
if {Clothes Shoes} is frequent

Notations

• Depth of an item set:

For item sets X in candidate set Ck without direct predecessor in Ck:
Depth(X) = 0.

For all other item sets X in Ck:
Depth(X) = max{Depth() | ∈ Ck is direct predecessor of X} + 1.

• (Ck
n): Set of item sets from Ck with depth n, 0 ≤ n ≤ maximal depth t

X X

SFU, CMPT 740, 03-3, Martin Ester 321

6.3 Determining the Frequent Item Sets

Stratification

Algorithm Stratify

• Count item sets in Ck
0

• Remove all sucessors of infrequent elements of (Ck
0)

• Count support for remaining elements of (Ck
1)

• . . .

Trade-off between number of item sets for which the support is counted
(memory requirements) and the number of database scans (I/O cost)

if |Ck
n | small, then count candidates of depths (n, n+1, ..., t) at the same time

23

SFU, CMPT 740, 03-3, Martin Ester 322

6.3 Determining the Frequent Item Sets

Stratification

Problems of Stratify
If many item sets of small depth are frequent:

Can discard only few item sets of larger depths

Improvements of Stratify
• Estimate support of all item sets in Ck using a sample

• Ck’: all item sets which have estimated support exceeding minimum support

• Determine actual support of all item sets in Ck’ in one database scan

• Remove all successors of infrequent elements of Ck’ from Ck’’,

Ck’’ = Ck − Ck’
• Determine support for the remaining elements of Ck’’ in a

second database scan

SFU, CMPT 740, 03-3, Martin Ester 323

6.3 Interestingness of Generalized Association Rules

Notations

• is predecessor of :

Item set is predecessor of item set X and/or item set is predecessor

of set Y

• direct predecessor of in a set of rules:

is predecessor of , and there is no rule ,
such that predecessor of and predecessor of

• Generalized association rule is R-interesting:

Has no direct predecessors or

Actual support (confidence) > R times the expected support (confidence)

And the direct predecessor is also R-interesting.

X Y

YX ⇒ YX ⇒

YX ⇒ YX ⇒

YX ⇒ YX ⇒ YX ′⇒′
YX ′⇒′

YX ⇒

YX ⇒ YX ′⇒′YX ⇒

24

SFU, CMPT 740, 03-3, Martin Ester 324

6.3 Interestingness of Generalized Association Rules

Example

Rule-No Rule Support R-interesting?

1 Clothes⇒ Shoes 10 yes, no predecessor

2 Outerwear⇒ Shoes 9 yes, support ≈ R * expected
support (w.r.t. rule 1)

3 Jackets⇒ Shoes 4 no, support < R * expected
support (w.r.t. rule 2)

Item Support
Clothes 20

Outerwear 10
Jackets 4

R = 2

SFU, CMPT 740, 03-3, Martin Ester 325

6.3 Generalized Association Rules

Choice of minsup

Fix support

Variable support

minsup = 5 %

minsup = 5 %
Outerwear

Support = 10 %

Jackets

Support = 6 %

Trousers

Support = 4 %

Outerwear

Support = 10 %

Jackets

Support = 6 %

Trousers

Support = 4 %
minsup = 3 %

minsup = 5 %

25

SFU, CMPT 740, 03-3, Martin Ester 326

6.3 Generalized Association Rules

Discussion
Fix support
• Same minsup value for all levels of the item taxonomy

+ Effiziency: pruning successors of infrequent item sets

- Reduced effectiveness

minsup too high⇒ no low-level associations

minsup too low⇒ too many high-level associations

Variable support
• Different minsup values for different levels of the item taxonomy

+ Good effectiveness

Find association rules at appropriate support level

- Inefficient: no pruning of successors of infrequent item sets

