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6. Association Rules and Frequent Pattern Analysis
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6.1 Introduction

Motivation

{butter, bread, milk, sugar}

{butter, flour, milk, sugar}

{butter, eggs, milk, salt} DB of Sales Transactions

{eggs}

{butter, flour, milk, salt, sugar}

Market basket analysis
• Which products are frequently purchased together?

• Applications
– Improvement of store layouts

– Cross marketing

– Attached mailings/add-on sales
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6.1 Introduction

Association Rules

Rule form
“Body → Head [support, confidence]”

Examples

buy(X, “diapers”) → buy(X, “beer”) [0.5%, 60%]

major(X, “cs”) ^ takes(X, “db”) →  grade(X, “A”) [1%, 75%]

98% of all customers that buy car tires and assecories, bring their cars for
service

Buy diapers

Buy both

Buy beer
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6.1 Introduction

Frequent Patterns

Inductive bias of association rules
Frequent patterns are more interesting than infrequent ones

Major challenge
Efficiently finding (all) frequent patterns

Types of frequent patterns
• Frequent item sets (boolean attributes)
• Generalized frequent item sets (boolean attributes with concept hierarchies)
• Quantitative frequent sets (numerical attributes)
• Frequent sequences (sequence data)
� 7. Mining biological data

• . . .
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6.2 Basic Association Rules

Basic Concepts [Agrawal & Srikant 1994]

• Items I = {i1, ..., im} a set of literals

• Item set X: set of items X ⊆ I

• Database D: set of transactions Ti where Ti ⊆ I

• T contains X: X ⊆ T

• Items in transactions or item sets are sorted in lexicographic order:

Item set X = (x1, x2, ..., xk ), where x1 ≤ x2 ≤ ... ≤ xk

• Length of item set: number of elements of item set

• k-itemset: item set of length k
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6.2 Basic Association Rules

Basic Concepts

• Support of item set X in D: percentage of transactions in D containing X

• Frequent item set X in D: item set X with support ≥ minsup

• Association rule: implication of the form X⇒ Y,

where X ⊆ I, Y ⊆ I and X ∩ Y = ∅

supmin
||

|}|{| ≥⊆∈
D

TXDT



4

SFU, CMPT 740, 03-3, Martin Ester 284

6.2 Basic Association Rules

Basic Concepts

• Support s of association rule X⇒ Y in D:

support of X ∪ Y in D

• Confidence c of association rule X⇒ Y in D:

percentage of transactions containing Y

in the subset of all transactions in D that contain X

• Task: discover all association rules that have support ≥ minsup

and confidence ≥ minconf in D

||

|})(|{|

D

TYXDT
s
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6.2 Basic Association Rules

Example

TransactionID Items
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Support

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

(A, C): 50%, (A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Association rules

A⇒ C (support = 50%, confidence = 66.6%)

C⇒ A (support = 50%, confidence = 100%)

minsup = 50%,
minconf = 50%
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6.2 Basic Association Rules

Two-Step Approach

1. Determine the frequent item sets in the database

„Naive“ algorithm:

count the frequencies of all k-itemsets ⊆ I

inefficient, since such item sets

2. Generate the association rules from the frequent item sets
Item set X frequent and A ⊆ X

A⇒ (X − A) satisfies minimum support constraint

� confidence has to be checked

m

k
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6.2 Computation of the Frequent Item Sets

Basics

Monotony property
Each subset of a frequent item set is also frequent

If subset is not frequent, then superset cannot be frequent

Method

• Determine first the frequent 1-item sets, then the frequent 2-item sets, . . .

• To determine the frequent k+1-item sets:

consider only the k+1-item sets for which all k-subsets are frequent

• Calculation of support:

one DB scan counting the support for all „relevant“ item sets
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6.2 Computation of the Frequent Item Sets

Ck: set of candidate item sets of length k
Lk: set of all frequent item sets of length k

Apriori(D, minsup)
L1 := {frequent 1-item sets in D};
k := 2;

while Lk-1 ≠ ∅ do
Ck := AprioriCandidateGeneration(Lk − 1);

for each transaction T ∈ D do
CT := subset(Ck, T); // all candidates from Ck, that are

// contained in transaction T;

for each candidate c ∈ CT do c.count++;
Lk := {c ∈ Ck | (c.count / |D|) ≥ minsup};
k++;

return ∪ k Lk;
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6.2 Computation of the Frequent Item Sets

Candidate Generation

Requirements for set Ck of candidate itemsets

• Superset of Lk

• Significantly smaller than set of all k-subsets of I

Step 1: Join
Frequent k-1-item sets p and q

p and q are joined, if they agree in their first k−2 items

p ∈ Lk-1 (1, 2, 3)

(1, 2, 3, 4) ∈ Ck

q ∈ Lk-1 (1, 2, 4)
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6.2 Computation of the Frequent Item Sets

Candidate Generation

Step 2: Pruning

Remove all elements from Ck having a k−1-subset not contained in Lk-1

Example

L3 = {(1 2 3), (1 2 4), (1 3 4), (1 3 5), (2 3 4)}

After join step: C4 = {(1 2 3 4), (1 3 4 5)}

In pruning step: remove (1 3 4 5)

C4 = {(1 2 3 4)}
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6.2 Computation of the Frequent Item Sets

Example

Scan D

itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

C1

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

C2

Scan D

Scan D
L3 itemset sup

{2 3 5} 2

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

L1

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2 itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

C2

C3 itemset
{2 3 5}

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

minsup = 2
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6.2 Computation of the Frequent Item Sets

Efficient Support for the Subset Function

•Subset(Ck,T)

� all candidates from Ck, that are contained in transaction T

• Problems

– Very large number of candidate item sets

– One transaction may contain many candidates

• Hash tree as data structure for Ck

– Leaf node records list of item sets (with frequencies)

– Inner node consists of hash table

each hash bucket at level d references son node at level d+1

– Root has level 1
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6.2 Computation of the Frequent Item Sets

Example

0 1 2 h(K) = K mod 3

(3 5 7)
(3 5 11)

(3 6 7) (7 9 12)
(1 6 11)

(2 4 6)
(2 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(2 4 7)
(5 7 10)

(1 4 11)
(1 7 9)

0 1 2 0 1 2 0 1 2

0 1 2

(3 7 11)
(3 4 11)

(3 4 15)

(3 4 8)

0 1 2

for 3-item sets
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6.2 Computation of the Frequent Item Sets

Hash Tree

Finding an item set

• Start from the root

• At level d: apply hash function h to the d-th element of the item set

Inserting an item set
• Search the corresponding leaf node and insert new item set

• In case of overflow:

– Convert leaf node into inner node and create all its son nodes
(new leaves)

– Distribute all entries over the new leaf nodes according to hash
function h
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6.2 Computation of the Frequent Item Sets

Hash Tree

Find all candidates contained in T = (t1 t2 ... tm)

• At root

Determine hash values h(ti) for each item ti in T

Continue search in all corresponding son nodes

• At inner node of level d

Assumption: inner node has been reached by hashing ti

Determine hash values and continue search for all items tk in T with k > i

• At leaf node

For each item set X in this node, test whether X ⊆ T
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6.2 Computation of the Frequent Item Sets

Example

0 1 2

(3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(2 4 6)
(2 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(3 6 7)

(2 4 7)
(5 7 10)

(1 4 11)
(1 7 9)

0 1 2 0 1 2 0 1 2

0 1 2

(3 7 11)
(3 4 11)

(3 4 15)

(3 4 8)

0 1 2

Transaction (1, 3, 7, 9, 12)

3, 9, 12 1, 7

9, 12 7

9, 12

3, 9, 12 7

h(K) = K mod 3

Pruned subtree

Leaf node to be tested
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6.2 Computation of the Frequent Item Sets

Methods of Efficency Improvement

Support counting using a hash table [Park, Chen & Yu 1995]

• Hash table instead of hash tree, support counters for hash buckets

• k-item set with corresponding bucket counter < minsup cannot be frequent

more efficient access to candidates but inaccurate counts

Reduction of transactions [Agrawal & Srikant 1994]

• Transactions that do not contain any frequent k-item set are irrelevant

• Remove such transactions for future phases

more efficient DB scan, but additional writing of DB
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6.2 Computation of the Frequent Item Sets

Methods of Efficency Improvement

Partitioning of the database [Savasere, Omiecinski & Navathe 1995]

• Item set is only frequent if frequent in at least one partition

• Form memory-resident partitions of the database

more efficient on partitions, but expensive combination of intermediate results

Sampling [Toivonen 1996]

• Apply algorithm to sample to find frequent item sets

• Count support of these frequent item sets in the whole database

• Determine further candidates and support counting on the whole database
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6.2 Computation of the Association Rules

Method

• Frequent item set X

• For each (frequent!) subset A of X, form the rule A⇒ (X − A)

• Compute confidence of the rule A⇒ (X − A)

• Discard rules that do not have minimum confidence

• Store frequent item sets with their supports in a hash table

no DB accesses (no disk I/O)

)(

)(
))((

Asupport

Xsupport
AXAconfidence =−⇒
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6.2 Interestingness of Association Rules

Motivation

Application

• Data about the behavior of students at a school 5000 with students

Example

• Item sets with support:

60% of the students play soccer, 75% of the students eat candy bars

40% of the students play soccer and eat candy bars

• Association rules:

„play soccer“ ⇒ „eat candy bars“, confidence = 67%

TRUE ⇒ „eat candy bars“, confidence = 75%

„play soccer“ and „eat candy bars“ are negatively correlated
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6.2 Interestingness of Association Rules

Method

• Filter out misleading association rules

• Rquirement for rule A⇒ B

for a constant d > 0

• Interestingness measure for rule A⇒ B

• The larger this measure, the more interesting the discovered relationship
between A and B.

P A B

P A
P B d

( )

( )
( )

∩
> −

P A B

P A
P B

( )

( )
( )

∩
−
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6.2 Presentation of Association Rules

DBMiner System
[Han et al. 1996]
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6.2 Presentation of Association Rules

Condition

Consequent

DBMiner System
[Han et al. 1996]
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6.2 Presentation of Association Rules

DBMiner System
[Han et al. 1996]

SFU, CMPT 740, 03-3, Martin Ester 305

6.2 Constraints for Association Rules

Motivation

• Too many frequent item sets

mining is inefficient

• Too many association rules

hard to evaluate

• Constraints may be known apriori

„only association rules on product A but not on product B“

„only association rules with total price > 100“

Constraints on the frequent item sets
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6.2 Constraints for Association Rules

Types of Constraints
[Ng, Lakshmanan, Han & Pang 1998]

Domain Constraints
– Sθ v, θ ∈ { =, ≠, <, ≤, >, ≥ }, e.g. S.price < 100
– vθ S, θ ∈ {∈ , ∉ }, e.g. snacks ∉ S.type
– Vθ S or Sθ V, θ ∈ { ⊆ , ⊂ , ⊄ , =, ≠ }, e.g.{snacks, wines} ⊆ S.type

Aggregation Constraints
agg(S) θ v where

• agg ∈ {min, max, sum, count, avg}
• θ ∈ { =, ≠, <, ≤, >, ≥ }

e.g. count(S1.type) = 1,
avg(S2.price) > 100
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6.2 Constraints for Association Rules

Application of the Constraints

When determining the association rules
• Solves the evaluation problem

• But not the efficiency problem

When determining the frequent item sets
• Can also solve the efficiency problem

• Challenge for candidate generation:

Which candidate item sets can be pruned using the constraints?
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6.2 Constraints for Association Rules

Anti-Monotony

Definition

If an item set S violates an anti-monotone constraint C,

then all supersets of S violate this constraint.

Examples

• sum(S.price) ≤ v is anti-monotone

• sum(S. price) ≥ v is not anti-monotone

• sum(S. price) = v is partly anti-monotone

Application

Push anti-monotone constraints into candidate generation
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6.2 Constraints for Association Rules

S θ v, θ ∈ { =, ≤, ≥ }
v ∈ S
S ⊇ V
S ⊆ V
S = V

min(S) ≤ v
min(S) ≥ v
min(S) = v
max(S) ≤ v
max(S) ≥ v
max(S) = v

count(S) ≤ v
count(S) ≥ v
count(S) = v
sum(S) ≤ v
sum(S) ≥ v
sum(S) = v

avg(S) θ v, θ ∈ { =, ≤, ≥ }
(frequent constraint)

yes
no
no
yes

partly
no
yes

partly
yes
no

partly
yes
no

partly
yes
no

partly
no

(yes)

Types of
Constraints anti-monotone?
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6.3 Generalized Association Rules

Motivation

• In many applications: taxonomies of items (is-a hierarchies)

• Search for association rules at a more abstract level

e.g., between product categories

Higher support

Clothes Shoes

Outerwear Underwear

Jackets Trousers

Walking-Shoes Hiking boots
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6.3 Generalized Association Rules

Motivation

Example

Anorak ⇒ Hiking boots

Windcheater ⇒ Hiking boots

Jacket ⇒ Hiking boots Support > minsup

Properties

• Support of „Jacket ⇒ Hiking boots “ may be different from support of
„ Anorak⇒ Hiking boots“ + support of „Windcheater ⇒ Hiking boots“

• If „Jacket⇒ Hiking boots“ has minimum support,

then also „Outerwear⇒ Hiking boots“

Support < minsup
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6.3 Generalized Association Rules

Basics [Srikant & Agrawal 1995]

• I = {i1, ..., im} a set of literals („Items“)

• H a directed acyclic graph over I

• Edge in H from i to j :

i is a generalization of j,

i is called father or direct predecessor of j,

j is a son or direct sucessor of i.

• is predecessor of x (x successor of ) w.r.t. H:

there is a path from to x in H

• Set of items is predecessor of set of items Z:

at least one item in predecessor of an item in Z

x x

x

Z

Z
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6.3 Generalized Association Rules

Basics

• D is a set of transactions T, where T ⊆ I

• Typically:

Transactions T contain only elements from the leaves of graph H

• Transaction T supports item i ∈ I:

i ∈ T or i is predecessor of an item j ∈ T

• T supports set X ⊆ I of items:

T supports each item in X

• Support of set X ⊆ I of items in D :

Percentage of transactions in D supporting X



19

SFU, CMPT 740, 03-3, Martin Ester 314

6.3 Generalized Association Rules

Basics

• Hierarchical association rule:

X⇒ Y where X ⊆ I, Y ⊆ I, X ∩ Y = ∅

and no item in Y is predecessor w.r.t. H of an item in X

• Support s of a hierarchical association rule X⇒ Y in D :

Support of set X ∪ Y in D

• Confidence c of a hierarchical association rule X⇒ Y in D:

Percentage of transactions containing Y in the subset of all transactions in D

that contain X
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6.3 Generalized Association Rules

Example

Support of {Jackets}: 4 of 6 = 67%

Support of {Jackets, Hiking boots}: 2 of 6 = 33%

„Hiking-boots⇒ Jackets“: Support 33%, Confidence 100%

„ Jackets⇒ Hiking-boots“: Support 33%, Confidence 50%

TransaktionsID Items
1 Anorak
2 Windcheater, Hiking boot
3 Anorak, Hiking boot
4 Walking-shoes
5 Walking-shoes
6 Windcheater
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6.3 Determining the Frequent Item Sets

Idea

• Extend database transactions by all predecessors of items contained in that
transaction

• Method

– Insert each item in transaction T together with all its predessors w.r.t. H
into new transaction T’

– Do not insert duplicates

• Then:

Determine frequent item sets for basic association rules
(e.g. Apriori algorithm)

Basic algorithm for generalized association rules
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6.3 Determining the Frequent Item Sets

Optimizations of the Basic Algorithm

Materialization of Predecessors
• Additional data structure H

Item → list of all its predecessors

• More efficient access to the predecessors

Filtering the predecessors to be added

• Add only those predecessors that occur in an element of candidate set Ck

• Example: Ck = {{Clothes, Shoes}}

replace „JacketXY“ by „ Clothes“
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6.3 Determining the Frequent Item Sets

Optimizations of the Basic Algorithm

Discard redundant item sets

• Let X an k-item set, i an item and a predessor of i.

•

• Support of X − { } = support of X

• X can be discarded during candidate generation

• Do not need to count support of k-item set that contains item i and predecessor

of i

Algorithm Cumulate

i

i

X i i= { , ,...}

i

SFU, CMPT 740, 03-3, Martin Ester 319

6.3 Determining the Frequent Item Sets

Stratification

• Alternative to the basic algorithm (Apriori-algorithm)

• Stratification = form layers in the candidate sets

• Property

Item set is infrequent and is predecessor of X:

X is infrequent

• Method

– Do not count all k-itemsets at the same time

– Count support first for the more general item sets

and count more special item sets only if necessary

X X
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6.3 Determining the Frequent Item Sets

Stratification

Example
Ck = {{Clothes Shoes}, {Outerwear Shoes}, {Jackets Shoes} }

Count support first for {Clothes Shoes}

Count support for Support für {Outerwear Shoes} only
if {Clothes Shoes} is frequent

Notations

• Depth of an item set:

For item sets X in candidate set Ck without direct predecessor in Ck:
Depth(X) = 0.

For all other item sets X in Ck:
Depth(X) = max{Depth( ) | ∈ Ck is direct predecessor of X} + 1.

• (Ck
n): Set of item sets from Ck with depth n, 0 ≤ n ≤ maximal depth t

X X
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6.3 Determining the Frequent Item Sets

Stratification

Algorithm Stratify

• Count item sets in Ck
0

• Remove all sucessors of infrequent elements of (Ck
0)

• Count support for remaining elements of (Ck
1)

• . . .

Trade-off between number of item sets for which the support is counted
(memory requirements) and the number of database scans (I/O cost)

if |Ck
n | small, then count candidates of depths (n, n+1, ..., t) at the same time
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6.3 Determining the Frequent Item Sets

Stratification

Problems of Stratify
If many item sets of small depth are frequent:

Can discard only few item sets of larger depths

Improvements of Stratify
• Estimate support of all item sets in Ck using a sample

• Ck’: all item sets which have estimated support exceeding minimum support

• Determine actual support of all item sets in Ck’ in one database scan

• Remove all successors of infrequent elements of Ck’ from Ck’’,

Ck’’ = Ck − Ck’
• Determine support for the remaining elements of Ck’’ in a

second database scan
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6.3 Interestingness of Generalized Association Rules

Notations

• is predecessor of :

Item set is predecessor of item set X and/or item set is predecessor

of set Y

• direct predecessor of in a set of rules:

is predecessor of , and there is no rule ,
such that predecessor of and predecessor of

• Generalized association rule is R-interesting:

Has no direct predecessors or

Actual support (confidence) > R times the expected support (confidence)

And the direct predecessor is also R-interesting.

X Y

YX ⇒ YX ⇒

YX ⇒ YX ⇒

YX ⇒ YX ⇒ YX ′⇒′
YX ′⇒′

YX ⇒

YX ⇒ YX ′⇒′YX ⇒
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6.3 Interestingness of Generalized Association Rules

Example

Rule-No Rule Support R-interesting?

1 Clothes⇒ Shoes 10 yes, no predecessor

2 Outerwear⇒ Shoes 9 yes, support ≈ R * expected
support (w.r.t. rule 1)

3 Jackets⇒ Shoes 4 no, support < R * expected
support (w.r.t. rule 2)

Item Support
Clothes 20

Outerwear 10
Jackets 4

R = 2

SFU, CMPT 740, 03-3, Martin Ester 325

6.3 Generalized Association Rules

Choice of minsup

Fix support

Variable support

minsup = 5 %

minsup = 5 %
Outerwear

Support = 10 %

Jackets

Support = 6 %

Trousers

Support = 4 %

Outerwear

Support = 10 %

Jackets

Support = 6 %

Trousers

Support = 4 %
minsup = 3 %

minsup = 5 %
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6.3 Generalized Association Rules

Discussion
Fix support
• Same minsup value for all levels of the item taxonomy

+ Effiziency: pruning successors of infrequent item sets

- Reduced effectiveness

minsup too high⇒ no low-level associations

minsup too low⇒ too many high-level associations

Variable support
• Different minsup values for different levels of the item taxonomy

+ Good effectiveness

Find association rules at appropriate support level

- Inefficient: no pruning of successors of infrequent item sets


