

2016 AAAI Fall Symposium Series
November 17-19, 2016
Arlington, Virginia

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=C2&exitLink=http%3A%2F%2Fwww.aaai.org%2Ffall

Al magazine

VOLUME 37, NUMBER 3 Fall 2016 ISSN 0738-4602

ANSWER SET PROGRAMMING ARTICLES

5 Answer Set Programming: An Introduction to the Special Issue
Gerhard Brewka, Thomas Eiter, Miroslaw Truszczynski

Z Answer Sets and the Language of Answer Set Programming
Vladimir Lifschitz

13 The Answer Set Programming Paradigm
Tomi Janhunen, Ilkka Nimeld

25 Grounding and Solving in Answer Set Programming
Benjamin Kaufimann, Nicola Leone, Simona Perri, Torsten Schaub

i

Almagazitie

33 Modeling and Language Extensions
Martin Gebser, Torsten Schaub

45 Systems, Engineering Environments, and Competitions
Yuliya Lierler, Marco Maratea, Francesco Ricca

53 Applications of ASP
Esra Erdem, Michael Gelfond, Nicola Leone
69 First Order Logic with Inductive Definitions

for Model-Based Problem Solving
Maurice Bruynooghe, Marc Denecker, Miroslaw Truszczyniski

Cover: Answer Set Programming by

James Gary, New York, New York. ARTICLES
)) 81 Symbiotic Cognitive Computing
The guest editors for the 2016 special Robert Farrell, Jonathan Lenchner, Jeffrey Kephart, Alan Webb, Michael Muller,
issue on Answer Set Programming are Thomas Erickson, David Melville, Rachel Bellamy, Daniel Gruen, Jonathan Connell,

Gerhard Brewka, Th"mas,E"’f‘frf and Danny Soroker, Andy Aaron, Shari Trewin, Maryam Ashoori, Jason Ellis,
Miroslaw Truszczynski. Brian Gaucher, Dario Gil

94 Remembering Marvin Minsky
Kenneth D. Forbus, Benjamin Kuipers, Henry Lieberman

WORKSHOP REPORT

99 Reports on the 2016 AAAI Workshop Series
Stefano V. Albrecht, Bruno Bouchard, John S. Brownstein, David L. Buckeridge, Cornelia
Caragea, Kevin M. Carter, Adnan Darwiche, Blaz Fortuna, Yannick Francillette, Sébastien
Gaboury, C. Lee Giles, Marko Grobelnik, Estevam Hruschka, Jeffrey O. Kephart, Parisa Kord-
jamshidi, Viliam Lisy, Daniele Magazzeni, Joao Marques-Silva, Pierre Marquis, David Mar-
tinez, Martin Michalowski, Zeinab Noorian, Enrico Pontelli, Alex Rogers, Stephanie Rosenthal,
Dan Roth, Scott Sanner, Arash Shaban-Nejad, Arunesh Sinha, William Streilein, Son Cao Tran,
Sylvie Thiebaux, Toby Walsh, Byron C. Wallace, Michael Witbroc, Jie Zhang

COMPETITION REPORT

109 The International Competition of Distributed
and Multiagent Planners (CoDMAP)
Antoriin Komenda, Michal Stolba, Daniel L. Kovacs
AI IN INDUSTRY
116 Automated Process Planning for CNC Machining
Christian Fritz
WORLDWIDE AI
118 The Israeli Al Community
Ariel Felner
DEPARTMENTS
3 Editorial
David B. Leake
123 AAAI News

128 AAAI Conferences Calendar

FALL 2016 1

Al magazine

aimagazine.org
ISSN 0738-4602 (print) ISSN 2371-9621 (online)

Submissions

Submissions information is available at http://aaai.org/ojs/index.php/aimagazine/infor-
mation/authors. Authors whose work is accepted for publication will be required to revise
their work to conform reasonably to Al Magazine styles. Author’s guidelines are available
at aaai.org/ojs/index.php/aimagazine/about/submissions#authorGuidelines. If an article
is accepted Tor publication, a new electronic copy will also be required. Although Al Ma-
gazine generally grants reasonable deference to an author’s work, the Magazine retains
the right to determine the final published form of every article.

Calendar items should be posted electronically (at least two months prior to the event or
deadline). Use the calendar insertion form at aimagazine.org. News items should be sent
to the News Editor, Al Magazine, 2275 East BaysEore Road, Suite 160, Palo Alto, CA 94303.
(650) 328-3123. Please do not send news releases via either e-mail or fax, and do not send
news releases to any of the other editors.

Advertising

Al Magazine, 2275 East Bayshore Road, Suite 160, Palo Alto, CA 94303, (650) 328-3123; Fax
(650) 321-4457. Web: aimagazine.org. Web-based job postings can be made using the
form at https://www.aaai.org/Forms/jobs-submit.php.

Microfilm, Back, or Replacement Copies

Replacement copies (for current issue only) are available upon written request and a
check for $10.00. Back issues are also available (cost may differ). Send replacement or
back order requests to AAAL Microform copies are available from ProQuest Information
and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106. Telephone (800) 521-3044 or
(734) 761-4700.

Copying Articles for Personal Use

Authorization to photocopy items for internal or personal use, or the internal or per-
sonal use of specific clients, or for educational classroom use, is granted by AAAI, pro-

An Official Publication of the Association for the Advancement of Artificial Intelligence

vided that the appropriate fee is paid directly to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923. Telephone: (978) 750-8400. Fax: (978) 750-4470.
Website: www.copyright.com. E-mail: info@copyright.com. This consent does not
extend to other kinds of copying, such as for general distribution, resale, advertising,
Internet or internal electronic distribution, or promotion purposes, or for creating new
collective works. Please contact AAAI for such permission.

Address Change

Please notify AAAI eight weeks in advance of a change of address. Send electronically via
MemberClicks or by e-mailing us to membership16@aaai.org.

Subscriptions

Al Magazine (ISSN 0738-4602) is published quarterly in March, June, September, and
December by the Association for the Advancement of Artificial Intelligence (AAAI), 2275
East Bayshore Road, Suite 160, Palo Alto, CA 94303, telephone (650) 328-3123. Al Mag-
azine is a direct benefit of membership in AAAL Membership dues are $145.00 individ-
ual, $75.00 student, and $285.00 academic / corporate libraries. Subscription price of
$50.00 per year is included in dues; the balance of your dues may be tax deductible as a
charitable contribution; consult your tax advisor for details. Inquiries regarding mem-
bership in the Association for the Advancement of Artificial Intelligence should be sent
to AAAI at the above address.

PERIODICALS POSTAGE PAID at Palo Alto CA and additional mailing offices. Postmaster:
Change Service Requested. Send address changes to Al Magazine, 2275 East Bayshore
Road, Suite 160, Palo Alto, CA 94303.

Copyright © 2016 by the Association for the Advancement of Artificial Intelligence. All
rights reserved. No part of this publication may be reproduced in whole or in part with-
out prior written permission. Unless otherwise stated, the views expressed in published
material are those of the authors and do not necessarily reflect the policies or opinions
of Al Magazine, its editors and staff, or the Association for the Advancement of Artificial
Intelligence.

PRINTED AND BOUND IN THE USA.

Chris Welty, IBM Research
Holly Yanco, University of Massachusetts,

Al Magazine and AAAI Press

Editor-in-Chief Lowell o)
David Leake, Indiana University Qiang Yang, Hong Kong University of Science
and Technology

Editor-in-Chief Elect
Ashok Goel, Georgia Institute of Technology

Competition Reports Coeditors

Sven Koenig, University of

Southern California

Robert Morris, NASA Ames
Reports Editor

Robert Morris, NASA Ames
Worldwide Al Column Editor

Matthijs Spaan, Delft University of

Technology
Al in Industry Column Coeditors
Sandip Sen, University of Tulsa
Sven Koenig, University of

Southern California

Feng Zhao, Microsoft Research

AAAI Officials

President

Subbarao Kambhampati,

Arizona State University
Past-President

Thomas G. Dietterich,

Oregon State University
President-Elect

Yolanda Gil,

USC Information Sciences Institute
Secretary-Treasurer

Ted Senator

AAAI Press Editor Councilors (through 2017)
Anthony Cohn, University of Leeds Sonia Chernova, Worcester
Managing Editor Polytechnic Institute, USA
David Hamilton, The Live Oak Press, LLC. Vir}cent Conitzer, Duke Uniyers ity, USA
Editorial Board Boi Faltings, Ecole polytechnique

fédérale de Lausanne, Suisse
Stephen Smith, Carnegie
Mellon University, USA
Councilors (through 2018)
Charles Isbell, Georgia Institute
of Technology, USA
Diane Litman University of Pittsburgh, USA
Jennifer Neville, Purdue University, USA
Kiri L. Wagstaff, Jet Propulsion
Laboratory, USA
Councilors (through 2019)
Blai Bonet, Universidad Simon Bolivar,
Venezuela
Mausam, Indian Institute of Technology
Delhi, India
Michela Milano, Universita di Bologna,
Italy
Qiang Yang, Hong Kong University of
Science and Technology, Hong Kong

John Breslin, National University of Ireland

Gerhard Brewka, Leipzig University

Vinay K. Chaudhri, SRI International

Marie desJardins, University of Maryland,
Baltimore County

Kenneth Forbus, Northwestern University

Kenneth Ford, Institute for Human and
Machine Cognition

Ashok Goel, Georgia Institute of Technology

Sven Koenig, University of Southern California

Ramon Lopez de Mantaras, IIIA, Spanish Sci-
entific Research Council

Sheila Mcllraith, University of Toronto

Robert Morris, NASA Ames

Hector Munoz-Avila, Lehigh University

Pearl Pu, EPFL

Sandip Sen, University of Tulsa

Kirsten Brent Venable, Tulane University and
THMC

2 Al MAGAZINE

Standing Committees

Awards, Fellows, and Nominating Chair
Thomas G. Dietterich,
Oregon State University, USA

Conference Chair
Shlomo Zilberstein, University of
Massachusetts, Amherst

AAAI SPONSORS

Al Journal

National Science Foundation
Microsoft Research

Baidu

IBM Research

Infosys Limited

Lionbridge Technologies
Stich Fix, Inc.

Disney Research

Conference Outreach Chair
Stephen Smith, Carnegie Mellon
University, USA

Education Cochairs
Charles Isbell, Georgia Institute
of Technology, USA

Klll}‘ls X\’agstaff, Jet Propulsion Laboratory, USC/ISI
Ethics Chair Yahoo Labs!
Francesca Rossi, University of Padova, Italy ~ Google
Finance Chair Alegian
Ted Senator Information Evolution
International Committee Chair i
Toby Walsh, NICTA, University of New ~ Microworkers

South Wales

Membership Chair
Sven Koenig, University of Southern Cali-
fornia

Publications Chair

Facebook, Inc.
Qatar Computing Research Institute
Adventium Enterprises

David Leake, Indiana University CrOWdFlower‘ .
Symposium Chair and Cochair CRA C_Zomputmg Community Con-

Gita Sukthankar, University of sortium

Central Florida ACM / SIGAI

Christopher Geib X .
Drexel University David E. Smith
JASIS&T

AAAT Staff Arizona State University
Executive Director

Gesis Leibniz Institute for the Social
Sciences

University of Texas at Austin
Women in Machine Learning

Carol Hamilton

Accountant
Diane Mela
Conference Manager
Keri Harvey

Membership Coordinator
Alanna Spencer

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faimagazine.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faaai.org%2Fojs%2Findex.php%2Faimagazine%2Finformation%2Fauthors
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faaai.org%2Fojs%2Findex.php%2Faimagazine%2Fabout%2Fsubmissions%23authorGuidelines
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faimagazine.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faimagazine.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Fwww.aaai.org%2FForms%2Fjobs-submit.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Fwww.copyright.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=mailto%3Ainfo%40copyright.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=mailto%3Amembership16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Faaai.org%2Fojs%2Findex.php%2Faimagazine%2Finformation%2Fauthors

Editorial

Editorial

Passing the Torch ...

David B. Leake

tremendous honor and privilege for me to lead AI Magazine,

which I have done since 1999. It was a special pleasure to work
with an outstanding team of volunteers—-the editorial board, column
editors, and others—-and with the authors and reviewers, as well as
with Mike Hamilton, managing editor, and the AAAI staff. As my
administrative duties have expanded at Indiana University, where I am
now executive associate dean of the School of Informatics and Com-
puting, the time has come for me to pass the torch.

The editorship provided me with a birds-eye view of the field of Al that
brought its stunning progress into focus. Research advances and the inte-
gration of Al into everyday life today give artificial intelligence unprece-
dented practical impact. The tremendous activity in diverse Al subareas
underlines the importance of the magazine’s mission of making advances
across the field of Al accessible to the broad Al community.

Ashok Goel, of Georgia Tech, who is currently editor in chief elect,
will become editor in chief with the winter issue. Goel is a professor of
computer science and cognitive science in the School of Interactive
Computing at Georgia Institute of Technology. He brings to the edi-
torship both extensive leadership experience and broad scientific
expertise in human-centered computing, artificial intelligence and cog-
nitive science, with special focus on computational design, discovery,
and creativity. In consultation with the Al Magazine Editorial Board,
the AAAI Publications Committee, the AAAI Executive Council, and
many leaders in the Al community, he has developed an inspiring and
ambitious long-term vision for building on the magazine’s strengths
and launching new initiatives for coming issues.

I'would like again to thank all those who have contributed to AI Mag-
azine. during my tenure and to express my deep appreciation for those
with whom I have worked as editor in chief. I welcome Ashok to the
helm. The AAAI Executive Council has appointed me as editor emeri-
tus and I look forward to continuing my engagement in that role.

It is an exciting time for Al Magazine, and for Al

[reid (oo toa__

This issue is my last as editor in chief of AI Magazine. It was a

Photo courtesy Kevin Sapp.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 FALL 2016 3

Conference Announcement

Artificial Intelligence and Interactive Digital Entertainment

The Twelfth AAAI Conference on
Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-16)

October 8-12,2016

Embassy Suites by Hilton San Francisco Airport - Waterfront
Burlingame, California

Conference Chair
Nathan Sturtevant (University of Denver)

Colocated with the ACM SIGGRAPH Motion in Games (MIG) 2016 Conference

Workshops: October 8-9

www.aiide.org

4 Al MAGAZINE

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.aiide.org

Editorial Introduction

Editorial

Answer Set Programming:
An Introduction to the Special Issue

Gerhard Brewka, Thomas Eiter, Mirostaw Truszczynski

B This editorial introduces answer set hat is answer set programming, or ASP for short?
programming, a vibrant research area in Why is it drawing attention and continually gain-
computational knowledge representa- ing in acceptance as a computational problem-solv-
tion and declarative programming. We ing approach? These are the two key questions the seven arti-

give a brief overview of the articles that
form this special issue on answer set
programming and of the main topics
they discuss.

cles in this special issue aim to answer. In a nutshell, ASP is a
declarative problem solving paradigm — declarative, as all it
requires users to do is to describe what the problem is, and
not how to solve it. What distinguishes ASP from other
declarative paradigms, like satisfiability (SAT) or constraint
solving (CSP), is its underlying modeling language and the
semantics involved. Problems are specified using logic pro-
gramminglike rules, with some convenient extensions facili-
tating compact and readable problem descriptions. Sets of
such rules, or answer set programs, come with an intuitive,
well-defined and, by now, well-accepted semantics. This
semantics has its roots in research in knowledge representa-
tion, in particular nonmonotonic reasoning, and avoids the
pitfalls of earlier attempts such as the procedural semantics of
Prolog based on negation as finite failure.

This semantics was originally called the stable-model
semantics and was defined for normal logic programs only,
that is, programs consisting of rules with a single atom in the
head and any finite number of atoms, possibly preceded by
default negation, not, in the body. Stable models were later
generalized to broader classes of programs, where the seman-
tics can no longer be defined in terms of sets of atoms, which
is a natural representation of classical models. Instead, it was
defined by means of some sets of literals. For this reason the
term answer set was adopted as more adequate (although
answer sets also have a straightforward interpretation as
models, albeit three-valued ones).

Over the last decade or so, ASP has evolved into a vibrant
and active research area that produced not only theoretical
insights, but also highly effective and useful software tools
and interesting and promising applications. The articles col-
lected in this issue discuss these and other related aspects of

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 FALL 2016 S

Editorial Introduction

ASP: its theoretical underpinnings, lan-
guage design, modeling methodology,
principles behind processing answer
set programs, development of fast pro-
cessing software, applications, and
some closely related formalisms to ASP
of similar functionality and effective-
ness.

Answer Sets and the Language of
Answer Set Programming by Vladimir
Lifschitz, who together with Michael
Gelfond introduced stable models and
answer sets back in 1988, lays the the-
oretical foundations of ASP by defining
the basic language of ASP and the
notion of answer sets.

The article by Tomi Janhunen and
Ilkka Niemeld, The Answer Set Pro-
gramming Paradigm, introduces the
general methodology for representing
and solving problems using ASP and,
in several examples, illustrates the key
elements of the process.

The two major steps in processing
answer set programs are grounding
and solving. Grounding eliminates the
variables by constructing in a smart
way the collection of relevant ground
rules. Solving exploits search tech-
niques similar to those used by SAT
solvers to find the answer sets of the
resulting ground program. These two
steps are discussed by Benjamin Kauf-
mann, Nicola Leone, Simona Perri, and
Torsten Schaub in the article Ground-
ing and Solving in Answer Set Pro-
gramming.

In the article Modeling and Lan-
guage Extensions, Martin Gebser and
Torsten Schaub give additional model-
ing examples and describe further use-
ful language constructs. In particular,
they discuss optimization methods,
that is, methods to identify those
answer sets that are most preferred
according to some user-defined criteria.

Several excellent ASP systems are
available now. In their paper Systems,
Engineering Environments, and Com-
petitions, Yuliya Lierler, Marco
Maratea, and Francesco Ricca provide
an overview of currently available and
most commonly used answer set
solvers and discuss methods behind
them. They also discuss the state of the
art in the emerging area of integrated
answer set program development envi-
ronments. Finally, they report on the
series of answer set competitions that

6 Al MAGAZINE

have been held regularly since 2007
and have had a major impact on the
effectiveness of the ASP tools.

Next, Esra Erdem, Michael Gelfond,
and Nicola Leone discuss applications.
Their article Applications of Answer Set
Programming demonstrates how some
prototypical knowledge representation
problems can be addressed in ASP, and
then goes on to present real-world
applications of ASP in robotics and
bioinformatics, as well as several
industry-grade ones.

Finally, the article First-Order Logic
with Inductive Definitions for Model-
Based Problem Solving, by Maurice
Bruynooghe, Marc Denecker, and
Mirek Truszczynski, complements this
special issue by broadening the view
on declarative problem solving. Not
only logic programs under the answer
set semantics but also other logic-
based formalisms can be used to gener-
ate intended models. The authors illus-
trate this observation with the
example of first-order logic extended
with inductive definitions, a formalism
closely related to ASP but, in some
important respects, different from it.

We thank all authors who have con-
tributed to this special issue on answer
set programming. We appreciate their
efforts to make it coherent and inform-
ative. We hope you will find the arti-
cles in the collection interesting and
helpful. In addition to a good presen-
tation of ASP topics, the articles pro-
vide many references to further read-
ing that can serve as an excellent entry
point to the rich literature on ASP.
Finally, we hope that this special issue
gives an idea why the field attracts so
much attention and carries so much
promise. And if you think ASP might
be the way to tackle the problem that
has just landed on your desk, just give
it a try!

Acknowledgements

Gerhard Brewka was partly supported
by DFG, research unit 1513. Thomas
Eiter acknowledges support by the Aus-
trian Science Fund (FWF), projects
P26471 and P24090.

Gerhard Brewka is a professor of intelli-
gent systems at Leipzig University, Ger-
many. His research focuses on knowledge
representation, in particular nonmonoton-

ic reasoning, logic programming, prefer-
ence and inconsistency handling, and com-
putational models of argumentation. He
served as president of EurAl (formerly
ECCAI), the European Association of Al,
and of Knowledge Representation Inc. He is
a member of the [JCAI Board of Trustees and
conference chair of IJCAI-16. In 2002,
Brewka became a EurAl Fellow. He was an
editor and associate editor of the journals
Artificial Intelligence Research and Artificial
Intelligence. He is now on the Editorial Board
of Al Magazine.

Thomas Eiter is a professor of knowledge-
based systems in the Faculty of Informatics
at Technische Universitit Wien, Austria. He
worked in different fields of computer sci-
ence and Al, but his main area is knowledge
representation and reasoning, where he has
published extensively; his current interests
are declarative problem solving and com-
putational reasoning methods. Eiter was on
the project team that built the DLV system,
an ASP solver that was state of the art
through many years. Eiter has served on on
a number of editorial boards, including Arti-
ficial Intelligence Journal and the Journal of
Artificial Intelligence Research, and has served
on several steering committees, including
those of the Association of Logic Program-
ming and Knowledge Representation and
Reasoning Inc. (where he was president
from 2014-2015). He has also chaired vari-
ous conferences, including, most recently,
KR 2014 and ICLP 2015. Eiter was elected a
Fellow of the European Association of Al
(EurAl, formerly ECCAI) in 2006 and corre-
sponding member of the Austrian Academy
of Sciences in 2007.

Mirostaw Truszczyiski is a professor of
computer science at the University of Ken-
tucky. His research interests include knowl-
edge representation, nonmonotonic rea-
soning, logic programming, and constraint
satisfaction. He has published more than
180 technical papers, coauthored a research
monograph on nonmonotonic logics, and
edited ten article collections and conference
proceedings. His paper Stable Logic Pro-
gramming, a joint work with Victor Marek,
helped launch the field of answer set pro-
gramming. Truszczynski served on the exec-
utive committee of the Association of Logic
Programming, was chair of the steering
committee of Nonmonotonic Reasoning
Workshops, and was president of Knowl-
edge Representation Inc. He served as an
editor and associate editor on the boards of
Journal of Artificial Intelligence Research and
Artificial Intelligence Journal. He is now edi-
tor-in-chief of Theory and Practice of Logic
Programming and an associate editor of Al
Communications. He is an AAAI Fellow.

Answer Sets and the
Language of Answer Set
Programming

B Answer set programming is a declar-
ative programming paradigm based on
the answer set semantics of logic pro-
grams. This introductory article pro-
vides the mathematical background for
the discussion of answer set program-
ming in other contributions to this spe-
cial issue.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Vladimir Lifschitz

gramming paradigm introduced by Marek and

Truszczynski (1999) and Niemeld (1999). It grew out of
research on knowledge representation (van Harmelen, Lif-
schitz, and Porter 2008), nonmonotonic reasoning (Ginsberg
and Smith 1988), and Prolog programming (Sterling and
Shapiro 1986). Its main ideas are described in the article by
Janhunen and Niemela (2016) and in other contributions to
this special issue.

In this introductory article my goal is to discuss the con-
cept of an answer set, or stable model, which defines the
semantics of ASP languages. The answer sets of a logic pro-
gram are sets of atomic formulas without variables (“ground
atoms”), and they were introduced in the course of research
on the semantics of negation in Prolog. For this reason, I will
start with examples illustrating the relationship between
answer sets and Prolog and the relationship between answer
set solvers and Prolog systems. Then I will review the math-
ematical definition of an answer set and discuss some exten-
sions of the basic language of ASP.

3 nswer set programming (ASP) is a declarative pro-

Articles

FALL 2016 7

Articles

Prolog and Negation as Failure

Simple Prolog rules can be understood as rules for
generating new facts, expressed as ground atoms,
from facts that are given or have been generated ear-
lier. For example, the Prolog program

p(1). p(2). p(3).

q(2)- a3)- a.

r(X) :- p(X), a(X).
consists of six facts (“1, 2, and 3 have property p; 2,
3, and 4 have property q”) and a rule: for any value
of X, r(X) can be generated if p(X) and q(X) are given
or have been generated earlier.! In response to the
query ?- r(X) a typical Prolog system will return two
answers, first X = 2 and then X = 3.

Let us call this program I, and consider its modi-
fication I1,, in which the “negation as failure” symbol
\+is inserted in front of the second atom in the body
of the rule:

p(M)- p(2). p(3).

q2)- a3)- a.

r(X) :- p(X), \+ q(X).

The modified rule allows us, informally speaking, to
generate r(X) if p(X) has been generated, assuming
that any attempt to generate q(X) using the rules of
the program would fail. Given the modified program
and the query ?- r(X) Prolog returns one answer, X = 1.

What is the precise meaning of conditions of this
kind, “any attempt to generate ... using the rules of
the program would fail”? This is not an easy ques-
tion, because the condition is circular: it attempts to
describe when a rule R “fires” (can be used to gener-
ate a new fact) in terms of the set of facts that can be
generated using all rules of the program, including R
itself. Even though this formulation is vague, it often
allows us to decide when a rule with negation is sup-
posed to fire. It is clear, for instance, that there is no
way to use the rules of II, to generate q(1), because
this atom is not among the given facts and it does
not match the head of any rule of II,. We conclude
that the last rule of I1, can be used to generate r(1).

But there are cases when the circularity of the above
description of negation as failure makes it confusing.
Consider the following program I1,, obtained from II,
by replacing the facts in the second line with a rule:

p(M). p(2). p(3).

q(3) - \+ r(3).

r(X) :- p(X), \+ q(X).

The last rule justifies generating r(1) and r(2), there
can be no disagreement about this. But what about
r(3)? The answer is yes if any attempt to use the rules
of the program to generate q(3) fails. In other words,
the answer is yes if the second rule of the program
does not fire. But does it? It depends on whether the
last rule can be used to generate r(3) — the question
that we started with.

The first precise semantics for negation as failure
was proposed by Clark (1978), who defined the

8 Al MAGAZINE

process of program completion — a syntactic trans-
formation that turns Prolog programs into first-order
theories. The definition of a stable model, or answer
set, proposed ten years later (Gelfond and Lifschitz
1988), is an alternative explanation of the meaning
of Prolog rules with negation. It grew out of the view
that an answer set of a logic program describes a pos-
sible set of beliefs of an agent associated with this
program; see the paper by Erdem, Gelfond, and
Leone (2016) in this special issue. Logic programs are
similar, in this sense, to autoepistemic theories
(Moore 1985) and default theories (Reiter 1980).2 The
definition of an answer set, reproduced in this arti-
cle, adapts the semantics of default logic to the syn-
tax of Prolog.

We will see that program I1,, unlike I1; and II,, has
two answer sets. One answer set authorizes including
X=3 as an answer to the query ?- q(X) but not as an
answer to the query ?- r(X); according to the other
answer set, it is the other way around. In this sense,
program I, does not give an unambiguous specifica-
tion for query answering. Programs with several
answer sets are “bad” Prolog programs.

In answer set programming, on the other hand, pro-
grams with several answer sets (or without answer sets)
are quite usual and play an important role, like equa-
tions with several roots (or without roots) in algebra.

Answer Set Solvers

How does the functionality of answer set solvers
compare with Prolog?

Each of the programs I1,, I,, and I1, will be accept-
ed as a valid input by an answer set solver, except
that the symbol \+ for negation as failure should be
written as not. Thus II, becomes, in the language of
answer set programming,

p(). p(2). p(3).

a- a3)- a.

r(X) :- p(X), not q(X).
and IT, will be written as

p(1). p(2). p3).

q(3) :- not r(3).

r(X) :- p(X), not q(X).

Unlike Prolog systems, an answer set solver does
not require a query as part of the input. The only
input it expects is a program, and it outputs the pro-
gram'’s answer sets. For instance, given program II,, it
will find the answer set

p(1) p(2) p(3) a(2) q(3) a4 r(2) r(3)

From the perspective of Prolog, this is the list of all
ground queries that would generate the answer yes
for this program. For program I1,, the answer set

p(1) p(2) p(3) a(2) q(3) a4 r(1)
will be calculated. Given II, as input, an answer set
solver will find two answer sets:

Answer: 1

p(1) p(2) p(3) q(3) r(1) r(2)
Answer: 2

P() p(2) p(3) r(3) r(1) 1(2)

Definition of an Answer Set:
Positive Programs

I will review now the definition of an answer set,
beginning with the case when the rules of the pro-
gram do not contain negation, as in program II, dis-
cussed earlier. By definition, such a program has a
unique answer set, which is formed as follows.

First, we ground the program by substituting spe-
cific values for variables in its rules in all possible
ways. The result will be a set of rules of the form
Ay mAy, LA, (1)
where each A, is a ground atom. (We think of “facts,”
such as p(1) in I1,, as rules of form (1) with n = 0 and
with the symbol :- dropped.) For instance, grounding
turns I, into

p(1). p(2). p(3).

a(2). 9(3). a.

r(1) = p(1), q(1).

r(2) - p(2), a(2).

r(3) - p(3), a(3).

r(4) - p(4), q(4).

The answer set of the program is the smallest set S of
ground atoms such that for every rule (1) obtained by
grounding, if the atoms A,, ..., A, belong to S then
the head A belongs to § too.

For instance, in the case of program II, this set §
includes (1) the facts in the first two lines of the
grounded program, (2) the atom r(2), because both
atoms in the body of the rule with the head r(2) belong
to S, and (3) the atom r(3), because both atoms in the
body of the rule with the head r(3) belong to S.

The following program contains two symbolic
constants, block and table:

number(1). number(2). number(3).

location(block(N)) :- number(N).

location(table).

Grounding turns the second rule into
location(block(1)) :- number(1).

location(block(2)) :- number(2).

location(block(3)) :- number(3).

The answer set of this program consists of the atoms
number(1) number(2) number(3) location(block(1))
location(block(2)) location(block(3)) location(table)

Definition of an Answer Set:
Programs with Negation
In the general case, when the rules of the given pro-

gram may contain negation, grounding gives a set of
rules of the form

Ay = not A 2)
where each A, is a ground atom. (To simplify nota-

tion, we showed all negated atoms at the end.) For
instance, the result of grounding I1, is

p(1). p(2). p(3).

a(2)- a(3)- a.

r(1) - p(1), not q(1).

r(2) :- p(2), not q(2).

r(3) :- p(3), not q(3).

r(4) :- p(4), not q(4).
To decide whether a set S of ground atoms is an answer
set, we form the reduct of the grounded program with
respect to S, as follows. For every rule (2) of the
grounded program such that S does not contain any of
the atoms A,,,,, ..., A,, we drop the negated atoms
from (2) and include the “positive part” (1) of the rule
in the reduct. All other rules are dropped from the
grounded program altogether. Since the reduct con-
sists of rules of form (1), we already know how to cal-
culate its answer set. If the answer set of the reduct
coincides with the set S that we started with then we
say S is an answer set of the given program.

For instance, to check that the set

{p(M), p(2), p(3), a(2), aB3), q4), (1)} 3)
is an answer set of II,, we calculate the reduct of the
grounded program with respect to this set. The
reduct is

p(M). p(2). p(3).

a(2)- a(3)- a.

r(1) - p(1).
(The last three rules of the grounded program are not
included in the reduct because set (3) includes q(2),
q(3), and q(4).) The answer set of the reduct is indeed
the set (3) that we started with. If we repeat this com-
putation for any set S of ground atoms other than (3)
then the result may be a subset of S, or a superset of
S, or it may partially overlap with S, but it will never
coincide with S. Consequently (3) is the only answer
set of I1,.

Intuitively, the reduct of a program with respect to
S consists of the rules of the program that “fire”
assuming that S is exactly the set of atoms that can be
generated using the rules of the program. If the
answer set of the reduct happens to be exactly S then
we conclude that S was a “good guess.”

The concept of an answer set can be defined in
many other, equivalent ways (Lifschitz 2010).

A, o A

A ., NOt A, .

m+l 7

Extensions of the Basic Language

Arithmetic. Rules may contain symbols for arithmetic
operations and comparisons, for instance:

p(1). p(2).

am. a).

r(X+Y) :- p(X), q(Y), X<Y.
The answer set of this program is

Articles

FALL 2016 9

Articles

p(1) p(2) q(1) a(2) r(3)
(In view of the condition X <Y in the body, the only
values substituted for the variables in the process of
grounding are X=1,Y =2.)
Disjunctive Rules (Gelfond and Lifschitz 1991). The
head of a rule may be a disjunction of several atoms
(often separated by bars or semicolons), rather than
a single atom. For instance, the rule

p(1) | p(2)-
instructs the solver to include p(1) or p(2) in each
answer set. The answer sets of this one-rule program
are

Answer: 1

p(1)

Answer: 2

p(2)

Choice Rules (Niemeld and Simons 2000). Enclosing
the list of atoms in the head in curly braces repre-
sents the “choice” construct: choose in all possible
ways which atoms from the list will be included in
the answer set. For instance, the one-rule program

{p(M); p@2)}.
has 4 answer sets:
Answer: 1

Answer: 2

p(1)

Answer: 3

P(2)

Answer: 4

p(1) p(2)
A choice rule may specify bounds on the number of
atoms that are included. The lower bound is shown
to the left of the expression in braces, and the upper
bound to the right. For instance, the one-rule pro-
gram

1{p(1); p)}.
has 3 answer sets — answers 2-4 from the previous
example. The one-rule program

{p(M);p2)}1.
has 3 answer sets as well — answers 1-3.

Constraints. A constraint is a disjunctive rule that has
0 disjuncts in the head, so that it starts with the sym-
bol :-. Adding a constraint to a program eliminates
the answer sets that satisfy the body of the con-
straint. For instance, the answer sets of the program
{p(M); p@2)}.
- p(1), not p(2).
are answers 1, 3, and 4 from the preceding list.
Answer 2 violates the constraint, because it includes
p(1) and does not include p(2).
Classical Negation (Gelfond and Lifschitz 1991).
Atoms in programs and in answer sets can be pre-
ceded by the “classical negation” sign (-) that should
be distinguished from the negation as failure symbol

10 AI MAGAZINE

(not). This is useful for representing incomplete infor-
mation. For instance, the answer set

p(@) p(b) -p(c) q(a) -q(c)
can be interpreted as follows: a and b have property
p, and c does not; a has property g, and ¢ does not;
whether b has property q we do not know. A rule of
the form

- A :-not A.

containing classical negation in the head and nega-
tion as failure in the body expresses the “closed world
assumption” for the atom A: A is false if there is no
evidence that A is true. The rule

p(T+1) :- p(T), not -p(T+1).

expresses the “frame default” (Reiter 1980) in the lan-
guage of answer set programming: if p was true at
time T and there is no evidence that p became false at
time T + 1 then p was true at time T + 1.

Input languages of many answer set solvers include
other useful extensions of the basic language, such as
aggregates (Faber, Leone, and Pfeifer 2004), weak con-
straints (Buccafuri, Leone, and Rullo 1997), consis-
tency-restoring rules (Balduccini and Gelfond 2003),
and P-log rules (Chitta, Gelfond, and Rushton 2009).

Extending the Definition
of an Answer Set

The problem of extending the definition of an answer
set to additional constructs, such as those reviewed
in the previous section, can be approached in several
ways. One useful idea is to treat expressions in the
bodies and heads of rules as logical formulas written
in alternative notation. For instance, we can think of
the list in the body of (2) as a conjunction of literals:

AfANAL A=A, A ADA,

A choice expression {A; .. .; A} can be treated as a
conjunction of “excluded middle” formulas:

(AjV-A) A ANA,V-A)

(Ferraris and Lifschitz 2005). Under this approach,
the rules of a grounded program are expressions of
the form F « G, where F and G are formulas built
from ground atoms using conjunction, disjunction,
and negation.?

The definition of the reduct was extended to such
rules by Lifschitz, Tang, and Turner (1999). In the
process of constructing the reduct of a rule F « G
with respect to a set S of ground atoms, every subfor-
mula that begins with negation is replaced by a logi-
cal constant: by true if it is satisfied by S, and by false
otherwise.

Gebser et al. (2015) defined the syntax and seman-
tics of many constructs implemented in the solver
CLINGO using a generalization of this approach that
allows the formulas F and G to contain implication,
and that allows conjunctions and disjunctions in F
and G to be infinitely long.

Acknowledgements

Thanks to Gerhard Brewka, Martin
Gebser, Michael Gelfond, Tomi Jan-
hunen, Amelia Harrison, Amanda
Lacy, Yuliya Lierler, Nicola Leone, and
Mirek Truszczynski for comments on a
draft of this article. This research was
partially supported by the National Sci-
ence Foundation under Grant IIS-
1422455.

Notes

1. In Prolog programs, a period indicates the
end of a rule. Capitalized identifiers are used
as variables. The symbol :- reads “if”; it sep-
arates the “head” of the rule (in this case,
the atom r(X)) from its “body” (the pair of
atoms p(X), q(X)). Answer set programming
inherited from Prolog these syntactic con-
ventions and terminology.

2. The relationship between Prolog and
autoepistemic logic was described by Gel-
fond (1987).

3. A more radical version of this view is to
think of the whole rule F « G as a proposi-
tional formula — as the implication G - F
“written backwards” (Ferraris 2005). It is
also possible to avoid the reference to
grounding in the definition of an answer set
and to treat rules with variables as first-
order formulas (Ferraris, Lee, and Lifschitz
2011).

References

Balduccini, M., and Gelfond, M. 2003. Log-
ic Programs with Consistency-Restoring
Rules. Paper presented at the 2003 AAAI
Spring Symposium on Logical Formaliza-
tions of Commonsense Reasoning, 24-26
March, Stanford University, Stanford CA.

Buccafuri, F,; Leone, N.; and Rullo, P. 1997.
Enhancing Disjunctive Datalog by Con-
straints. IEEE Transactions on Knowledge and
Data Engineering 12(5): 845-860.
dx.doi.org/10.1109/69.877512

Chitta, B.; Gelfond, M.; and Rushton, N.
2009. Probabilistic Reasoning with Answer
Sets. Theory and Practice of Logic Programming
9(1): 57-144. dx.doi.org/10.1017/51471068
408003645

Clark, K. 1978. Negation as Failure. In Logic
and Data Bases, ed. H. Gallaire and]J.
Minker. New York: Plenum Press. 293-322.
dx.doi.org/10.1007/978-1-4684-3384-5_11
Erdem, E.; Gelfond, M.; and Leone, N. 2016.
Applications of ASP. AI Magazine 37(3).

Faber, W.; Leone, N.; and Pfeifer, G. 2004.
Recursive Aggregates in Disjunctive Logic
Programs: Semantics and Complexity. In
Logics in Artificial Intelligence, 9th European
Conference (JELIA). Lecture Notes in Com-
puter Science 3229. Berlin: Springer.

Ferraris, P. 2005. Answer Sets for Proposi-
tional Theories. In Proceedings of Logic Pro-
gramming and Nonmonotonic Reasoning, 8th
International Conference (LPNMR 2005). Lec-
ture Notes in Computer Science 3662, 119-
131. Berlin: Springer. dx.doi.org/10.1007/
11546207 10

Ferraris, P., and Lifschitz, V. 2005. Weight
Constraints as Nested Expressions. Theory
and Practice of Logic Programming 5(1-2): 45—
74. dx.doi.org/10.1017/S147106840300
1923

Ferraris, P.; Lee, J.; and Lifschitz, V. 2011.
Stable Models and Circumscription. Artifi-
cial Intelligence 175(1): 236-263.
dx.doi.org/10.1016/j.artint.2010.04.011
Gebser, M.; Harrison, A.; Kaminski, R.; Lif-
schitz, V.; and Schaub, T. 2015. Abstract
Gringo. Theory and Practice of Logic Program-
ming 15(4-5): 449-463. dx.doi.org/10.
1017/S1471068415000150

Gelfond, M. 1987. On Stratified Autoepis-
temic Theories. In Proceedings of 6th Nation-
al Conference on Artificial Intelligence (AAAI),
207-211. San Mateo, CA: Morgan Kauf-
mann, Publishers.

Gelfond, M., and Lifschitz, V. 1988. The Sta-
ble Model Semantics for Logic Program-
ming. In Proceedings of International Logic
Programming Conference and Symposium, ed.
R. Kowalski and K. Bowen, 1070-1080.
Cambridge, MA: The MIT Press. dx.doi.org/

Articles

Visit AAAI on
LinkedIn™

AAALI is on LinkedIn!
If you are a current
member of AAAI you
can join us! We wel-
come your feedback
at infol6@aaai.org.

dx.doi.org/10.1007/978-3-642-60085-2_17

10.1007/BF03037169

Gelfond, M., and Lifschitz, V. 1991. Classi-
cal Negation in Logic Programs and Dis-
junctive Databases. New Generation Comput-
ing 9(3-4): 365-383.

Ginsberg, M., and Smith, D. 1988. Reason-
ing About Action I: A Possible World
Approach. Artificial Intelligence 35(3): 165-
195. dx.doi.org/10.1016/0004-3702(88)

Moore, R. 1985. Semantical Considerations
on Nonmonotonic Logic. Artificial Intelli-
gence 25(1):75-94. dx.doi.org/10.1016/
0004-3702(85)90042-6

Niemeld, 1. 1999. Logic Programs with Sta-
ble Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics
and Artificial Intelligence 25(3-4): 241-273.
dx.doi.org/10.1023/A:1018930122475

20011-2

Janhunen, T., and Niemeld, I. 2016. The
Answer Set Programming Paradigm. AI Mag-
azine 37(3).

Lifschitz, V. 2010. Thirteen Definitions of a
Stable model. In Fields of Logic and Compu-
tation: Essays Dedicated to Yuri Gurevich on
the Occasion of his 70th Birthday. Lecture
Notes in Computer Science Volume 6300,
488-503. Berlin: Springer. dx.doi.org/10.
1007/978-3-642-15025-8 24

Lifschitz, V.; Tang, L. R.; and Turner, H.
1999. Nested Expressions in Logic Pro-
grams. Annals of Mathematics and Artificial
Intelligence 25(3-4): 369-389. dx.doi.org/
10.1023/A:1018978005636

Marek, V., and Truszczynski, M. 1999. Stable
Models and an Alternative Logic Program-
ming Paradigm. In The Logic Programming
Paradigm: A 25-Year Perspective, ed. K. Apt, V.
W. Marek, M. Truszczyniski, D. S. Warren.
Berlin: Springer Verlag. 375-398.

Niemeld, I., and Simons, P. 2000. Extending
the Smodels System with Cardinality and
Weight Constraints. In Logic-Based Artificial
Intelligence, ed.]J. Minker. Dordrecht, The
Netherlands: Kluwer. 491-521. dx.doi.org/
10.1007/978-1-4615-1567-8 21

Reiter, R. 1980. A Logic for Default Reason-
ing. Artificial Intelligence 13(1-2): 81-132.
dx.doi.org/10.1016/0004-3702(80)90014-4
Sterling, L., and Shapiro, E. 1986. The Art of
Prolog: Advanced Programming Tech-
niques. Cambridge, MA: The MIT Press.
van Harmelen, E; Lifschitz, V.; and Porter,
B., eds. 2008. Handbook of Knowledge Repre-
sentation. Amsterdam: Elsevier.

Vladimir Lifschitz is a professor of com-
puter science at the University of Texas at
Austin. His research interests are in compu-
tational logic and knowledge representa-
tion.

FALL 2016 11

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2F69.877512
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068408003645
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-1-4684-3384-5_11
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F11546207_10
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068403001923
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2010.04.011
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068415000150
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF03037169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2888%2990011-2
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-15025-8_24
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018978005636
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-60085-2_17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2885%2990042-6
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018930122475
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-1-4615-1567-8_21
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2880%2990014-4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=mailto%3Ainfo16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068408003645
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F11546207_10
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068403001923
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068415000150
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF03037169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2888%2990011-2
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-15025-8_24
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018978005636
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2885%2990042-6
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-1-4615-1567-8_21

James Crawford, Conference Chair
G. Michael Youngblood, Conference Cochair

The Twenty-Ninth
Annual Conference on
Innovative Applications of
Artificial Intelligence
(IAAI-17)

February 49,2017
San Francisco, California USA

Please Join Us!

www.aaai.org/iaail 7

12

Al MAGAZINE

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=12&exitLink=http%3A%2F%2Fwww.aaai.org%2Fiaai17

The Answer Set
Programming Paradigm

Tomi Janhunen, Ilkka Niemelii

W In this article, we give an overview of
the answer set programming paradigm,
explain its strengths, and illustrate its
main features in terms of examples and
an application problem.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

programming paradigm for solving search problems

and their optimization variants. In ASP a search prob-
lem is modeled as a set of statements (a program) in a logic
programming type of a language in such a way that the
answer sets (models) of the program correspond to the solu-
tions of the problem. The paradigm was first formulated in
these terms by Marek and Truszczynski (1999) and Niemeld
(1999). The ASP paradigm has its roots in knowledge repre-
sentation and nonmonotonic logics research as described by
Marek, Niemeld, and Truszczynski (2011) in a historic
account on the development of the paradigm. A recent and
more technical overview of ASP has been contributed by
Brewka, Eiter, and Truszczynski (2011).

The ASP paradigm is most widely used with the formalism
of logic programming under the semantics given by answer
sets (Gelfond and Lifschitz 1988, 1990). The term answer sets
was proposed by Gelfond and Lifschitz (1991) for sets of lit-
erals, by which programs in an extended syntax are to be
interpreted where the classical negation operator and dis-
junctions of literals are allowed in the heads of program rules.
Lifschitz’s article (2016) in this special issue gives an intro-
duction to the notion of an answer set and the language of
ASP, as well as a comparison to Prolog systems. An alternative
approach to ASP has been to use directly first-order logic as
the basis and extend it with inductive definitions. The details

3 nswer set programming (ASP, for short) is a declarative

Articles

FALL 2016 13

Articles

can be found in the articles by Denecker and Ven-
nekens (2014), Denecker and Ternovska (2008), East
and Truszczynski (2006), and the one by Bruynooghe
et al. (2016) in this issue of AI Magazine.

A main reason for the increasing interest in ASP is
the availability of fast software tools that make it pos-
sible to tackle problems of practical importance. Most
of the current software tools employ two steps com-
monly referred to as grounding and solving, reflect-
ing the definition of answer sets for programs with
variables (Lifschitz 2016). The idea is to separate con-
cerns so that the grounding phase takes care of the
evaluation of more complicated data structures and
variable instantiations using logic programming and
deductive database techniques, and then the solving
phase focuses on search for answer sets for a much
simpler type of programs by employing advanced
search methods. The articles by Kaufmann et al.
(2016) and by Gebser and Schaub (2016) in this issue
provide more information on the solving and
grounding techniques.

There is a growing number of successful applica-
tions of ASP including molecular biology (Gebser et
al. 2010a, 2010b), decision support system for space
shuttle controllers (Balduccini, Gelfond, and
Nogueira 2006), phylogenetic inference (Erdem
2011, Koponen et al. 2015), product configuration
(Soininen and Niemeld 1998, Finkel and O’Sullivan
2011) and repair of web-service work flows (Friedrich
et al. 2010). Erdem, Gelfond, and Leone (2016) give
an account of the applications of ASP in this issue.

On the one hand, ASP is closely related to logic
programming and Prolog and, on the other hand, to
constraint programming (CP), propositional satisfia-
bility (SAT), and linear or integer programming
(LP/IP). Unlike Prologlike logic programming ASP is
fully declarative and neither the order of rules in a
program nor the order of literals in the rules matter.
Moreover, Prolog systems are tailored to find proofs
or answer substitutions to individual queries where-
as ASP systems are finding answer sets corresponding
to complete solutions to a problem instance. The
basic idea in ASP is very close to the paradigm of CP,
SAT, or LP/IP where problems are represented by con-
straints and where systems are tailored to find satis-
fying variable assignments corresponding to com-
plete solutions.

However, there are significant differences. The ASP
paradigm allows for a very systematic approach to
problem representation through uniform encodings
where the problem statement can be developed inde-
pendently of data on a particular instance. This leads
to a large degree of elaboration tolerance. The ASP
approach enables structured representation of prob-
lems where more complicated constraints are com-
posed of simpler ones using rules. On the other hand,
rules enable one to encode conditions that are chal-
lenging (like representing disjunctive constraints or
other basic relational operations on constraints) or

14 AI MAGAZINE

not available at all (like recursive constraints) when
comparing to CP or LP/IP paradigms. Because of
these properties ASP allows for incremental develop-
ment of an application and supports well rapid pro-
totyping.

The goal of this article is to provide an up-to-date
overview of the ASP paradigm and illustrate its usage
with examples as well as a more comprehensive
application problem. We proceed as follows. In the
next section, we explain the fundamental ideas of the
ASP paradigm. The use of the paradigm and its main
features are then illustrated by developing ASP
encodings for an application problem step by step.
The application considered in this article is about
designing a locking scheme for a building so that cer-
tain safety requirements are met. Having introduced
the basic paradigm, we briefly address main ways to
implement ASP — either using native answer set
solvers or translators that enable the use of solver
technology from neighboring disciplines. We end the
article with a summary and discussion of future
prospects. In addition, we illustrate the potential
computational hardness of our application problem
by explaining its connection to the NP-complete
decision problem Exact-3-SAT.

Basic ASP Paradigm

The conceptual model of the ASP paradigm is depict-
ed in figure 1. We start by explaining how to under-
stand search problems at an abstract level and then
illustrate how ASP is typically employed to solve such
problems using the approach illustrated in the figure.
Finally, we address a number of features and attrac-
tive properties of the paradigm.

Problem Solving

The ASP paradigm provides a general-purpose
methodology for solving search and optimization
problems encountered in many real-world applica-
tions. To get started, the key step is to identify and
formalize the problem to be solved, that is, to work
out a problem statement. Typically this consists of
clarifying what the potential solutions of the prob-
lem are like and then setting the conditions that
solutions should satisfy. Solving the problem means
that given the data on an instance of the problem we
should find one or more solutions that satisfy the giv-
en conditions (see the topmost arrow in figure 1). For
illustration, we use the task of finding a seating
arrangement for a dinner as the first simple example.
The respective problem statement could read as for-
mulated next.

Example 1 (Seating Arrangement Problem)

A certain group of people, say persons p,, ..., p,, are
invited for dinner. There are tables t,, ..., t, with the
respective capacities ¢, ... , ¢, available for seating
such that ¢,;+... +¢, >= n. The host has some prior

Articles

Solve
Problem men .
oblem statement Solution(s)
Formalize A
Instance data
Extract
| facts Bvaluate | Ground Search | Answer
PI‘Og o Instantiate program set(s)

Figure 1. Conceptual Model of the ASP Paradigm.

knowledge about the relationships of the guests: there

are both friends and enemies among the invitees. This

information should be taken into account when
designing the arrangement. A solution to this problem

is a mapping s(p;) = t; of persons p; to tables ; so that

the mutual relationships are respected.

The problem statement in example 1 uses mathe-
matical symbols to abstract the details of the prob-
lem such as the number and the identity of persons
involved and the collection of tables available for
seating. This reflects an important methodological
feature, namely the separation of instance data from
the actual problem statement. The point is that the
problem can be stated without listing all details for a
particular instance of the problem. In case of the seat-
ing arrangement problem, the instance data would
consist of the names of invitees together with lists of
tables and their capacities, and the pairs of persons
who are known to be either friends or enemies. More
concretely put, suppose that we have a group of 20
people: Alice, Bob, John, and others. There are four
tables, seating 7, 6, 5, and 4 people, respectively.
Moreover, we know that Alice likes Bob, Bob likes
John, and so on. Given all such pieces of informa-
tion, the goal is (1) to find at least one solution that
fulfills the criteria set in the problem statement of
example 1, or (2) to show that no solution exists. Giv-
en what we know so far, we can expect solutions
where Alice, Bob, and John are seated together at one
of the four tables available. However, if we state addi-
tionally that Alice and John dislike each other, for
instance, the seating problem instance under consid-
eration has no solutions.

ASP Encoding

But how do we achieve the aforementioned goal
using ASP and get the problem solved? As suggested
by figure 1, we should formalize the problem state-
ment by writing down a (logic) program. Before we

can really do this, we should have a basic under-
standing of syntax, also introduced in the article by
Lifschitz (2016) in this issue. In ASP, programs consist
of rules, that is, statements of the form

head :- body,, body,, ..., body, .

The intuitive reading of this rule is that the head can
be inferred if (and only if) the body conditions body,,
body,, ..., body, have been inferred by any other rules
in the program. The conditions in the rule are either
atomic statements (also called atoms) like seat(a,1) for
Alice being seated at table 1, or count-bounded sets of
atoms

I {atom,; ...; atom, } u
where at least | but at most u atoms among atom,, ...,
atom, should be inferable. The cardinality constraint
above can also be expressed in terms of a counting
aggregate

#count{atom,; ...; atom,}

where appropriate bounds can be incorporated using
relation symbols <, <=, >, >=, and =. Atoms can also
be negated using the operator not for default nega-
tion. A rule with an empty body (n = 0) stands for a
fact whose head holds unconditionally. As a further
special case, a rule without a head stands for a con-
straint whose body body,, body,, ..., body, must not
be satisfied. In this article, we do not consider exten-
sions of rules by classical negation nor disjunctions
in rule heads (Gelfond and Lifschitz 1991).

We are now ready to describe typical steps in writ-
ing down a program in ASP, resulting in an encoding!
given as listing 1. First, we have to decide how to rep-
resent the instance data. Sometimes this requires
some form of filtering in order to identify which
pieces of information are relevant in view of solving
the problem. This is easy for the seating problem. The
persons involved are listed in line 2 using predicate
symbol person/1 and constant symbols a, b, j, ... as
abbreviations for the names of persons in question.

FALL 2016 15

Articles

O oo ~NoOU b WN K

O N
AWN RO

% Instance

person(a). person(b). person(j).
likes(a,b). likes(b,j).

dislikes(a,j). dislikes(j,a).

tbl(1,7). tbl(2,6). tbl(3,5). tbl(4,4).

% Rules and constraints

1 { seat(P,T): tbl(T,_) } 1 :- person(P).

:- #count{seat(P,T): person(P)}>C, tbl(T,C).

:- likes(P1,P2), seat(P1,T1), seat(P2,T2),
person(P1), person(P2),
tb1(T1,_), tbl(T2,_), T1 != T2.

:- dislikes(P1,P2), seat(P1,T), seat(P2,T),
person(P1), person(P2), tbl(T,_).

Listing 1. Encoding the Seating Problem in ASP.

Predicates likes/2 and dislikes/2 are used in lines 3-4
to represent (potentially incomplete)? information
concerning friendship and dislike, respectively. Final-
ly, the identities and capacities of tables are declared
by the facts listed in line 5 using predicate tbl/2.
Overall, we have obtained a set of facts as the repre-
sentation of instance data.

The second step concerns the actual program for-
malizing the problem statement. Writing down the
rules is of course a creative activity, which one learns
best by doing, but in ASP one can concentrate on
defining the relevant concepts (relations) in terms of
rules, as well as thinking about conditions on which
certain relations should hold. To understand the out-
come of the formalization in listing 1, let us give the
intuitive readings for the rules involved. The rule in
line 8 stipulates that every person P must be seated at
exactly one table T. A few constraints follow. The
capacities of tables are enforced in line 9: it is unac-
ceptable if more than C persons are seated at table T
which seats at most C persons. Moreover, if person
P1 likes person P2, they should not be seated at dif-
ferent tables T1 and T2. This constraint is expressed
in lines 10-12. The other way around, if P1 does not
like P2, then they should not be seated at the same
table T. The respective rule is given in lines 13-14.
The rules and constraints in lines 8-14 explained so
far form a uniform encoding of the seating problem,
as the representation is independent of any problem
instance described by facts of the type in lines 2-5.

So far, we have demonstrated the modeling phi-
losophy of ASP in terms of a simple application. The
later section on locking design provides further
insights into modeling and typical design decisions
made. Yet further information is available in the arti-
cles of Bruynooghe, Denecker, and Truszczynski
(2016) and Gebser and Schaub (2016) in this issue.

16 Al MAGAZINE

ASP Solving

It remains to explain how the encoding from listing

1 solves the problem instance in practice. First, the

rules of the program have to be instantiated and eval-

uated with respect to the present facts. This means,

for example, that the rule in line 8 yields an instance
1 { seat(a,1); seat(a,2); seat(a,3); seat(a,4) } 1.

when P is replaced by a and T ranges over the avail-
able tables 1, 2, 3, and 4. This particular instance con-
cerns the seating of Alice. While instantiating the
rules also some evaluations take place. For example,
when handling the rule in line 9 for table 1 with
capacity 7 the lower bound C of the constraint is sub-
stituted by the value 7. The ground program, also
indicated in figure 1, is typically generated by run-
ning a dedicated tool, that is, a grounder, on the input.
After that the search for answer sets can be performed
by invoking an answer set solver. Finally, the solu-
tion(s) of the original problem instance are obtained
by extracting relevant part(s) from the answer set(s)
found. For the encoding under consideration, this
means that whenever an occurrence of seat(P, T) is
contained in an answer set, then person P is supposed
to be seated at table T. Using the notions from exam-
ple 1, we would have the required mapping s from
persons P to tables T. If no answer set can be found,
then a problem instance has no solutions. This is
actually the case for the instance described by lines 2—-
5 in listing 1, since it is impossible to place Alice, Bob,
and John at the same table due to their relations.
However, if the facts in line 4 are removed, obtaining
answer sets is still feasible — the relationships of oth-
er guests permitting.

Beyond Basic ASP

The basic paradigm illustrated in figure 1 solves the
problem at hand by eventually finding one or more
solutions to the problem, or by showing that no solu-
tion exists. If there are multiple solutions to the prob-
lem, then it may be desirable to select the best solu-
tion among the alternatives using some criterion
such as price, capacity, and so on. This turns the
problem into an optimization problem. In ASP, objec-
tive functions for such problems can be defined in
terms of optimization statements like
#minimize { w,,1: atom,; ...; w_,n: atom_ }.

The statement above assigns weights w;, ... , w, to
atoms atom,, ..., atom,, respectively, and the goal is
to minimize the sum of weights for atoms contained
in an answer set — when evaluated over all answer
sets. As regards the seating arrangement problem, the
respective optimization problem could deal with
obviously inconsistent settings like the one described
above. Rather than satisfying all constraints resulting
from the mutual relations of persons, the goal would
be to satisfy as many as possible. In the preceding
example, this would mean that either Alice is seated
at the same table as Bob, or Bob is seated with John,
but Alice and John are placed at different tables.

Besides the optimization of solutions, there are
also other reasoning modes of interest. It is some-
times interesting to see how much the solutions are
alike. In cautions reasoning, the idea is to check
whether a certain atom is present in all or absent
from some answer set. For instance, if seat(a,1) is for
some reason contained in all answer sets, then Alice
will be unconditionally seated at the first table and
no options remain to this end. Cautious reasoning
corresponds to basic query evaluation over answer
sets and it can be implemented by adding a con-
straint to the program. In the case of our example,
the constraint would read :- seat(a,1). indicating that
we would like to find any counterexample, that is, an
answer set not containing seat(a,1). Alternatively, cau-
tious reasoning can be implemented by solvers as a
special reasoning mode while searching for answer
sets. Brave reasoning is the dual of cautious reasoning
and then the presence in some or absence from all
answer sets is required. Again, this can be imple-
mented by adding a constraint or as a special reason-
ing mode.

It is also possible to enumerate answer sets and,
hence, count their number. For certain applications,
the number of solutions could actually be an inter-
esting piece of information. In product configuration
(see, for example, Soininen and Niemeld [1998]), this
could be the number of variants that a production
line should be able to produce. There are also com-
plex use cases of ASP. In incremental solving, the idea
is to compute partial solutions to a problem (or show
their nonexistence) by calling an ASP solver several
times and by extending the instance data on the fly.
Various kinds of planning problems (with an increas-
ing plan length) typically fall into this category. The
latest developments even suggest multishot solving
(Gebser et al. 2014) where solver calls are freely
mixed and the ground programs used upon solver
calls may evolve in more complex ways.

Constraints over Infinite Domains

Since grounding is an inherent part of ASP work flow,
the basic paradigm is based on Boolean or finite-
domain variables only. However, certain applications
call for variables over infinite domains such as inte-
gers and reals. For instance, there have been propos-
als to extend ASP rules by linear inequalities (Gebser,
Ostrowski, and Schaub 2009; Liu, Janhunen, and
Niemeld 2012; Mellarkod, Gelfond, and Zhang 2008)
as well as difference constraints (Janhunen, Liu, and
Niemeld 2011). From the modeling perspective, the
goal of such extensions is to increase the expressive
power of ASP suitably so that new kinds of applica-
tions become feasible. For instance, referring back to
the seating problem in listing 1, we could refine the
specification for each person P by introducing integer
variables e(P) and I(P) denoting the points of time
when P enters and leaves the table in question. Using
difference constraints, we could state a specification

Articles

:- L(P)-e(P)<5, person(P).
:- L(P)-e(P)>90, person(P).
:- 1L(P1)-e(P2)>0, 1(P2)-e(P1)>0,

b hwN-=

seat(P1,T), seat(P2,T), tbl(T,_).

dislikes(P1,P2), person(Pl), person(P2),

Listing 2. Examples of Difference Constraints.

given as listing 2. Intuitively, the rules in lines 1 and
2 insist that person P stays at the table from 5 to 90
minutes. The constraint in lines 3-5 refines the last
one from listing 1. It is not allowed that any two per-
sons P1 and P2 who dislike each other are seated at
the same table at the same time. It is important to
notice that when the constraint in line 1 is instanti-
ated for Alice, the resulting constraint is :- 1(a)-e(a) <
5. Thus, the infinity of the underlying domain is not
reflected to the size of the resulting ground program.
Naturally, the interpretation of 1(a) and e(a) as inte-
ger variables must be dealt with by the implementa-
tion of such constraints.

Application: Locking Design

Having introduced the ASP paradigm on a general
level, we now illustrate its main features in terms of
an application problem where the goal is to design a
locking scheme for a building. This is to be under-
stood comprehensively, that is, we are not just inter-
ested in locks but also anything else that can affect
accessibility in a building. For simplicity, we consid-
er a single floor. A sample floor plan of such a build-
ing is depicted in figure 2. There are 12 rooms alto-
gether, numbered from 1 to 12 in the figure.

Given this domain, our objectives are as follows.
First, we describe the domain in a uniform way by
selecting adequate predicates for the representation
of domain information. Second, we take one con-
crete design goal from this domain into considera-
tion. To this end, we concentrate on the configura-
tion of locks installed on (potential) doors between
the rooms in such a way that certain accessibility cri-
teria are met. A particular safety requirement is that
the floor can be effectively evacuated in case of an
emergency. The idea is to develop ASP encodings for
a design problem like this and, at the same time, illu-
minate the basic line of thinking and typical primi-
tives used when modeling in ASP.

Uniform Encoding

The goal is to choose predicate symbols and the
respective relations that are needed to represent an
instance of the application problem at hand. To
abstract the physical coordinates of the rooms, we
rather represent the adjacency relation of rooms in

FALL 2016 17

Articles

Figure 2. Floor Plan for the Rooms 1-12.

ANULnbhwN =

room(R1) :- adj(R1,R2).
room(R2) :- adj(R1,R2).
pot(R1,R2) :- adj(R1,R2).
pot(R1,R2) :- adj(R2,R1l).
otherexit :- exit(X), X>1.
exit(l) :- not otherexit.

Listing 3. Domain Rules for Locking Design.

terms of a predicate adj/2. For simplicity, we also
assume that this relation captures the potential of
installing doors between any adjacent rooms. The
floor plan of figure 2 can be represented by constants
1..12 for the rooms and the following facts:
adj(1,2). adj(1,3). adj(2,3). adj(2,4). ... adj(11,12).

In total, there are 21 such facts and they are sufficient
for the purposes of our examples to describe the
interconnections of the rooms. For space efficiency,
the adjacency information is represented asymmetri-
cally, that is, adj(X,Y) is reported only if X<Y. In addi-
tion, the rooms having exits are reported using a
unary predicate exit/1. For the running example in
figure 2, this is captured by the fact exit(5). Now, if
the given floor plan were changed in one way or

18 AI MAGAZINE

another, or a completely different floor plan were tak-
en into consideration, this should be reflected in the
facts describing the problem instance. The other rules
describing the application problem are based on
these two predicates, hence making the encoding
uniform. As typical in ASP encodings, some sub-
sidiary domain predicates are defined in order to
make the description of the actual problem easier.
Some domain rules for the locking design problem
are collected in listing 3 and explained next.

Relational Operations

The rules in lines 1-2 of listing 3 are used to extract
room information from the adjacency information
by a simple projection operation. As a result room(R)
is true for only those values of R that actually appear
in the adjacency information. In principle, a door
between two rooms provides symmetric access from
a room to another. Thus, the adjacency relation is not
well-suited as such for the description of accessibility
and we form the union of the accessibility relation
with its reverse relation using rules in lines 3-4. The
relation pot/2 stands for potential access depending
on instrumentation such as locks, handles, press but-
tons, and so on.

Defaults

To illustrate the use of defaults in encodings, we have
included the rules in lines 5-6 of listing 3. The rule in
line 5 defines the condition otherexit/0 meaning that
some other room than the room 1 has an exit. The
rule in line 6 ensures that, by default, there is an exit
at room 1. This is to hold unless another exit has
been declared for the particular problem instance.
There can be multiple exits. For instance, if there are
two exits at rooms 1 and 5, this can be stated explic-
itly using facts exit(1) and exit(5). Adding these facts
overrules the default in line 6 because otherexit can be
inferred by the rule in line 5.

Defining the Search Space

Typical ASP encodings include a part where the solu-
tion candidates for the problem being formalized are
generated. This can be achieved by expressing a num-
ber of choices that aim at capturing the varying
aspects of solutions. As regards syntax, such choices
can be expressed in terms of choice rules whose heads
are count-bounded sets of atoms. Bounds can also be
omitted if an arbitrary choice is of interest. As
explained above, the access from a room to another
can be asymmetric due to physical constructions. In
particular, this is true for emergency situations where
persons try to leave the building as soon as possible
but might have no keys to unlock any door. For sim-
plicity, we introduce a two-argument predicate evac/2
that is used to express the existence of an evacuation
route from a room to another. Given adjacent rooms
R1 and R2, such a design choice can be made in terms
of a choice rule

reach(R,R)
reach(R1,R2) :-

oooONONLDA WN =

:- room(R).

reach(R1,R3), evac(R3,R2),
room(R1), pot(R3,R2).

ok(R) :- room(R), reach(R,X), exit(X).
:- not ok(R), room(R).

#minimize{1,R1,R2: evac(R1,R2), pot(R1,R2)}.

Listing 4. ASP Encoding of the Evacuation Plan.

{ evac(R1,R2) } :- pot(R1,R2).
The intuitive reading is that if pot(R1,R2) is true, then
the truth value of evac(R1,R2) is subject to a choice.
Hence, the selection of evacuation routes between
rooms is formalized. Note that the analogous normal
rule

evac(R1,R2) :- pot(R1,R2).

would falsify evac(R1,R2) by default if pot(R1,R2) were
false, for example, rooms R1 and R2 were not adja-
cent. Since the relation pot/2 is symmetric, this gives
rise to four different scenarios if pot(R1,R2) and thus
also pot(R2,R1) is true.

Evacuation in one direction is possible if either
evac(R1,R2) or evac(R2,R1) holds. If they are both
true, this allows for bidirectional evacuation between
R1 and R2. If such an option is not considered safe, it
is easy to introduce an integrity constraint to exclude
such a possibility in general:

:- evac(R1,R2), evac(R2,R1), pot(R1,R2).

If both evac(R1,R2) and evac(R1,R2) are false, then
there is no connection between rooms R1 and R2 in
case of an emergency. It remains to ensure that there
exists an overall evacuation plan, that is, it is possi-
ble to reach at least one exit of the building from
every room.

Recursive Definitions

The existence of an evacuation plan is governed by
constraints that concern the mutual reachability of
rooms, to be formalized using a predicate reach/2.
The first two rules of listing 4 give a recursive defini-
tion for this predicate. Every room R is reachable
from itself: the corresponding base case is given in
line 1. The recursive case is formulated in lines 2-4:
the reachability of R2 from R1 builds on the reacha-
bility of an intermediate room R3 from R1 and the

condition that R3 can be evacuated to R2 (compare
with line 3).

Constraining Solutions

The essential constraint on the evacuation plan is
given in lines 6-7 of listing 4. Any given room R is
considered to be OK, if some exit X is reachable from
it (line 6). The auxiliary predicate ok/1 is defined in
order to detect this aspect for each room. The actual
constraint (line 7) excludes scenarios where some of
the rooms would not be OK. Last, we want to mini-
mize the number of evacuation connections by the
objective function given in line 9. Using the encod-
ing devised so far and an ASP solver, it is possible to
check for the floor plan of figure 2 that the minimum
number of connections is 11. This is clear since there
are 12 rooms in total each of which (except room 35)
must be connected to some other room for the pur-
pose of evacuation. But ASP solvers can find out more
for our running example. For instance, it is possible
to enumerate and count all possible evacuation plans
with 11 connections. In fact, there are 22 020 such
plans and further constraints can be introduced to
identify the most suitable ones. It is indeed the case
that the current requirements allow for very long
evacuation routes through the building of figure 2
such as
7-6-11-12-10-9-58-4-2->1-53->5.

Given this observation, the lengths of routes seem
important. Thus, we now pay special attention to the
number of evacuation steps, that is, moves from a
room to another, and from the room perspective. The
number of steps ought to be limited.

Elaboration Tolerance
It is straightforward to modify the recursive encod-

Articles

FALL 2016 19

Articles

either as stand-alone tools, such as the state-of-the-
art grounder GRINGO,? or integrated as a front end
of the solver. Native answer set solvers are able to
handle ground logic programs directly and, hence,

step(0..s). . . .

truly implement the search step illustrated in the fig-
reach(R,R,0) :- room(R). ure. Typically, this step is the most demanding one
reach(R1,R2,S+1) :- from the computational perspective. A number of

ok (R)

reach(R1,R3,S), evac(R3,R2),
room(R1), pot(R3,R2), step(S), step(S+1l).

:- room(R), reach(R,X,S),

exit(X), step(S).

Listing 5. Revised ASP Encoding of the Evacuation Plan.

ing so that the number of steps is reflected. The
revised encoding is presented as listing 5. The
domain for steps is first declared by the rule in line 1
where the maximum number of steps s is determined
from the command line of the grounder. The base
case in line 3 simply states that each room R is reach-
able from itself in zero steps. The main modification
in the recursive case (lines 4-5) concerns counting:
the number of steps S is increased by one to S+1
whenever a further step is made. However, since both
S and S+1 must be members of the domain of steps,
the maximum value is effectively determined by the
constant s in line 1. Given the floor plan of figure 2
and s=2, no evacuation plans can be found. By
increasing s by one, solutions with 11 connections
are found again and there are only 152 plans where
the number of evacuation steps is at most three.

In summary, we have now tackled one particular
aspect of locking design, that is, ensuring that an
evacuation plan exists for a building. In reality fur-
ther requirements are imposed on evacuation plans
making the problem computationally more and
more challenging. For instance, it can be shown that
if we incorporate conditions which can make rooms
along an evacuation route mutually exclusive, for
example, for certain security reasons, it is unlikely
that we are able to find a polynomial time algorithm
for solving the problem (mathematically expressed
the problem becomes NP-complete). This justifies
well the use of powerful search methods like ASP for
tackling the problem. For readers interested in com-
putational complexity, we sketch the justifications of
computational hardness in the sidebar.

Computing Answer Sets

So far, we have concentrated on the conceptual mod-
el of figure 1 with an emphasis on the modeling side.
As regards the actual computation of answer sets,
grounding and solving were also identified as the
main steps involved. Grounders are implemented

20 Al MAGAZINE

answer set solvers have been developed in the histo-
ry of ASP and we mention here DLV,* CLASP?, and
WASP? since they are actively maintained and devel-
oped at the moment. The article by Kaufmann et al.
(2016) in this issue gives a more detailed account of
grounding and solving. If ASP is extended by con-
straints which cannot be directly handled by the ASP
solver being used, the typical solution is to isolate
extensions from rules themselves and to treat them
by appropriate solvers externally. This leads to an
architecture where two or more solvers are cooperat-
ing and interacting in analogy to SAT modulo theo-
ries (SMT) solvers. Then each sort of constraints can
be handled by native algorithms.

Translation-Based ASP

The other constraint-based disciplines discussed in
the introduction offer similar solver technology at
the user’s disposal for handling, in particular, the
search phase. However, they cannot be used straight-
forwardly, as ground programs are not directly under-
stood by such solvers and certain kinds of transfor-
mations become indispensable. The idea of
translation-based ASP is to translate (ground) logic
programs into other formalisms so that a variety of
solvers can be harnessed to the task of computing
answer sets. Such an approach can be understood as
a refinement of the search step in figure 1. There are
existing translations from ASP, for example, to SAT
(Janhunen 2004), and its extension as SMT (Niemeld
2008), and mixed integer programming (MIP) (Liu,
Janhunen, and Niemeld 2012). These translations
indicate the realizability of ASP in other formalisms
and they have all been implemented by translators
in the ASPTOOLS® collection. They offer another way
of implementing the search phase in ASP using off-
the-shelf solvers as black boxes. This approach is
already competitive in certain application problems
and it can be seen as an effort to combine the expres-
sive power of the modeling language offered by ASP
with the high performance of existing solvers. Trans-
lations are also useful when implementing language
extensions in a single target language. For instance,
the idea of (Janhunen, Liu, and Niemeld 2011) is to
translate programs enriched by difference constraints
into difference logic altogether. The strength is that a
single solver is sufficient for the search phase, but on
the other hand, the original structure of constraints
may be lost.

Cross Translation
The translations mentioned above are based on very

Articles

Locking Design Can Be Computationally Challenging

Figure 3. Floor Plan and Evacuation
Routes for the NP-Completeness Proof.

It is not surprising that finding a
locking scheme satisfying given
conditions can become computa-
tionally challenging when more
involved conditions need to be sat-
isfied. Here we consider the prob-
lem of finding a locking scheme
that allows an evacuation plan
such that for each room there is
exactly one evacuation direction
and the evacuation routes respect a

given set of room conflicts, that is,
a set of pairs of rooms (R;, R,) such
that when following the evacua-
tion routes if you enter room R;,
then you cannot enter room R,. We
show that this locking design prob-
lem is NP-complete indicating that
it is unlikely that a polynomial
time algorithm for solving this
problem can be found. See, for
example, Papadimitriou (1994) for
an introduction to computational
complexity and the required con-
cepts used next.

Technically, the NP-complete-
ness of a problem can be shown by
establishing a reduction com-
putable in polynomial time from a
known NP-complete problem to
the problem and showing that it
can be checked in polynomial time
that a potential solution satisfies
the required conditions for the
problem. As such a known NP-
complete problem we use the
Exact-3-SAT problem where we are
given a conjunction of 3-literal
clauses and the problem is to find a
truth assignment that satisfies
exactly one literal in each of the
clauses.

Reduction from Exact-3-SAT

Any given 3-SAT instance
C,&...&C, can be transformed into
a floor plan illustrated in figure 3.
For each 3-literal clause C; =
L 111; ,|1; 3, we introduce a corridor C;
Connected to rooms R, R, > and

5 that are connected to corridor
C1+1 Moreover, rooms R1 o R1 5, and
R, ; do not have doors in between.
The (only) exit is located next to
corridor C, ;, which means that all
corridors and rooms must be even-
tually evacuated through it. More-
over, each room R; ;is labeled by the
respective literal ll , the idea being
that [;; 1s satisfied if C, is evacuated

through the room R, .. Consequent-
ly, if there are two rooms labeled by
complementary literals (that is, a
Boolean variable x and its nega-
tion), then those rooms are in con-
flict. This means that evacuation
routes involving any pair of con-
flicting rooms are not feasible. It is
also easy to see that the floor plan
in figure 3 and the associated set of
conflicts can be computed in poly-
nomial time.

It can be shown that a 3-SAT
instance C,&...& C, has a satisfying
truth assignment such that each
clause has exactly one literal satis-
fied if and only if for the corre-
sponding floor plan there is a lock-
ing scheme that allows an
evacuation plan such that (1) for
each room there is exactly one
evacuation direction and (2) the
evacuation routes respect the set of
room conflicts arising from the
complementary literals. The key
observation is that for the corre-
sponding floor plan evacuation is
possible only if there is a route
from C, to C,,, such that for each i
=1, ... ,n the route visits exactly
one of the rooms R R and R;3
and all room conflicts are respect-
ed. A satisfying truth assignment
such that each clause has exactly
one literal satisfied gives directly
such a route, and if such a route is
available, it gives directly an appro-
priate truth assignment where liter-
als corresponding to the visited
rooms in the route are satisfied.

Moreover, it is clear that given a
locking scheme with exactly one
evacuation direction for each
room, whether evacuation is possi-
ble and all room conflicts are
respected can be checked in poly-
nomial time.

FALL 2016 21

Articles

similar technical ideas but yield representations of
the ground program in completely different formats.
Since the development of several translators brings
about extra programming work, it would be highly
desirable to integrate the variety of translators in a
single tool - having options for different back-end
formats. This is not as simple as that due to the wide
variety of formats under consideration.

However, this issue is partly solved by a recent
translation from ASP to SAT modulo acyclicity (Geb-
ser, Janhunen, and Rintanen 2014) where graph-
based constraints are interconnected with ordinary
logical constraints (that is, clauses). The translation
can be implemented by instrumenting a ground log-
ic program with certain additional rules and meta
information formalizing the underlying recursion
mechanism in terms of the acyclicity constraint. This
leads to a new implementation strategy for transla-
tion-based ASP: the choice of the target formalism
can be postponed until the last step of translation
where the constraints are output in a particular solver
format. This idea is analogous to cross compilation
in the context of compiling conventional program-
ming languages and hence we coin the term cross
translation for ASP. In the current implementation of
this idea, a back-end translator transforms the instru-
mented program into other kinds of constraints
understood by SMT, MIP, and pseudo-Boolean (PB)
solvers, for instance. Interestingly, by implementing
an additional acyclicity check inside a native ASP
solver, the instrumented program can also be
processed directly by the solver (Bomanson et al.
2015), which offers yet another approach to answer
set computation.

Summary and Future Prospects

This article provides an introduction to the ASP par-
adigm as well as explains its main features — first
generally, but also in terms of examples. We also dis-
cuss the two mainstream approaches to implement-
ing the search for answer sets using either native
solvers, or translators combined with solver technol-
ogy offered by neighboring disciplines.

Towards Universal Modeling

There is a clear trend in the area of constraint-based
modeling where methods and techniques are being
transferred from one discipline to another. Various
ideas from knowledge representation, logic program-
ming, databases, and Boolean satisfiability served as
a starting point for the ASP paradigm. But there are
signs of knowledge transfer in the other direction as
well. For instance, ASP solvers have been integrated
into logic programming systems such as XSB (Rao et
al. 1997). Advanced query evaluation mechanisms of
ASP (Faber, Greco, and Leone 2007) are also relevant
for deductive databases. The very idea of answer sets
has been brought to the context of CP by introduc-

22 Al MAGAZINE

ing so-called bound-founded variables (Aziz, Chu,
and Stuckey 2013). Quite recently, the algorithms for
projected answer set enumeration have been export-
ed for model counting in the context of SAT (Aziz et
al. 2015).

We foresee that the exchange and incorporation of
ideas and technologies in this way is gradually leading
towards a universal approach where the user may
rather freely pick the right language for expressing
constraints of his or her interest. The underlying rea-
soning system is then supposed to (1) take care of
required translations transparently and (2) forward
the resulting constraints for a solver architecture that
can realize the search for answers. The first attempts
to define a modular framework for multilanguage
modeling have already been made (Jarvisalo et al.
2009; Lierler and Truszczynski 2014; Tasharrofi and
Ternovska 2011). However, a lot of work remains to
be done in order to realize the universal modeling sce-
nario. Our experience from integrating various kinds
of tools suggests that finding a universal format for
the constraints of interest is one of the key issues for
tool interoperability. There are existing formats, such
as the DIMACS format in SAT, the Smodels format in
ASP, and the FlatZinc format in CP, that can be used
as starting points for designing the universal format.

Acknowledgments

We gratefully acknowledge support from the Finnish
Centre of Excellence in Computational Inference
Research (COIN) funded by the Academy of Finland
(under grant #251170). We also thank Martin Gebser,
Michael Gelfond, Torsten Schaub, and Mirek
Truszczynski for their comments on a preliminary
draft of this article.

Notes

1. The encodings presented in this article are directly exe-
cutable using contemporary ASP grounders and solvers
compatible with the ASP-core-2 language specification (ASP-
CORE-2 Input Language Format, 2012. F. Calimeri, W. Faber,
M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N.
Leone, F. Ricca, and T. Schaub).

2. However, ASP builds on the closed world assumption
(CWA): the given information is treated as complete infor-
mation and the problem is solved under this assumption.

3. potassco.sourceforge.net

4. www.dlvsystem.com

5. github.com/alviano/wasp.git

6. research.ics.aalto.fi/software/asp

References

Aziz, R.; Chu, G.; Muise, C.; and Stuckey, P. 2015. #3SAT:
Projected Model Counting. In Theory and Applications of Sat-
isfiability Testing (SAT 2015) 18th International Conference,
Lecture Notes in Computer Science 9340, 121-137. Berlin:
Springer. dx.doi.org/10.1017/S147106841300032X

Aziz, R.; Chu, G.; and Stuckey, P. 2013. Stable Model Seman-

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fpotassco.sourceforge.net
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fwww.dlvsystem.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fgithub.com%2Falviano%2Fwasp.git
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fresearch.ics.aalto.fi%2Fsoftware%2Fasp
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841300032X

tics for Founded Bounds. Theory and Practice of Logic Pro-
gramming 13(4-5): 517-532.

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006.
Answer Set Based Design of Knowledge Systems. Annals of
Mathematics and Artificial Intelligence 47(1-2): 183-219.
dx.doi.org/10.1007/s10472-006-9026-1

Bomanson, J.; Gebser, M.; Janhunen, T.; Kaufmann, B.; and
Schaub, T. 2015. Answer Set Programming Modulo Acyclic-
ity. In Logic Programming and Nonmonotonic Reasoning —
13th International Conference, LPNMR 2015, 143-150. Lec-
ture Notes in Computer Science 9345. Berlin: Springer.
dx.doi.org/10.1007/978-3-319-23264-5_13

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer Set
Programming at a Glance. Communications of the ACM
54(12): 92-103. dx.doi.org/10.1145/2043174.2043195

Bruynooghe, M.; Denecker, M.; and Truszczynski, M. 2016.
First Order Logic with Inductive Definitions for Model-
Based Problem Solving. AI Magazine 37(3).

Denecker, M., and Ternovska, E. 2008. A Logic of Nonmo-
notone Inductive Definitions. ACM Transactions on Compu-
tational Logic 9(2). dx.doi.org/10.1145/1342991.1342998

Denecker, M., and Vennekens, J. 2014. The Well-Founded
Semantics Is the Principle of Inductive Definition, Revisited.
In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference (KR 2014).
Palo Alto, CA: AAAI Press.

East, D., and Truszczynski, M. 2006. Predicate-Calculus-
Based Logics for Modeling and Solving Search Problems.
ACM Transactions on Computational Logic 7(1): 38-83.
dx.doi.org/10.1145/1119439.1119441

Erdem, E. 2011. Applications of Answer Set Programming in
Phylogenetic Systematics. In Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays Dedicat-
ed to Michael Gelfond on the Occasion of His 65th Birthday, ed.
M. Balduccini and T. C. Son. Lecture Notes in Computer Sci-
ence Volume 6565, 415-431. dx.doi.org/10.1007/978-3-
642-20832-4 26

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of
ASP. AI Magazine 37(3).

Faber, W.; Greco, G.; and Leone, N. 2007. Magic Sets and
Their Application to Data Integration. Journal of Computer
and Systems Sciences International 73(4): 584-609.
dx.doi.org/10.1016/j.jcss.2006.10.012

Finkel, R., and O’Sullivan, B. 2011. Reasoning about Condi-
tional Constraint Specification Problems and Feature Mod-
els. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing (Al EDAM) 25(2): 163-174. dx.doi.org/

Programming as SAT Modulo Acyclicity. In ECAI 2014 —
21st European Conference on Artificial Intelligence, Frontiers in
Artificial Intelligence and Applications 263, 351-356. Ams-
terdam: IOS Press.

Gebser, M.; Kaminski, R.; Obermeier, P.; and Schaub, T.
2014. Ricochet Robots Reloaded: A Case-Study in Multi-
Shot ASP Solving. In Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation: Essays Dedi-
cated to Gerhard Brewka on the Occasion of His 60th Birthday,
ed. T. Eiter, H. Strass, M. Truszczynski, S. Woltran, Lecture
Notes in Computer Science Volume 9060, 17-32. Berlin:
Springer.

Gebser, M.; Konig, A.; Schaub, T.; Thiele, S.; and Veber, P.
2010b. The BioASP Library: ASP Solutions for Systems Biol-
ogy. In 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence, ICTAI 2010, 383-389. Piscataway, NJ: Insti-
tute for Electrical and Electronics Engineers.

Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
Answer Set Solving. In Logic Programming, 25th Internation-
al Conference, ICLP 2009, Lecture Notes in Computer Sci-
ence 5649, 235-249. Berlin: Springer. dx.doi.org/10.1007/
978-3-642-02846-5_22

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Logic Programming,
Proceedings of the Fifth International Conference and Sympo-
sium, 1070-1080. Cambridge, MA: The MIT Press.
Gelfond, M., and Lifschitz, V. 1990. Logic Programs with
Classical Negation. In Logic Programming, Proceedings of the
Seventh International Conference, 579-597. Cambridge, MA:
The MIT Press. dx.doi.org/10.1007/BF03037169

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3/4): 365-385.

Janhunen, T. 2004. Representing Normal Programs with
Clauses. In Proceedings of the 16th European Conference on
Artificial Intelligence, ECAI’2004, 358-362. Amsterdam: 10S
Press.

Janhunen, T.; Liu, G.; and Niemeld, I. 2011. Tight Integra-
tion of Non-Ground Answer Set Programming and Satisfia-
bility Modulo Theories. Paper presented at the First Work-
shop on Grounding and Transformation for Theories with
Variables, GTTV 2011, Vancouver, BC, Canada, 16 May.
Jarvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemeld, T.
2009. A Module-Based Framework for Multi-Language Con-
straint Modeling. In Logic Programming and Nonmonotonic
Reasoning, 10th International Conference, LPNMR 2009, Lec-
ture Notes in Computer Science 5753, 155-168.
dx.doi.org/10.1007/978-3-642-04238-6_15

10.1017/S0890060410000600

Friedrich, G.; Fugini, M.; Mussi, E.; Pernici, B.; and Tagni, G.
2010. Exception Handling for Repair In Service-Based
Processes. IEEE Transactions on Software Engineering 36(2):
198-215. dx.doi.org/10.1109/TSE.2010.8

Gebser, M., and Schaub, T. 2016. Modeling and Language
Extensions. AI Magazine 37(3).

Gebser, M.; Guziolowski, C.; Ivanchev, M.; Schaub, T.;
Siegel, A.; Thiele, S.; and Veber, P. 2010a. Repair and Predic-
tion (Under Inconsistency) in Large Biological Networks
with Answer Set Programming. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth Inter-
national Conference (KR 2010). Palo Alto, CA: AAAI Press.
dx.doi.org/10.1109/ICTAI.2010.62

Gebser, M.; Janhunen, T.; and Rintanen, J. 2014. Answer Set

Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and Solving in Answer Set Programming. Al
Magazine 37(3).

Koponen, L.; Oikarinen, E.; Janhunen, T.; and Siild, L.
2015. Optimizing Phylogenetic Supertrees Using Answer
Set Programming. Theory and Practice of Logic Programming
15(4-5): 604-619. dx.doi.org/10.1017/S1471068415000265
Lierler, Y., and Truszczynski, M. 2014. Abstract Modular
Inference Systems and Solvers. In Practical Aspects of Declar-
ative Languages — 16th International Symposium, PADL 2014,
Lecture Notes in Computer Science 8324, 49-64. Berlin:
Springer. dx.doi.org/10.1007/978-3-319-04132-2_4
Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Liu, G.; Janhunen, T.; and Niemeld, 1. 2012. Answer Set Pro-

Articles

FALL 2016 23

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10472-006-9026-1
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_13
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F2043174.2043195
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1342991.1342998
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1119439.1119441
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-20832-4_26
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jcss.2006.10.012
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS0890060410000600
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FTSE.2010.8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FICTAI.2010.62
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-02846-5_22
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF03037169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-04238-6_15
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068415000265
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-04132-2_4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-20832-4_26
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS0890060410000600
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-02846-5_22

Articles

|ICWSM

ICWSM-17 to be Held in
Montréal, Québec, Canada

AAALI is pleased to announce that, in
cooperation with the McGill Univer-
sity School of Computer Science,
ICWSM-17 will be held May 15-18,
2017 in Montréal, Québec, Canada.
The general chair for ICWSM-17 is
Derek Ruths, and the program chairs
are Winter Mason, Sandra Gonzalez-
Bailon, and Alice Marwick.

Please see www.icwsm.org/2017
for the latest developments.

gramming via Mixed Integer Programming. In Principles of
Knowledge Representation and Reasoning: Proceedings of the
Thirteenth International Conference (KR 2012), 32-42. Palo
Alto, CA: AAAI Press.

Marek, V., and Truszczyniski, M. 1999. Stable Models and an
Alternative Logic Programming Paradigm. In The Logic Pro-
gramming Paradigm: A 25-Year Perspective, ed. K. Apt, V.
Marek, M. Truszczynski, and D. Warren, 375-398. Berlin:
Springer.

Marek, V.; Niemeld, I.; and Truszczynski, M. 2011. Origins of
Answer-Set Programming — Some Background and Two
Personal Accounts. In Nonmonotonic Reasoning: Essays Cele-

24 Al MAGAZINE

brating Its 30th Anniversary, ed. G. Brewka, V. Marek, M.
Truszczynnski. London: College Publications. 233-258.
dx.doi.org/10.1007/978-3-642-60085-2_17

Mellarkod, V.; Gelfond, M.; and Zhang, Y. 2008. Integrating
Answer Set Programming and Constraint Logic Program-
ming. Annals of Mathematics and Artificial Intelligence 53(1-
4): 251-287. dx.doi.org/10.1007/s10472-009-9116-y

Niemeld, I. 1999. Logic Programming with Stable Model
Semantics as a Constraint Programming Paradigm. Annals
of Mathematics and Artificial Intelligence 25(3-4): 241-273.
Niemeld, I. 2008. Stable Models and Difference Logic.
Annals of Mathematics and Artificial Intelligence 53(1-4): 313—
329. dx.doi.org/10.1007/s10472-009-9118-9

Papadimitriou, C. 1994. Computational Complexity. Boston,
MA: Addison-Wesley.

Rao, P; Sagonas, K.; Swift, T.; Warren, D.; and Freire, J. 1997.
XSB: A System for Efficiently Computing WEFS. In Logic Pro-
gramming and Nonmonotonic Reasoning, 4th International Con-
ference, LPNMR’97, Lecture Notes in Computer Science 1265,
431-441. Berlin: Springer.

Soininen, T., and Niemeld, I. 1998. Developing a Declarative
Rule Language for Applications in Product Configuration.
In Practical Aspects of Declarative Languages, First Internation-
al Workshop, PADL "99, Lecture Notes in Computer Science
1551, 305-319. Berlin: Springer. dx.doi.org/10. 1007/3-540-
49201-1 21

Tasharrofi, S., and Ternovska, E. 2011. A Semantic Account
for Modularity in Multi-Language Modelling of Search Prob-
lems. In Frontiers of Combining Systems, 8th International Sym-
posium, FroCoS 2011, Lecture Notes in Computer Science
6989, 259-274. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-24364-6_18

Tomi Janhunen (Tomi.Janhunen@aalto.fi) is a senior uni-
versity lecturer at Aalto University in the Department of
Computer Science. He holds the title of docent from Aalto
University. Janhunen received his doctoral degree in theo-
retical computer science from Helsinki University of Tech-
nology in Finland in 1998. His primary research interests are
in knowledge representation and automated reasoning,
especially in answer set programming, extensions of
Boolean satisfiability, and translations between logical for-
malisms. He has been a member in the program committees
of 50 conferences and workshops in his research area.

Ilkka Niemela (Ilkka.Niemela@aalto.fi) is a professor of
computer science at Aalto University and serves currently as
the provost of Aalto University. He received a doctoral
degree in computer science in 1993 from Helsinki Universi-
ty of Technology. His research interests include automated
reasoning, constraint programming, knowledge representa-
tion, computational complexity, computer-aided verifica-
tion, automated testing, and product configuration. He is
one of the principal investigators of the Finnish Center of
Excellence in Computational Inference Research. He has
served as the editor-in-chief of Theory and Practice of Logic
Programming and is a Fellow of the European Association for
Artificial Intelligence.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-60085-2_17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10472-009-9116-y
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10472-009-9118-9
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-49201-1_21
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-24364-6_18
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=mailto%3ATomi.Janhunen%40aalto.fi
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=mailto%3AIlkka.Niemela%40aalto.fi
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-49201-1_21
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-24364-6_18

Grounding and Solving in
Answer Set Programming

Benjamin Kaufmann, Nicola Leone, Simona Perri, Torsten Schaub

B Answer set programming is a declar-
ative problem-solving paradigm that
rests upon a work flow involving mod-
eling, grounding, and solving. While the
former is described by Gebser and
Schaub (2016), we focus here on key
issues in grounding, or how to system-
atically replace object variables by
ground terms in an effective way, and
solving, or how to compute the answer
sets, of a propositional logic program
obtained by grounding.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

modeling language with effective grounding and solv-

ing technology. Moreover, ASP is highly versatile by
offering various elaborate language constructs and a whole
spectrum of reasoning modes. The work flow of ASP is illus-
trated in figure 1.

At first, a problem is expressed as a logic program. A
grounder systematically replaces all variables in the program
by (variable-free) terms, and the solver takes the resulting
propositional program and computes its answer sets (or
aggregations of them).

ASP’s success is largely due to the availability of a rich mod-
eling language (Gebser and Schaub 2016) along with effec-
tive systems. Early ASP solvers SModels (Simons, Niemeld,
and Soininen 2002) and DLV (Leone et al. 2006) were fol-
lowed by SAT!-based ones, such as ASSAT (Lin and Zhao
2004) and Cmodels (Giunchiglia, Lierler, and Maratea 2006),
before genuine conflict-driven ASP solvers such as clasp (Geb-
ser, Kaufmann, and Schaub 2012a) and WASP (Alviano et al.
2015) emerged. In addition, there is a continued interest in
mapping ASP onto solving technology in neighboring fields,
like SAT or even MIP? (Janhunen, Niemeli, and Sevalnev
2009; Liu, Janhunen, and Niemeld 2012), and in the auto-
matic selection of the appropriate solver by heuristics
(Maratea, Pulina, and Ricca 2014).

Q nswer set programming (ASP) combines a high-level

Articles

FALL 2016 25

Articles

Problem Solution
A
Modeling Interpreting
Logic ~ Stable
Program »| Grounder » Solver > Models
Solving

Figure 1. The Work Flow of Answer Set Programming.

By contrast, modern grounders like (the one in)
DLV (Faber, Leone, and Perri 2012) or GrinGo (Gebser
et al. 2011) are based on seminaive database evalua-
tion techniques (Ullman 1988) for avoiding duplicate
work during grounding. Grounding is seen as an iter-
ative bottom-up process guided by the successive
expansion of a program’s term base, that is, the set of
variable-free terms constructible from the signature of
the program at hand. Other grounding approaches
are pursued in GIDL (Wittocx, Marién, and Denecker
2010), Lparse (Syrjanen 2001), and earlier versions of
GrinGo (Gebser, Schaub, and Thiele 2007). The latter
two bind nonglobal variables by domain predicates to
enforce w- or A-restricted (Syrjdnen 2001; Gebser,
Schaub, and Thiele 2007) programs that guarantee a
finite grounding, respectively.

In what follows, we describe the basic ideas and
major issues of modern ASP grounders and solvers,
also in view of supporting ASP’s language constructs
and reasoning modes.

Grounding

Modern ASP systems perform their computation by
first generating a ground program that does not con-
tain any variable but has the same answer sets as the
original program. This phase, usually referred to as
grounding or instantiation, solves a complex problem.
In the case in which input nonground programs can
be assumed to be fixed (data complexity), this task is
polynomial. However, as soon as variable programs
are given in input, grounding becomes EXPTIME-
hard, and the produced ground program is potential-
ly of exponential size with respect to the input pro-
gram. To give an idea of that, consider the following
program containing only one rule, and two facts:

0bj(0). obj(1).

tuple(X1, ..., Xn) :- obj(XT1), ..., obj(Xn).

26 Al MAGAZINE

The ground instantiation of the rule contains 2"
ground rules, corresponding to the number of n-
tuples, over a set of two elements. For more details
about complexity of ASP the reader may refer to
Dantsin et al. (2001).

Grounding, hence, may be computationally very
expensive having a big impact on the performance of
the whole system, as its output is the input for an ASP
solver, that, in the worst case, takes exponential time
in the size of the input. Thus, a naive grounding
which replaces the variables with all the constants
appearing in the program (thus producing the full
instantiation) is undesirable from a computational
point of view. Indeed, most of the ground atoms
appearing in the full instantiation are not derivable
from the program rules, and all generated ground
rules containing these atoms in the positive bodies
are useless for answer set computation. For instance,
consider the following program:

<1, 2).

a(X) | b(Y) - (X, V).

The full instantiation of the only rule appearing in
the program contains four ground instances:

a(1) | b(1) :-c(1, 1).

a(2) | b(1) :- c(2, 1).

a(2) | b2) =- <(2, 2).

a(1) | b2) =- c(1, 2).

However, the first three ground rules are useless.
They will never be applicable because their bodies
contain atoms c(1, 1) and c(2, 1), and c(2, 2) that are
not derivable from the program (they do not appear
in the head of any rule).

ASP grounders, like GrinGo or the DLV instantia-
tor, employ smart procedures that are geared toward
efficiently producing a ground program that is con-
siderably smaller than the full instantiation but pre-
serves the semantics. In the following, we first give
an informal description of the grounding computa-

tion. Then we introduce the problem of dealing with
function symbols, which may lead to infinite
groundings. Finally we overview some optimization
strategies.

The Instantiation Procedure

In this subsection, we provide a description of the
basic instantiation procedure, which is adopted by
the most popular grounders, GrinGo and the DLV
instantiator. For clarity, the description is informal,
and presents a simplified version of the actual instan-
tiation strategy. For instance, we do not take into
account extensions of the basic language like choice
rules or aggregates (Lifschitz 2016; Alviano and
Leone 2015, 2016). Full details can be found in the
work by Faber, Leone, and Perri (2012) and Gebser et
al. (2011).

The core of the grounding phase is the process of
rule instantiation. Given a rule r and a set of ground
atoms S, which represents the extensions of the pred-
icates, it generates the ground instances of . Such a
task can be performed by iterating on the body liter-
als looking for possible substitutions for their vari-
ables. Grounders impose a safety condition, which
requires that each rule variable appear also in a posi-
tive body literal. Thus, for the instantiator, it is
enough to have a substitution for the variables occur-
ring in the positive literals.

To clarify this process, consider the following
(nonground) rule:

a(X) | b(Y) :- p(X, Z), q(Z, Y).

Now, assume that the set of extensions S = {p(1, 2),
q(2, 1), q(2, 3)} is given. Then, the instantiation starts
by looking for a ground atom in S matching with p(X,
Z). Therefore p(X, Z) is matched with p(1, 2) and the
substitution for X and Z is propagated to the other
body literals, thus leading to the partially ground rule
body p(1, 2), q(2, Y). Then, q(2, Y) is instantiated with
the matching ground atom q(2, 1) and a ground rule
a(1)| b(1):- p(1, 2), q(2, 1) is generated. Now, in order
to find other possible rule instances, a backtracking
step is performed, the binding for variable Y is
restored and a new match for q(2, Y) is searched, find-
ing q(2, 3). The new match is applied, leading to
another rule instance a(1) | b(3) :- p(1, 2), q(2, 3).
Then, the process goes on, by backtracking again to
q(2,Y), and then to p(X, Z), because there are no more
matches for q(2, Y). Given that also no further match-
es are possible for p(X, Z), the instantiation of the rule
terminates, producing only two ground rules:

a(1) | b(1) - p(1, 2), q(2,).

a(1) | b(3) - p(1, 2), q(2, 3).

Roughly, the body literals are instantiated from left to
right, starting from the first one. The instantiation of
the generic body literal L consists in searching in §
for a ground atom A matching with L; if such a
matching is found, then the variables in L are bound
with the constants in A, the substitution is propagat-
ed to the other body literals, and the next literal in

the body is considered. If such a matching atom is
not found, a backtracking step to a previous literal L’
is performed, some variable bindings are restored,
and the process goes on by looking for another
matching for L'. When all body literals have been
instantiated, an instance for the rule r is found and
the process continues by backtracking again to some
previous literal, in order to find other substitutions.
A crucial aspect of this process is how the set of
ground atoms S containing the extensions of the
predicates is computed. When a program is given as
input to a grounder, it usually contains also a set of
ground atoms, called Facts. It constitutes the starting
point of the computation. In other words, initially S
= Facts. During instantiation, the set S is expanded
with the ground atoms occurring in the head of the
newly generated ground rules. For instance, in the
previous example, the ground atoms a(1) and b(1) are
added to § and they will possibly be used for the
instantiation of other rules. Thus, the extensions of
the predicates are built dynamically. In order to guar-
antee the generation of all useful ground instances a
particular evaluation order should be followed. If a
rule r, defines (that is, has in the head) a predicate p,
and another rule r, contains p in the positive body,
then r, has to be evaluated before r, since r, produces
ground atoms needed for instantiating r;. Complying
with such evaluation orders ensures that the pro-
duced ground program has the same answer sets of
the full instantiation, but is possibly smaller (Faber,
Leone, and Perri 2012).

To produce proper evaluation orders, grounders
make use of structural information provided by a
directed graph, called Dependency Graph, that
describes how predicates depend on each other. This
graph induces a partition of the input program into
subprograms, associated with the strongly connected
components, and a topological ordering over them.
The subprograms are instantiated one at a time start-
ing from the ones associated with the lowest compo-
nents in the topological ordering.

Recursive rules within a subprogram, that is, rules
where some body predicate depends, directly or tran-
sitively, on a predicate in the head, are instantiated
according to a seminaive database technique (Ull-
man 1988). Their evaluation produces ground atoms
needed for their own evaluation, thus, several itera-
tions are performed, until a fixpoint is reached. At
each iteration, for the predicates involved in the
recursion, only the ground atoms newly derived dur-
ing the previous iteration are taken into account.

To illustrate this, consider the following problem,
called Reachability: Given a finite directed graph,
compute all pairs of nodes (a, b) such that b is reach-
able from a through a nonempty sequence of arcs.
This problem can be encoded by the following ASP
program:

reach(X, Y) :- arc(X, Y).

reach(X, Y) :- arc(X, U), reach(U, Y).

Articles

FALL 2016 27

Articles

The set of arcs is represented by the binary relation
arc. A fact arc(a, b) means that the graph contains an
arc from a to b; the set of nodes is not explicitly rep-
resented.

The program computes a binary relation reach
containing all facts reach(a, b) such that b is reach-
able from a through the arcs of the input graph G. In
particular, the first (nonrecursive) rule states that b is
directly reachable from g, if there is an arc from a to
b; while the second (recursive) rule states that b is
transitively reachable from g, if there is a path in the
graph from a to b.

The instantiation of this program is performed by
first evaluating the nonrecursive rule on the set §
containing the arcs. Assuming that S = { arc(1, 2),
arc(2, 3), arc(3, 4) } three ground instances are pro-
duced:

reach(1, 2) :- arc(1, 2).

reach(2, 3) :- arc(2, 3).

reach(3, 4) :- arc(3, 4).

The ground atoms reach(1, 2), reach(2, 3), and
reach(3, 4) are added to set S and the evaluation of
the recursive rule starts. The first iteration is per-
formed, producing rules

reach(1, 3) :- arc(1, 2), reach(2, 3).

reach(2, 4) :- arc(2, 3), reach(3, 4).

Then, reach(1, 3), reach(2, 4) are added to S and
another iteration starts.

To avoid duplicate rules, for the recursive predicate
reach, only the two newly generated ground atoms
are used, producing:

reach(1, 4) :- arc(1, 2), reach(2, 4).

Now, reach(1, 4) is added to S. Another iteration is
performed. Nothing new can be produced. The fix-
point is reached and the evaluation terminates.

Optimizations

Substantial effort has been spent on sophisticated
algorithms and optimization techniques aimed at
improving the performance of the instantiation
process. In the following we briefly recall the most
relevant ones.

The dynamic magic sets technique (Alviano et al.
2012) is a rewriting-based optimization strategy used
by the DLV system. It extends the Magic Sets tech-
nique originally defined for standard Datalog for
optimizing query answering over logic programs.
Given a query, the Magic Sets technique rewrites the
input program to identify a subset of the program
instantiation which is sufficient for answering the
query. The restriction of the instantiation is obtained
by means of additional “magic” predicates, whose
extensions represent relevant atoms with regard to
the query. Dynamic Magic Sets, specifically con-
ceived for disjunctive programs, inherit the benefits
provided by standard magic sets and additionally
allow to exploit the information provided by the
magic predicates also during the answer set search.

28 Al MAGAZINE

Magic sets turned out to be very useful in many appli-
cation domains, even on some co-NP complete prob-
lems like consistent query answering (Manna, Ricca,
and Terracina 2015).

Other techniques have been developed for opti-
mizing the rule instantiation task (Faber, Leone, and
Perri 2012). In particular, since rule instantiation is
essentially performed by evaluating the relational join
of the positive body literals, an optimal ordering of
literals in the body is a key issue for the efficiency of
the procedure, just like for join computation. Thus,
an efficient body reordering criterion specifically con-
ceived for the rule instantiation task has been pro-
posed. Moreover, a backjumping algorithm has been
developed (Perri et al. 2007), which reduces the size of
the ground programs, avoiding the generation of use-
less rules, but fully preserving the semantics.

In the last few years, in order to make use of mod-
ern multicore and multiprocessor computers, a paral-
lel instantiator has been developed. It is based on a
number of strategies allowing for the concurrent
evaluation of parts of the program, and is endowed
with advanced mechanisms for dealing with load bal-
ancing and granularity control (Perri, Ricca, and Siri-
anni 2013).

Dealing with Function Symbols

Function symbols are widely recognized as an impor-
tant feature for ASP. They increase the expressive
power and in some cases improve the modeling capa-
bilities of ASP, allowing the support of complex terms
like lists, and set terms. Functions can also be
employed to represent, through skolemization, exis-
tential quantifiers, which are receiving an increasing
attention in the logic programming and database
communities (Gottlob, Manna, and Pieris 2015).
However, the presence of function symbols within
ASP programs has a strong impact on the grounding
process, which might even not terminate. Consider,
for instance, the program:

p(0)-

P(f(X)) :- p(X).

The instantiation is infinite; indeed the grounding
of the recursive rule, at the first iteration adds to the
set of extensions $ the ground atom p(f(0)), which is
used in the next iteration, producing p(f(f(0)) and so
on. Despite this, grounders like the one in DLV and
GrinGo are a way to deal with recursive function
symbols and guarantee termination whenever the
program belongs to the class of the so called finitely
ground programs (Calimeri et al. 2008). Intuitively,
for each program P in this class, there exists a finite
ground program P' having exactly the same answer
sets as P. Program P’ is computable for finitely ground
programs, thus answer sets of P are computable as
well. Notably, each computable function can be
expressed by a finitely ground program; membership
in this class is not decidable, but it has been proven
to be semidecidable (Calimeri et al. 2008).

For applications in which termination needs to be
guaranteed a priori, the ASP grounders can make use
of a preprocessor implementing a decidable check,
which allows the user to statically recognize whether
the input program belongs to a smaller subclass of
the finitely ground programs (Syrjanen 2001; Gebser,
Schaub, and Thiele 2007; Lierler and Lifschitz 2009;
Calimeri et al. 2008). For instance, the grounder of
DLV is endowed with a checker (which can also be
disabled) for recognizing argument-restricted pro-
grams (Lierler and Lifschitz 2009). Earlier versions of
GrinGo, in order to guarantee finiteness, accepted
input programs with a domain restriction, namely A-
restricted programs (Gebser, Schaub, and Thiele
2007). From series 3, GrinGo removed domain
restrictions and the responsibility to check whether
the input program has a finite grounding is left to the
user.

Solving

Modern ASP solvers rely upon advanced conflict-dri-
ven search procedures, pioneered in the area of satis-
fiablity testing (SAT; [Biere et al. 2009]).3 Conflicts are
analyzed and recorded, decisions are taken in view of
conflict scores, and back-jumps are directed to the
origin of a conflict.

While the general outline of search in ASP is
arguably the same as in SAT, the extent of ASP
requires a much more elaborate approach. First, the
stable model’s semantics enforces that atoms are not
merely true but provably true (Lifschitz 2016). Sec-
ond, the rich modeling language of ASP comes with
complex language constructs. In particular, disjunc-
tion in rule heads and nonmonotone aggregates lead
to an elevated level of computational complexity,
which imposes additional search efforts. Finally, ASP
deals with various reasoning modes. Apart from sat-
isfiability testing, this includes enumeration, projec-
tion, intersection, union, and (multiobjective) opti-
mization of answer sets, and moreover combinations
of them, for instance, the intersection of all optimal
models.# The first two issues bring about additional
inferences, the latter require flexible solver architec-
tures.

The restriction of modern SAT solvers to proposi-
tional formulas in conjunction normal form allows
for reducing inferences to unit propagation along
with the usual choice operations. In contrast, tradi-
tional ASP solving deals with an abundance of differ-
ent inferences for propagation, which makes a direct
adaption of conflict-driven search procedures virtu-
ally impossible. The key idea is thus to map infer-
ences in ASP onto unit propagation on nogoods®
(Gebser, Kaufmann, and Schaub 2012a), which traces
back to a characterization of answer sets in proposi-
tional logic (Lin and Zhao 2004). Let us illustrate this
by program P (thereby restricting ourselves to normal
rules):®

a:-notb, b:-nota,
P=4 x:-a,notc, x:-y,
y:i-x,b

Interpreting this program in propositional logic
results in the set RF(P) of implications:

a<-b, b<-a,
RF(P)=4 x<—an-cvy,

y<XxAab

Note that we replaced default negation not by classi-
cal negation — and combined both rules with head x
while leaving the direction of the implications
untouched (for readability). Now, the set RF(P) has
twelve classical models, many of which contain
atoms not supported by any rule. (This is important
because the stable models semantics insists on prov-
ably true atoms.) For instance, c is not supported by
any rule, as is b whenever a is true as well.

Models containing unsupported atoms are elimi-
nated by turning the implications in RF(P) into
equivalences (Clark 1978). Doing so for each atom
yields the set CF(P) of equivalences:

a<>-b, b < -a,
CE(P)={ x<>ana-cvy,
y<>XAb, cel

This strengthening results in three models of CF(P),
one entailing atom b only, another making b, x, y
true, and finally one in which a, x hold, respectively.
The first two models differ in making both x and y
true or not. A closer look at the original program P
reveals that x and y support each other in a circular
way. Whether or not such a circular derivation is
harmful depends upon the existence of a valid exter-
nal support (Lin and Zhao 2004), provided by an
applicable rule whose head is in the loop but none of
its positive antecedents belongs to it. In our case, this
can be accomplished by the formula in LF(P):

LF(P)={ (XVy)—an-c }

The formula expresses that an atom in the loop (con-
sisting of x and y) can only be true if an external sup-
port of x or y is true. Here the only external support
is provided by rule x < a, not c in P, as reflected by
the consequent in LF(P). That is, x or y can only be
true if the latter rule applies. Since no other loops
occur in P, the set CF(P) U LF(P) provides a charac-
terization of P’s answer sets (Lin and Zhao 2004), one
making atom b true and another a, x.

Note that in general the size of CF(P) is linear in
that of a program P, whereas the size of LF(P) may be
exponential in P (Lifschitz and Razborov 2006). For-
tunately, satisfaction of LF(P) can be tested in linear
time for logic programs facing no elevated complex-
ity (previously discussed), otherwise this test is co-

Articles

FALL 2016 29

Articles

Preprocessing

Preprocessor

Program
Builder

(Coordination

SharedContext

Propositional
Variables

VAN
|Atoms |<—>| Bodies |

Enumerator|+

ParallelContext
->|Threads ||S1 |SZ|"'|Sn|

|Counter|| T |W|| S |
| Queue ||P1|P2|~--|Pn|

SharedNogoods

Nogood
ShortNogoods <—A(Dis?utorl

A A

Logic Solver...n

Program

Decision
Heuristic

Conflict
Resolution

<—>| Recorded Nogoods |

]

Propagation

: Unit Post
AtomayBodies | (Propagation ‘_’[Propagation]

Figure 2. The Multithreaded Architecture of the ASP Solver Clasp.

NP-complete (Leone, Rullo, and Scarcello 1997).

The translation of programs into nogoods
employed by modern ASP solvers follows the above
characterization but takes the space issue into
account. Given a program P, the nogoods expressing
CF(P) are explicitly represented in an ASP solver,
while the ones in LF(P) are only made explicit upon
violation. This violation is detected by so-called
unfounded set algorithms (Leone, Rullo, and Scarcel-
lo 1997; Gebser et al. 2012). Although we do not
detail this here, we mention that aggregates are treat-
ed in a similar way by dedicated mechanisms unless
they can be translated into nogoods in a feasible way
(Gebser et al. 2009). Finally, let us make this more
concrete by looking at the system architecture of
clasp, depicted in figure 2.

The preprocessing component takes a (disjunctive)
logic program and translates it into an internal rep-
resentation. This is done in several steps. First, the
given program, P, is simplified by semantic preserv-
ing translations as well as equivalence detection
(Gebser et al. 2008). The simplified program P’ is
then translated into nogoods expressing CF(P'),
which are subject to clausal simplifications adapted
from corresponding SAT techniques. The resulting
static nogoods are kept in the shared context com-
ponent, as are parts of the dependency graph of P in

30 AI MAGAZINE

order to reconstruct members of LF(P) on demand.
Often more than three quarters of the nogoods
obtained from CF(P') are binary or ternary. Hence,
such short nogoods are stored in dedicated data struc-
tures (and shared during parallel solving). Each solver
instance implements a conflict-driven search proce-
dure, as sketched at the outset of this section. Of par-
ticular interest is propagation, distinguishing
between unit and post propagation. The former com-
putes a fixed point of unit propagation. More elabo-
rate propagation mechanisms can be added through
post propagators. For instance, for programs with
loops, this list contains a post propagator imple-
menting the unfounded set checking procedure. Sim-
ilarly, clasp’s extension with constraint processing,
clingcon (Ostrowski and Schaub 2012), as well as
dlvhex (Eiter et al. 2006) use its post propagation
mechanism to realize additional theory-specific prop-
agations. The parallel execution of clasp allows for
search space splitting as well as running competitive
strategies. In both cases, learned conflict nogoods (as
well as bounds in case of optimization) are
exchanged between solver instances, each of which
can be configured individually (see Gebser, Kauf-
mann, and Schaub [2012b] for details on multi-
threading). Finally, the enumerator is in charge of
handling the various reasoning modes; once a solver

finds a model, the enumerator tells it how to contin-
ue. This can be done by finding a next model in case
of enumeration, or a better model in case of opti-
mization.

Conclusion

Answer set programming combines a high-level mod-
eling language with effective grounding and solving
technology. This materializes in off-the-shelf ASP sys-
tems, whose grounding and solving engines can be
used as black-box systems with standardized inter-
faces. Also, ASP is highly versatile by offering various
complex language constructs and reasoning modes.
As a side effect, many ASP solvers can also be used for
MAX-SAT7, SAT, and PB? solving. As a consequence,
ASP faces a growing range of applications, as detailed
by Erdem, Gelfond, and Leone (2016).

Acknowledgments

The first and last author were partially funded by
DFG grants SCHA 550/8 and SCHA 550/9. The sec-
ond and third author were partially supported by
MIUR under PON project SI-LAB BAZKNOW Business
Analitycs to Know, and by Regione Calabria, pro-
gramme POR Calabria FESR 2007-2013, projects
ITravel PLUS and KnowRex: Un sistema per il
riconoscimento e lestrazione di conoscenza.

Notes
1. Satisfiablity testing.
2. Mixed integer programming.
3. This technology is usually referred to as conflict-driven
clause learning.

4. Actually, this is a frequent reasoning mode used in under-
specified application domains such as bioinformatics
(Erdem, Gelfond, and Leone 2016).

5. Nogoods express inadmissible assignments (Dechter
2003).

6. RF(P), CF(P), and LF(P) stand for the rule, completion,
and loop formulas of P.

7. Maximum satisfiability problem.

8. Pseudo-Boolean.

References

Alviano, M., and Leone, N. 2015. Complexity and Compi-
lation of GZ-Aggregates in Answer Set Programming. Theo-
ry and Practice of Logic Programming 15(4-5): 574-587.
dx.doi.org/10.1017/5147106841500023X

Alviano, M., and Leone, N. 2016. On the Properties of GZ-
Aggregates in Answer Set Programming. In Proceedings of the
25th International Joint Conference on Artificial Intelligence
(IJCAI-16). Palo Alto, CA: AAAI Press.

Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015.
Advances in WASP. In Proceedings of the Thirteenth Interna-
tional Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’15), ed. F. Calimeri, G. Ianni, and M.
Truszczynski, 40-54. Berlin: Springer. dx.doi.org/10.1007/
978-3-319-23264-5 5

Alviano, M.; Faber, W.; Greco, G.; and Leone, N. 2012. Mag-

ic Sets for Disjunctive Datalog Programs. Artificial Intelligence
187: 156-192. dx.doi.org/10.1016/j.artint.2012.04.008

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability. Amsterdam: 10S Press.

Calimeri, F; Cozza, S.; lanni, G.; and Leone, N. 2008. Com-
putable Functions in ASP: Theory and Implementation. In
Proceedings of the Twenty-Fourth International Conference on
Logic Programming (ICLP’08), ed. M. Garcia de la Banda and
E. Pontelli, 407-424. Berlin: Springer. dx.doi.org/10.1007/
978-3-540-89982-2_37

Clark, K. 1978. Negation as Failure. In Logic and Data Bases,
ed. H. Gallaire and J. Minker, 293-322. New York: Plenum
Press. dx.doi.org/10.1007/978-1-4684-3384-5_11

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys 33(3): 374-425. dx.doi.org/10.1145/
502807.502810

Dechter, R. 2003. Constraint Processing. San Francisco: Mor-
gan Kaufmann Publishers.

Eiter, T,; lanni, G.; Schindlauer, R.; and Tompits, H. 2006.
DLVHEX: A Prover for Semantic-Web Reasoning under the
Answer-Set Semantics. In Proceedings of the International Con-
ference on Web Intelligence (WI1'06), 1073-1074. Los Alamitos,
CA: IEEE Computer Society. dx.doi.org/10.1109/wi.2006.64

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of
ASP. Al Magazine. 37(3).

Faber, W.; Leone, N.; and Perri, S. 2012. The Intelligent
Grounder of DLV. In Correct Reasoning: Essays on Logic-Based
Al in Honour of Vladimir Lifschitz, ed E. Erdem, J. Lee, Y. Lier-
ler, and D. Pearce. Berlin: Springer. 247-264. dx.doi.org/10.
1007/978-3-642-30743-0_17

Gebser, M., and Schaub, T. 2016. Modeling and Language
Extensions. AI Magazine 37(3).

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2009. On the Implementation of Weight Constraint Rules
in Conflict-Driven ASP Solvers. In Proceedings of the Twenty-
Fifth International Conference on Logic Programming (ICLP’09),
ed. P. Hill and D. Warren, 250-264. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-02846-5_23

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. San Rafael,
CA: Morgan and Claypool Publishers.

Gebser, M.; Kaminski, R.; Kdnig, A.; and Schaub, T. 2011.
Advances in Gringo Series 3. In Proceedings of the Eleventh
International Conference on Logic Programming and Nonmo-
notonic Reasoning (LPNMR’11), ed. J. Delgrande, and W.
Faber, 345-351. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-20895-9_39

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012a. Conflict-
Driven Answer Set Solving: From Theory to Practice. Artifi-
cial Intelligence 187-188: 52-89. dx.doi.org/10.1016/j.artint.
2012.04.001

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012b. Multi-
Threaded ASP Solving with Clasp. Theory and Practice of Log-
ic Programming 12(4-5): 525-545. dx.doi.org/10.1017/
$1471068412000166

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2008. Advanced Preprocessing for Answer Set Solving. In
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI'08), ed. M. Ghallab, C. Spyropoulos, N.
Fakotakis, and N. Avouris, 15-19. Amsterdam: IOS Press.

Articles

FALL 2016 31

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841500023X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.008
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-89982-2_37
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-1-4684-3384-5_11
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F502807.502810
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2Fwi.2006.64
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-30743-0_17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-02846-5_23
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-20895-9_39
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000166
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-89982-2_37
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F502807.502810
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-30743-0_17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-20895-9_39
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000166

Articles

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo: A New
Grounder for Answer Set Programming. In Logic Program-
ming and Nonmonotonic Reasoning, 9th International Confer-
ence, Lecture Notes in Computer Science 4483, ed. C. Baral,
G. Brewka, and]. Schlipf, 266-271. Berlin: Springer.
dx.doi.org/10.1007/978-3-540-72200-7_24

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer
Set Programming Based on Propositional Satisfiability. Jour-
nal of Automated Reasoning 36(4): 345-377.
dx.doi.org/10.1007/s10817-006-9033-2

Gottlob, G.; Manna, M.; and Pieris, A. 2015. Polynomial
Rewritings for Linear Existential Rules. In Proceedings of the
24th International Joint Conference on Artificial Intelligence
(JCAI-15), 2992-2998. Palo Alto, CA: AAAI Press.

Janhunen, T.; Niemeld, I.; and Sevalnev, M. 2009. Comput-
ing Stable Models via Reductions to Difference Logic. In Log-
ic Programming and Nonmonotonic Reasoning, 9th Internation-
al Conference, LPNMR 2007, Lecture Notes in Computer
Science 4483, ed. E. Erdem, F. Lin, and T. Schaub, 142-154.
Berlin: Springer. dx.doi.org/10.1007/978-3-642-04238-6_14
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, E. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Com-
putational Logic 7(3): 499-562. dx.doi.org/10.1145/1149114.
1149117

Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunctive Sta-
ble Models: Unfounded Sets, Fixpoint Semantics, and Com-
putation. Information and Computation 135(2): 69-112.
dx.doi.org/10.1006/inco0.1997.2630

Lierler, Y., and Lifschitz, V. 2009. One More Decidable Class
of Finitely Ground Programs. In Logic Programming, 25th
International Conference, Lecture Notes in Computer Science
5649, 489-493. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-02846-5_40

Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Lifschitz, V., and Razborov, A. 2006. Why Are There So
Many Loop Formulas? ACM Transactions on Computational
Logic 7(2): 261-268. dx.doi.org/10.1145/1131313.1131316

Lin, E, and Zhao, Y. 2004. ASSAT: Computing Answer Sets of
a Logic Program by SAT Solvers. Artificial Intelligence 157(1-
2): 115-137. dx.doi.org/10.1016/j.artint.2004.04.004

Liu, G.; Janhunen, T.; and Niemeld, I. 2012. Answer Set Pro-
gramming via Mixed Integer Programming. In Proceedings of
the Thirteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2012), ed. G. Brewka,
T. Eiter, and S. Mcllraith, 32-42. Palo Alto, CA: AAAI Press.

Manna, M.; Ricca, F; and Terracina, G. 2015. Taming Pri-
mary Key Violations to Query Large Inconsistent Data via
ASP. Theory and Practice of Logic Programming 15(4-5): 696—
710. dx.doi.org/10.1017/S1471068415000320

Maratea, M.; Pulina, L.; and Ricca, F. 2014. A Multi-Engine
Approach to Answer-Set Programming. Theory and Practice of
Logic Programming 14(6): 841-868. dx.doi.org/10.1017/
S$1471068413000094

Ostrowski, M., and Schaub, T. 2012. ASP Modulo CSP: The
Clingcon System. Theory and Practice of Logic Programming
12(4-5): 485-503. dx.doi.org/10.1017/S1471068412000142
Perri, S.; Ricca, F; and Sirianni, M. 2013. Parallel Instantia-
tion of ASP Programs: Techniques and Experiments. Theory
and Practice of Logic Programming 13(2): 253-278.
dx.doi.org/10.1017/51471068411000652

32 Al MAGAZINE

Perri, S.; Scarcello, F.; Catalano, G.; and Leone, N. 2007.
Enhancing DLV Instantiator by Backjumping Techniques.
Annals of Mathematics and Artificial Intelligence 51(2-4): 195-
228. dx.doi.org/10.1007/s10472-008-9090-9

Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138(1-2): 181-234. dx.doi.org/10.1016/S0004-
3702(02)00187-X

Syrjanen, T. 2001. Omega-Restricted Logic Programs. In Log-
ic Programming and Nonmonotonic Reasoning, 6th Internation-
al Conference, Lecture Notes in Computer Science 2173, 267—
279, ed. T. Eiter, F. Faber, and M. Truszczynski. Berlin:
Springer. dx.doi.org/10.1007/3-540-45402-0_20

Ullman, J. 1988. Principles of Database and Knowledge-Base
Systems. Rockville, MD: Computer Science Press.

Wittocx, J.; Marién, M.; and Denecker, M. 2010. Grounding
FO and FO(ID) with Bounds. Journal of Artificial Intelligence
Research 38: 223-269.

Benjamin Kaufmann is a postdoctoral researcher at the
University of Potsdam, Germany. He mainly works on effi-
cient search-based reasoning and optimization techniques
for Boolean satisfiability and related approaches. In partic-
ular, he is the lead developer of clasp, a state-of-the-art solv-
ing system in answer set programming.

Nicola Leone is a professor of computer science at Univer-
sity of Calabria, where he heads the Department of Mathe-
matics and Computer Science and leads the Al Lab. He was
professor of database systems at Vienna University of Tech-
nology until 2000. He is internationally renowned for his
research on knowledge representation, answer set program-
ming (ASP), and database theory, and for the development
of DLV, a state-of-the-art ASP system that is popular world-
wide. He has published more than 250 papers in prestigious
conferences and journals, and has more than 8000 cita-
tions, with h-index 46. He is a fellow of ECCAI (now EurAl)
and recipient of a Test of Time award from the Association
for Computing Machinery.

Simona Perri is an associate professor at University of Cal-
abria, Italy. She received her MSc in mathematics (2000) and
a Ph.D. in computer science and mathematics (2005) from
the University of Calabria, Italy. She is a member of the
team that designed and maintains DLV, one of the major
answer set programming systems, and is cofounder of
DLVSystem Ltd, a spin-off company of the University of
Calabria.

Torsten Schaub is university professor at the University of
Potsdam, Germany, and holds an international chair at
Inria Rennes, France. He is a fellow of ECCAI and the cur-
rent president of the Association of Logic Programming. His
current research focus, on answer set programming (ASP)
and its applications, materializes at potassco.sourceforge.
net, the home of the open source project Potassco bundling
software for ASP developed at Potsdam.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-72200-7_24
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10817-006-9033-2
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-04238-6_14
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1006%2Finco.1997.2630
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-02846-5_40
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1131313.1131316
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2004.04.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068415000320
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000094
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000142
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068411000652
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10472-008-9090-9
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-45402-0_20
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fpotassco.sourceforge.net
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-02846-5_40
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000094
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Fpotassco.sourceforge.net

Modeling and
Language Extensions

Martin Gebser, Torsten Schaub

W Answer set programming (ASP) has
emerged as an approach to declarative
problem solving based on the stable
model semantics for logic programs.
The basic idea is to represent a compu-
tational problem by a logic program,
formulating constraints in terms of
rules, such that its answer sets corre-
spond to problem solutions. To this end,
ASP combines an expressive language
for high-level modeling with powerful
low-level reasoning capacities, provided
by off-the-shelf tools. Compact problem
representations take advantage of gen-
uine modeling features of ASP, includ-
ing (first-order) variables, negation by
default, and recursion. In this article,
we demonstrate the ASP methodology
on two example scenarios, illustrating
basic as well as advanced modeling and
solving concepts. We also discuss mech-
anisms to represent and implement
extended kinds of preferences and opti-
mization. An overview of further avail-
able extensions concludes the article.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Truszczyniski 2011) is a paradigm of declarative prob-

lem solving with roots in knowledge representation,
logic programming, constraint satisfaction and optimization.
Formally, ASP is based on the stable model semantics for log-
ic programs (Gelfond and Lifschitz 1991), detailed by Lif-
schitz (2016) in this issue. As illustrated by Janhunen and
Niemeld (2016), also in this issue, logic programs can be used
to compactly represent search and optimization problems
within the first two levels of the polynomial time hierarchy
(Faber, Pfeifer, and Leone 2011; Ferraris 2011).1 On the one
hand, the attractiveness of ASP is due to an expressive mod-
eling language, where concepts like (first-order) variables,
negation by default, and recursion enable uniform problem
representations in terms of facts specifying an instance along
with a general problem encoding (Schlipf 1995). On the oth-
er hand, powerful ASP systems, described by Kaufmann et al.
(2016) in this issue, are available off the shelf and automate
the grounding of an encoding relative to a problem instance
as well as the search for answer sets corresponding to prob-
lem solutions.

3 nswer set programming (ASP) (Brewka, Eiter, and

Articles

FALL 2016 33

Articles

Figure 1. Places Connected by Links Associated with Costs.

®

>

N

®

NS

@ 2
\CD

Figure 2. The Shortest Round Trip for the Places in Figure 1.

In this article, we detail the ASP modeling method-
ology on two example scenarios. To begin with, we
elaborate on the use of traditional one-shot solving,
where a problem is tackled by means of singular
grounding and search processes. We particularly
focus on a conceptual generate-and-test pattern (Eit-
er, lanni, and Krennwallner 2009; Leone et al. 2006;
Lifschitz 2002) as a best practice method to conceive
legible yet efficient problem encodings. Further infor-
mation regarding, among others, tool support for
logic program development, elaboration of tolerant
ways to represent extensive application domains, and
alternative modeling languages is provided by Lier-
ler, Maratea, and Ricca (2016), Erdem, Gelfond, and

34 AI MAGAZINE

Leone (2016), as well as Bruynooghe, Denecker, and
Truszczynski (2016) in this issue.

In our second example scenario, we take advantage
of multishot solving, a powerful extension of tradi-
tional ASP methods in which grounding and search
are interleaved to process a series of evolving subtasks
in an iterative manner. Rather than processing each
subtask from scratch, multishot solving gradually
expands the representation of a problem, where
grounding instantiates novel problem parts and
search can reuse conflict information. Such incre-
mental reasoning fits the needs in dynamic domains
like, for example, logistics, policies, or robotics. In
particular, we address a planning problem, where the

Articles

(minimal) number of actions required to achieve a
goal is usually not known a priori, while theoretical .
limits are prohibitively high as regards grounding. 1 place(b)' % Berlin
The presentation of the two main approaches to 2 place(d)_ % Dresden
modeling and solving is complemented by a survey o
of mechanisms to represent and implement extended 3 place(h) %o Hamburg
kinds of preferences and optimization. An overview 4 place()). % Leipzig
of further extensions conceived for demanding appli- o
cation problems concludes the article. S pIace(p) % Potsdam
6 place(w). % Wolfsburg
Modeling the Traveling 7 link(b,h,2). link(b,],2). link(b,p,1).
Salesperson Problem 8 link(d,b,2). link(d,/2). link(d,p,4).
For illustrating the principal modeling concepts in 9 Imk(h/ b,Z). Imk(h/ //2)~ |mk(h/W/3)~
ASP, let us consider the well-known traveling sales- 10 |ink(// d,Z). |ink(/,W,1)
person problem (TSP). A TSP instance consists of a 19 [Feldasn el a5
number of places, each of which must be included ink(p,b,1). ink(p,d,4). link(p,h,3).
within a round trip visiting every place exactly once, 12 link(w,d,2). link(w,h,3). link(w,,1).
as well as links between places, specifying potential

successors along with associated costs.

For example, figure 1 displays an instance with six
places — the German cities Berlin, Dresden, Ham-
burg, Leipzig, Potsdam, and Wolfsburg, each denoted
by its first letter. The cities are linked by train con-
nections, available in either one or both directions,
and their respective durations in hours constitute the
costs. For example, Berlin and Potsdam are mutually
linked, and it takes one hour to travel between the
two neighboring cities, while four hours are needed
from Potsdam to Dresden or vice versa. Moreover, a
train connects Potsdam to Hamburg within three
hours, but it does not operate the other way round.
Further train connections interlink the other cities,
and the question is how to arrange a shortest round
trip visiting all cities.

When we construct a round trip manually, we may
first fix some place to start the trip from, say Pots-
dam, and then proceed by opportunistically picking
links to yet unvisited cities. for example, we can find
a round trip leading from Potsdam to Berlin, Ham-
burg, Leipzig, Wolfsburg, Dresden, and then back to
Potsdam. The connections taken in this trip add up
to a total durationof 1 +2+2+ 1+ 2+ 4 =12 hours.
However, the true shortest round trip shown in figure
2 takes only 11 hours. To find such shortest round
trips, and also in case the train connections or cities
to visit change, we aim at a general method for arbi-
trary places and links between them.? In what fol-
lows, we thus apply the ASP methodology to model
shortest round trips for any TSP instance provided as
input.

Problem Instance

The common practice in ASP is to represent a prob-
lem at hand uniformly, distinguishing between a par-
ticular instance and a general encoding (Marek and
Truszczyfiski 1999, Niemeld 1999, Schlipf 1995). That
is, we first need to fix a logical format for specifying
places and links with associated costs. For example,

Listing 1. Instance Specifying the Places in Figure 1 as Facts.

the cities and connections displayed in figure 1 are
described in terms of the facts given in listing 1.
These facts are based on two predicates, place/1 and
link/3, where 1 and 3 denote the arities of respective
relations. The letters used as arguments of facts over
place/1 stand for corresponding cities, for example, p
refers to Potsdam, and writing such constants in low-
ercase follows logic programming conventions.
Moreover, facts over link/3 specify the available con-
nections, for example, link(p, b, 1), link(p, d, 4), and
link(p, h, 3) provide those from Potsdam to Berlin,
Dresden, and Hamburg along with their associated
durations, as displayed in figure 1. The durations are
given by integers, on which ASP systems support
arithmetic operations,® while the names used for
cities and predicates have no particular meaning
beyond identifying places or relations, respectively.
Also note that the facts constitute a set, so that the
order of writing them is immaterial, which distin-
guishes ASP from logic programming languages hav-
ing a procedural flavor, such as Prolog.

Problem Encoding

The main modeling task consists of specifying the
intended outcomes, that is to say, shortest round
trips, in terms of the conditions they must fulfill. To
this end, let us first formulate such requirements in
natural language:
(a) Every place is linked to exactly one successor in a
trip.
(b) Starting from an arbitrary place, a trip visits all
places and then returns to its starting point.
(c) The sum of costs associated with the links in a trip
ought to be minimal.

FALL 2016 35

Articles

% DOMAIN

start(X) :- X = #min{Y : place(Y)}.

% GENERATE

{travel(X,Y) : link(X,Y,C)} = 1 :- place(X).
% DEFINE

visit(X) :- start(X).

visit(Y) - visit(X), travel(X,Y).

% TEST

9 :-place(Y), not visit(Y).

10 :-start(Y), #count{X : travel(X,Y)} < 1.
11 :- place(Y), #count{X : travel(X,Y)} > 1.
12 % OPTIMIZE

13 :~travel(X,)Y), link(X,Y,C). [C,X]

14 % DISPLAY

15 #show travel/2.

O NOYOL DN WN =

Listing 2. Encoding of Round Trips with
Regard To Facts as in Listing 1.

Apart from a system-specific #show directive for output projection, the
encoding in listing 2 is written in the syntax of the ASP-Core-2 standard
language (www.mat.unical.it/aspcomp2013/ASPStandardization).

While these conditions are sufficient to characterize
shortest round trips, the requirement in (b) further
implies that every place has some predecessor. Given
that (a) limits the number of links in a round trip to
the number of places, the following condition must
hold as well:

(d) Every place is linked to exactly one predecessor in

a trip.

In summary, trips meeting the requirements in (a)
and (b) are subject to the optimality criterion in (c),
and (d) expresses an implied property. The condi-
tions at hand provide a mental model for the ASP
encoding furnished in the following.

The encoding shown in listing 2 is based on a con-
ceptual generate-and-test pattern (Eiter, lanni, and
Krennwallner 2009; Leone et al. 2006; Lifschitz
2002). Accordingly, it is structured into several parts,
distinguished by their concerns as well as typical
constructs among those presented by Lifschitz (2016)
in this issue. The purposes of the parts indicated by
comments in lines beginning with % are as follows.

A DOMAIN part specifies auxiliary concepts that can
be derived from facts and are shared by all answer sets.

36 Al MAGAZINE

A GENERATE part includes nondeterministic con-
structs, usually choice or disjunctive rules, to provide
solution candidates.

A DEFINE part characterizes relevant properties of
solution candidates, where the inherent features of fix-
point constructions and negation by default suppress
false positives and enable a compact representation.
A TEST part usually consists of integrity constraints
that deny invalid candidates whose properties do not
match the requirements on solutions.

An OPTIMIZE part makes use of optimization state-
ments or weak constraints to associate solutions with
costs subject to minimization.

A DISPLAY part declares output predicates to which
the printing of answer sets ought to be restricted in
order to make reading off solutions more convenient.

In what follows, we elaborate on respective encod-
ing parts.

DOMAIN
The first part, denoted by DOMAIN, includes the rule
in line 2 to determine the lexicographically smallest
identifier among places in an instance as (arbitrary)
starting point for the construction of a round trip. To
this end, the identifiers given by facts over place/1 are
taken as values for the variable Y, and the smallest
value, selected through a #min aggregate, is used to
instantiate the variable X recurring in the head
start(X). Note that, as usual in logic programming,
variable names begin with uppercase letters, and
recurrences within the same scope, that is, a rule, are
substituted with common values. Relative to the facts
in listing 1, the rule in line 2 is thus instantiated to

start(b) :- b = #min{

b : place(b); d: place(d); h : place(h);

p : place(p); 1 : place(1); w : place(w)}.
Since the predicate place/1 is entirely determined by
facts, the above rule can be simplified to a derived
fact start(b). In general, a DOMAIN part contains
deterministic rules specifying relevant auxiliary con-
cepts, so that they do not need to be provided per
instance in a redundant fashion. Rather, including
such rules in an encoding increases elaboration tol-
erance and exploits the capabilities of common
grounders, which evaluate deterministic parts.

GENERATE

The second part, indicated by GENERATE, gathers
nondeterministic constructs such that alternative
selections among the derivable atoms provide dis-
tinct solution candidates. In line 4, we use a choice
rule (Simons, Niemeld, and Soininen 2002) to express
that, for every place in an instance, exactly one link
from the place must be picked for a round trip. The
rule constitutes a schema that applies to each place
identifier taken as value for the variable X. For exam-
ple, considering Potsdam and the three connections
from there, it yields

{travel(p, b) : link(p, b, 1);

travel(p, d) : link(p, d, 4);
travel(p, h) : link(p, h, 3)} = 1 :- place(p).

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=36&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2FASPStandardization

Further simplifying this rule in view of facts over
place/1 and link/3 leads to
{travel(p, b); travel(p, d); travel(p, h)} = 1.

That is, any answer set must include exactly one of
the options travel(p, b), travel(p, d), and travel(p, h),
reflecting that either Berlin, Dresden, or Hamburg
has to succeed Potsdam in a round trip. As the same
schema applies to other cities as well, atoms over the
predicate travel/2 in an answer set represent a trip
meeting the requirement in (a). However, the rule in
line 4 leaves open which successor per place shall be
picked, and hence it is called choice rule.

DEFINE
While the predicate travel/2 provides sufficient infor-
mation to reconstruct a trip from an answer set, the
requirement in (b) that all places must be visited is
yet unaddressed. In order to test this condition, the
DEFINE part includes rules analyzing which places
are visited from the starting point fixed in the
DOMAIN part before. To begin with, the rule in line
6 derives the starting point as visited, for example,
visit(b) follows from start(b) relative to the facts in list-
ing 1. The rule in line 7 further collects places reach-
able through the connections indicated by travel /2.
For example, the following derivation chain is acti-
vated by atoms over travel/2 that represent the con-
nections shown in figure 2:

visit(b) :- start(b).

visit(p) :- visit(b), travel(b, p).

visit(h) :- visit(p), travel(p, h).

visit(l) :- visit(h), travel(h, /).

visit(w) :- visit(/), travel(, w).

visit(d) :- visit(w), travel(w, d).
Given that the involved connections form a round
trip, all atoms over visit/1 follow through a sequence
of rules rooted in start(b). However, if Hamburg were
linked to Berlin instead of Leipzig, no such sequence
would yield visit(/), visit(w), and visit(d). Atoms lacking
a noncircular derivation are unfounded and exempt
from answer sets (Van Gelder, Ross, and Schlipf
1991). In turn, answer sets encompass fix-point con-
structions for expressing concepts like, for example,
induction and recursion. A DEFINE part makes use of
this to derive predicates indicating relevant proper-
ties of a solution candidate at hand. As in DOMAIN
parts, the contained rules are deterministic, yet their
evaluation relies on nondeterministically generated
solution candidates. In our case, visit/1 provides all
places reached by taking connections in the trip from
a fixed starting point.

TEST

The predicates characterizing solution candidates as
well as their relevant properties are inspected in the
TEST part in order to eliminate invalid candidates.
This is accomplished by means of integrity con-
straints, that is, rules of denial with an implicitly false
head, written by leaving the left side of :- blank.
Regarding the conditions for round trips, the GEN-

ERATE part already takes care of (a), while the
requirement in (b) remains to be checked. To this
end, the integrity constraint in line 9 expresses that
all places must be visited from the starting point giv-
en by start/1. for example, if Leipzig were not
reached, a contradiction would be indicated through
:- place(/), not visit(/). Note that not visit(/) makes use
of negation by default, which applies whenever vis-
it(/) is unfounded. Importantly, negation by default
does not offer any derivation (by contraposition). As
a consequence, the above integrity constraint is not
interchangeable with a rule like visit(/) :- place(/).

If given such a rule, we could simply conclude vis-
it(/), regardless of reachability. Unlike that, integrity
constraints do not modify solution candidates or
predicates providing their properties, but merely
deny unintended outcomes. The distinction
between constructs for deriving and evaluating
atoms is an important modeling concept, here used
to check that all places are indeed reached from a
fixed starting point.

For the requirement in (b), we still have to make
sure that a trip at hand returns to its starting point.
Since every place is linked to one successor only and
all but one final connection are needed to visit places
different from the starting point given by start/1, it is
sufficient to check that a (final) connection return-
ing to the starting point exists. This condition is
imposed by the integrity constraint in line 10, and
relative to the facts in listing 1 it is instantiated to

.- start(b), #count{d : travel(d, b);

h : travel(h, b); p : travel(p, b)} < 1.

The #count aggregate provides the number of atoms
among travel(d, b), travel(h, b), and travel(p, b), repre-
senting connections returning to Berlin, included in
an answer set. If neither connection is taken, this
number is zero, in which case the success of the < 1
comparison indicates a contradiction. In turn, some
connection must lead back to Berlin, but it can only
be taken once all places are visited.

The checks through the integrity constraints in
lines 9 and 10 establish that answer sets represent
round trips meeting the requirement in (b). Since (a)
is handled in the GENERATE part, the rules up to line
10 are already sufficient to characterize round trips.
However, the implied property in (d) also states that
a place cannot be linked to several predecessors.
While this condition may seem apparent to humans,
it relies on a counting argument taking the number
of connections in a trip and the necessity that every
place must be linked to some predecessor into
account. Given that ASP solvers do not apply such
reasoning, it can be beneficial to formulate nontriv-
ial implied properties as redundant constraints. This
is the motivation to include the integrity constraint
in line 11, making explicit that a place cannot be
linked to several predecessors. For example, regard-
ing connections leading to Berlin, the schema yields

:- place(b), #count{d : travel(d, b);

Articles

FALL 2016 37

Articles

—

A L AW

8
9
10
11

13
14
15
16

18

$ clingo tsp-ins.lp tsp-enc.lp

Answer: 1
travel(b,/) travel(/,w) travel(w,d)
travel(d,p) travel(p,h) travel(h,b)
Optimization: 14

Answer: 2
travel(b,p) travel(p,h) travel(h,w)
travel(w,/) travel(/,d) travel(d,b)
Optimization: 12

Answer: 3
travel(b,p) travel(p,h) travel(h,/)
travel(/,w) travel(w,d) travel(d,b)
Optimization: 11

OPTIMUM FOUND

Listing 3. clingo Run on Facts and Encoding in Listing 1-2.

h: travel(h, b); p : travel(p, b)} > 1.

In view of the > 1 comparison relative to the #count
aggregate, a contradiction is indicated as soon as con-
nections from two cities among Dresden, Hamburg,
and Potsdam to Berlin are picked for a round trip.
Respective restrictions to a single predecessor apply
to cities other than Berlin as well.

OPTIMIZE
After specifying solution candidates and require-
ments, the OPTIMIZE part addresses the optimality
criterion in (c). To this end, the weak constraint in
line 13 associates every place with the cost of the link
to its successor in a round trip.# Focusing on the
three connections from Berlin, we obtain

-~ travel(b, h), link(b, h, 2). [2, b]

.~ travel(b,), link(b, |, 2). [2, b]

.~ travel(b, p), link(b, p, 1). [1, b]
Weak constraints resemble integrity constraints, but
rather than eliminating solution candidates to which
the expressed conditions apply, the lists enclosed in
square brackets are gathered in a set. The sum of inte-
gers included as their first elements constitutes the
total cost associated with an answer set and is subject
to minimization. Regarding connections from Berlin,

38 AI MAGAZINE

the fraction of the total cost is either 1 for Potsdam or
2 in case of Hamburg and Leipzig. Given that Ham-
burg and Leipzig cannot both succeed Berlin in a
round trip, there is no urge to keep their respective
lists distinct, for example, by adding the identifier h
or /as an element. By reusing the same list instead, we
actually reduce the number of factors taken into
account in the total cost calculation, which can in
turn benefit the performance of ASP solvers.

DISPLAY

The final part, denoted by DISPLAY, includes the
#show directive in line 15, declaring travel/2 as out-
put predicate. This does not affect the meaning of the
encoding, but instructs systems like clingo (Gebser et
al. 2014) to restrict the printing of answer sets to
atoms over travel/2. Indeed, facts as well as places giv-
en by start/1 and visit/1 are predetermined by an
instance, and only the connections provided by trav-
el/2 characterize a particular round trip.

Solution Computation

Assuming that the facts in listing 1 and the encoding
in listing 2 are stored in text files called tsp-ins.lp and
tsp-enc.lp, the output of a clingo run is given in list-
ing 3. We see that clingo finds three round trips of
decreasing cost, listed in lines beginning with Opti-
mization: below the atoms over travel/2 in a corre-
sponding answer set. While the first round trip is
arbitrary and merely depends on heuristic aspects of
the search in clingo, the second must be of smaller
cost, and likewise the third. The latter cannot be
improved any further, indicated by OPTIMUM FOUND
in the last line, as it represents the shortest round trip
shown in figure 2. For the instance at hand, this is the
only round trip of cost 11, and some arbitrary witness
among all optimal answer sets is determined in gen-
eral.® Nondeterminisms, such as the (optimal) answer
set found, are thus left up to the search in an ASP
solver, while an encoding merely specifies require-
ments on intended outcomes. This distinguishes ASP
from traditional logic programming languages like
Prolog, in which programs have a procedural seman-
tics based on the order of writing rules.

Summary

While the well-known TSP is conceptually simple, it
gives room for exploring diverse modeling concepts
and designs. Let us recap the main principles of the
above ASP method.

A uniform problem representation separates facts
describing an instance from a general problem
encoding. The latter consists of schemata, expressed
in terms of variables, that specify solutions for any
problem instance. Such high-level modeling is crucial
for elaboration tolerance, meaning that changes in a
problem specification can be addressed by modest
modifications of the representation. For example,
when round trips shall be approximated for instances

Figure 3. Initial and Goal Situation for Blocks World Planning.

that have no solution otherwise, the integrity con-
straint requiring all places to be visited can easily be
turned into a weak constraint for admitting excep-
tions.

An ASP encoding is usually structured into parts
addressing different concerns in a generate and test
conception. The key parts, nicknamed GENERATE,
DEFINE, TEST, and OPTIMIZE, provide solution can-
didates, analyze their relevant properties, eliminate
invalid candidates, and evaluate solution quality.

The typical constructs used within the GENERATE,
DEFINE, TEST, and OPTIMIZE parts are nondeter-
ministic (choice) rules, deterministic rules, integrity
constraints, or weak constraints, respectively. Deter-
ministic rules make use of the expressivity of answer
sets encompassing fix points, induction, and recur-
sion. While TEST parts should typically stay compact
regarding sufficient conditions, redundant con-
straints expressing nontrivial implied properties can
benefit the search in an ASP solver. Weak constraints
in an OPTIMIZE part can be made more effective by
reducing the number of factors taken into account to
evaluate solution quality.

An ASP encoding merely specifies requirements,
but not how answer sets representing (optimal) solu-
tions shall be computed. While admissible outcomes
are fixed by the semantics, the way to find them is
left up to ASP solvers.

Modeling the Blocks World
Planning Problem

Beyond traditional one-shot solving, where a prob-
lem instance is fed to an isolated search process, mul-
tishot solving addresses series of evolving subtasks in
an iterative manner. This is of interest in dynamic
domains, such as logistics, policies, or robotics, deal-
ing with recurrent tasks in a changing environment.
To illustrate respective scenarios, we consider blocks
world planning (Slaney and Thiébaux 2001), where
blocks must be restacked on a table to bring them
from their initial positions into a goal configuration.

Figure 3 displays an example scenario with nine
blocks. In the initial situation, shown on the left, the
blocks are arranged in three stacks, and the two
stacks on the right constitute the goal situation. To
change the configuration, a free block at the top of
some stack can be moved on top of another stack or
to the table. That is, a block offers room for at most
one other block on top of it, while any number of
blocks can be put on the table. A naive strategy to
establish the goal situation thus consists of succes-
sively moving all blocks to the table, and then build
up required stacks from the bottom. For the dis-
played scenario, this results in six moves to the table
plus seven moves to construct the stacks on the right.
However, the interest is to perform as few moves as

Articles

FALL 2016 39

Articles

ONONLUL DN WN =

Listing 4. Instance Specifying Situations in Figure 3 as Facts.

init(3,2). init(6,5). init(9,8).
init(2,1). init(5,4). init(8,7).
init(1,0). init(4,0). init(7,0). table(0).
goal(8,6).

goal(6,4). goal(5,7).

goal(4,2). goal(7,3).

goal(2,1). goal(3,9).

goal(1,0). goal(9,0).

bh A WN =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29

Listing 5. Blocks World Encoding with Regard to Facts as in Listing 4.

#program base.

% DOMAIN
do(X,Z) :-init(X,Y),
do(X,Y) :- goal(X,Y), not table(Y).
on(X,Y,0) :- init(X,Y).

#program check(t).

% TEST

:- query(t), goal(X,Y), not on(X,Y,t).
#program step(t).

% GENERATE

{move(X,Y,t) : do(X,Y)} = 1.

% DEFINE

move(X,t) :- move(X,Y,t).

on(X,Y,t) :- move(X,Y,t).

on(X,Y,t) :-on(X,Y,t-1), not move(X,t).
lock(Y,t) :- on(X,Y,t=1), not table(Y).
firm(X,t) :- on(X,Y,t), table(Y).
firm(X,t) :- on(X,Y,t), firm(Y,t).

% TEST

:- lock(X,t), move(X,t).

:- lock(Y,t), move(X,Y,t).

- init(Y,Z), #count{X : on(X,Y,0)} > 1.
- init(X,Z), #count{Y : on(X,Y,t)} > 1.
:- init(X,Z), not firm(X,t).

% DISPLAY
#show move/3.

40 AI MAGAZINE

not table(Y), table(Z).

needed, and in the following we show how shortest
plans can be found using multishot solving.

Problem Instance

Similar to one-shot solving, applied to the TSP before,
a problem instance is described in terms of facts.
Those representing the situations displayed in figure
3 are given in listing 4, where the predicates init/2
and goal/2 specify the respective positions of blocks.
In addition, table(0) declares O as identifier for the
table, which is at the bottom of stacks in both the ini-
tial and the goal configuration.

Problem Encoding

To exploit the multishot solving capacities provided
by the clingo system (Gebser et al. 2014), the encod-
ing given in listing S is composed of three subpro-
grams. Their names and parameters are introduced
by #program directives, and a subprogram includes
the rules up to the next such directive (if any). In the
context of planning, the subprograms are dedicated
to the following concerns:

(1) A base subprogram is processed once for pro-
viding auxiliary concepts along with setting up an
initial configuration. (2) A check(t) subprogram is
parametrized by a constant t, serving as a placehold-
er for successive integers starting from 0. For each
time point taken as a value to replace t with, integri-
ty constraints impose goal conditions. They include
a dedicated atom query(t), provided by clingo for the
current last time point, while obsolete conditions are
deactivated to reflect an increased plan length. (3) A
step(t) subprogram is likewise parametrized, yet t is
replaced with successive integers starting from 1. This
subprogram specifies transitions in terms of rules for
picking actions, deriving atoms that represent a suc-
cessor configuration, and asserting the validity of a
transition. In contrast to check(t), such rules are not
withdrawn but joined with others obtained at later
time points.

The subprograms are further structured into con-
ceptual DOMAIN, GENERATE, DEFINE, and TEST
parts. Moreover, the DISPLAY part declares move/3 as
output predicate (for all subprograms) through the
#show directive in line 29, while the solving process
of clingo focuses on shortest plans without requiring
any OPTIMIZE part.

base

The first subprogram, called base, contributes a
DOMAIN part consisting of the rules from lines 3 to
5. The idea of the predicate do/2 is to provide moves
that could be relevant to a shortest plan. In particu-
lar, the rule in line 3 expresses that moving a block to
the table can be useful for accessing the stack under-
neath, but only if such a stack exists and the block is
not already on the table in the initial situation. Giv-
en the stacks on the left in figure 3, we thus derive
that the blocks numbered 2, 3, 5, 6, 8, and 9 may be
moved to the table. In addition, the rule in line 4

indicates moves to goal positions different from the
table. Regarding the goal configuration on the right
in figure 3, we obtain corresponding moves for all
blocks but those numbered 1 and 9. As a result,
derived facts over do/2 yield at most two relevant
moves per block, while other moves may be legal but
cannot belong to shortest plans.” The remaining rule
in line 5 maps initial positions to derived facts over
on/3, where the integer O denotes a time point asso-
ciated with the initial configuration.

check(t)

The subprogram check(t) is parametrized by a con-
stant t that is handled by clingo and replaced with
successive integers starting from 0. It contributes a
TEST part, including the integrity constraint in line 9,
to deny plans such that some goal position is not yet
established at the last time point referred to by t. This
is accomplished by means of a dedicated atom
query(t), provided by clingo for the current last time
point and deactivated when proceeding to the next
integer to replace t with. For example, the initial posi-
tion of block 3 on the left in figure 3 does not match
its goal position on the right, and a contradiction is
indicated through

:- query(0), goal(3, 9), not on(3, 9, 0).

However, query(0) holds only as long as O is the last
time point, while query(1) is used for 1 instead, and
so on.

step(t)

The third subprogram, denoted by step(t), specifies
transitions to time points referred to by its parameter
t, serving as a placeholder for successive integers
starting from 1. To begin with, the choice rule in line
13 constitutes the GENERATE part for picking one
among the moves taken as relevant in the base sub-
program. Note that the current time point is used as
third argument in atoms over move/3, while do/2
remains fixed, regardless of the time point.

The deterministic rules in the DEFINE part from
line 15 to 20 derive further atoms characterizing a
transition at hand. A block changing its position is
extracted through projection to move/2. Atoms over
on/3, representing a successor configuration, are
derived from a move as well as inertia applying to all
blocks but the one that is moved. Again harnessing
projection, the predicate lock/2 indicates blocks that
were not on top of a stack and can thus not partici-
pate in legal moves. Finally, the predicate firm/2 pro-
vides blocks rooted on the table in a successor con-
figuration, where noncircular derivations similar to
those for places reachable in the TSP have the table as
their starting point.

The TEST part, including the integrity constraints
from line 22 to 26, then eliminates inexecutable
plans. Moves involving inaccessible blocks are ruled
out in line 22 and 23, which is actually sufficient to
check that a plan can be executed.

Notably, the first of these integrity constraints
reuses the projection to move/2, as only the moved

Articles

—

14
15
16
17

$ clingo blocks-ins.lp blocks-enc.lp

Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving...

Answer: 1

move(9,0,1) move(6,0,2) move(3,9,3)
move(8,0,4) move(7,3,5) move(5,7,6)
move(4,2,7) move(6,4,8) move(8,6,9)

Listing 6. clingo Run on Facts and Encoding in Listings 4 and 5.

block is of interest here. In addition, line 24 to 26
impose redundant state constraints, making explicit
that, in any configuration, no block is under or on
several objects and all blocks are rooted on the table.®?
For example, this expresses that block 3 cannot be at
its goal position in between the blocks numbered 7
and 9 as long as the third stack displayed on the left
in figure 3 is intact, no matter the performed moves.

Solution Computation

The output of clingo run on the facts in listing 4 and
the encoding in listing 5, stored in text files blocks-
ins.Ip and blocks-enc.lp, is given in listing 6. The 10
lines saying Solving... indicate that 10 time points,
namely successive integers from 0 to 9, have been
used for the parameter of the check(t) subprogram.
Apart from 0, they are also applied to the step(t) sub-
program describing transitions, while base is
processed just once at the beginning. Failed attempts
to find an answer set for time points from O to 8
mean that there is no plan consisting of a respective
number of moves. In turn, the plan found for time
point 9 is shortest. The contained atoms over move/3
mainly convey that moving the blocks numbered 6,
8, and 9 to the table allows for building up the goal
stacks. Alternative shortest plans, which can be
obtained by enumerating answer sets, include a
move of block 5, rather than block 8, to the table.

FALL 2016 41

Articles

Summary

The blocks world is a dynamic domain, in which
actions change the state of the environment over
time. Shortest plans to progress from an initial to a
goal situation can be found using multishot solving
according to some basic principles:

An instance is provided by facts specifying the objects
of interest along with initial and goal conditions.

A general problem encoding furnishes three subpro-
grams, called base, check(t), and step(t). The latter are
parametrized by a constant, here denoted ¢, serving as
a placeholder for successive integers starting from O or
1, respectively.

The base subprogram is processed once at the begin-
ning. It typically contributes a DOMAIN part setting
up auxiliary concepts as well as atoms representing an
initial configuration.

Occurrences of parameter fin the check(t) subprogram
are successively replaced with integers from 0. The
common purpose is to impose goal conditions by
means of integrity constraints in a TEST part. By using
a dedicated atom query(t) in integrity constraints,
obsolete conditions are deactivated when proceeding
to the next integer.

The step(t) subprogram is processed analogously to
check(t), yet starting from integer 1 instead of 0. This
predestinates step(t) to specify the transition to a suc-
cessor configuration associated with t. The constructs
typical for the GENERATE, DEFINE, and TEST parts are
used to provide candidates, derive atoms characteriz-
ing them, and eliminate invalid transitions. Invariant
properties can be expressed by incorporating redun-
dant state constraints.

While facts as well as the base subprogram are
processed only at the beginning, multishot solving by
clingo iteratively adds rules obtained by replacing the
parameters of the check(t) and step(t). subprograms
with successive integers. This corresponds to gradual-
ly increasing the plan length until an answer set rep-
resenting a shortest plan is found. The required length
is often not known a priori, and multishot solving
allows for discovering it.

Preferences and Optimization

The identification of preferred, or optimal, solutions
is often indispensable in real-world applications, as
illustrated on the TSP and blocks world scenarios
above. In many cases, this also involves the combi-
nation of various qualitative and quantitative prefer-
ences. In fact, optimization statements representing
objective functions based on summation or counting
are integral concepts of ASP systems since their
beginnings (manifested by #minimize and #maxi-
mize statements [Simons, Niemeld, and Soininen
2002] or weak constraints [Leone et al. 2006]). The
built-in repertoire of current ASP systems also covers
set-inclusion-based optimization (Gebser et al. 2015).

Other approaches to optimizing relative to specific
and often more complex types of preference are fur-

42 Al MAGAZINE

nished by dedicated external systems. Such
approaches can be categorized into two classes (com-
pare Delgrande et al. [2004]). On the one hand, we
find prescriptive approaches to preference that take
an order on rules and then enforce this order during
the construction of optimal answer sets (Brewka and
Eiter 1999). Such prescriptive approaches do not lead
to an increase in computational complexity, which
makes them amenable to implementation by compi-
lation (Delgrande, Schaub, and Tompits 2003) or
metainterpretation (Eiter et al. 2003). On the other
hand, we have descriptive approaches that impose
preferences among the answer sets of a program
(Brewka, Niemeld, and Truszczyniski 2003; Sakama
and Inoue 2000; Son and Pontelli 2006). Unlike the
former, these approaches typically lead to an elevat-
ed level of complexity, which makes their efficient
implementation more challenging. The asprin sys-
tem (Brewka et al. 2015) offers a general and flexible
framework for computing optimal answer sets rela-
tive to preferences among them.® In particular, its
library comprises all afore-cited descriptive approach-
es and further allows for freely combining prefer-
ences of qualitative and quantitative nature.

Further Extensions

The previous sections presented some popular mod-
eling features and extensions, for example, relative to
propositional satisfiability (SAT), going along with
the ASP methodology. These include uniform prob-
lem representations using (first-order) variables with-
in encodings, aggregates expressing collective condi-
tions on sets, optimization, and multishot solving
capacities. While such concepts already provide rich
facilities for modeling and solving complex compu-
tational problems, we conclude with a (nonexhaus-
tive) overview of further extensions.

Similar to disjunctive rules, nonmonotone recur-
sive aggregates (Faber, Pfeifer, and Leone 2011; Fer-
raris 2011) allow for expressing problems at the sec-
ond level of the polynomial time hierarchy.
Finite-domain constraints specifying quantitative
conditions can be addressed through dedicated back-
ends (Aziz, Chu, and Stuckey 2013; Balduccini 2011;
Mellarkod, Gelfond, and Zhang 2008; Ostrowski and
Schaub 2012) or compilation (Banbara et al. 2015;
Drescher and Walsh 2010). Moreover, translation
approaches allow for handling real numbers
(Bartholomew and Lee 2013; Liu, Janhunen, and
Niemeld 2012). Extended functionalities like multi-
shot solving are realized by combining ASP systems
with scripting languages (Gebser et al. 2014). Further
details regarding the integration of ASP systems with
imperative languages or external information sources
are provided by Lierler, Maratea, and Ricca (2016)
and Erdem, Gelfond, and Leone (2016) in this issue.
As also discussed in the latter article, high-level prob-
lem representations, for example, specified in terms

of action languages, can in turn be mapped to ASP
through corresponding front ends.

Acknowledgments

The authors were partially funded by DFG grants
SCHA 550/8 and SCHA 550/9. We are grateful to Esra
Erdem, Francesco Ricca, Gerhard Brewka, Mirek
Truszczyniski, and Wolfgang Faber for their com-
ments on a preliminary draft of this article.

Notes

1. See, for example, Papadimitriou (1994) for an introduc-
tion to computational complexity.

2. Computing a shortest round trip is FPNP-complete
(Papadimitriou 1994); that is, it can be accomplished by
means of a polynomial number of queries to an NP-oracle.

3. Extensions to real numbers are presented by
Bartholomew and Lee (2013) and Liu, Janhunen, and
Niemeld (2012).

4. The weak constraint corresponds to the optimization
statement #minimize {C, X : travel(X, Y), link(X, Y, C)}.

5. An even more elaborate penalization scheme based on
relative cost differences is presented by Gebser et al. (2012,
section 8.3).

6. Optimal answer sets can be enumerated using dedicated
reasoning modes of clingo (Gebser et al. 2015).

7. More elaborate conditions to further restrict potential
moves are provided by Slaney and Thiébaux (2001), and
respective ASP encodings are presented by Gebser et al.
(2012, section 8.2). While such domain knowledge as well
as the encoding in listing S are specific to Blocks World
Planning, domain-independent approaches to model
actions and change are discussed by Erdem, Gelfond, and
Leone (2016) in this issue.

8. Similar constraints are also included in encodings pre-
sented by Erdem and Lifschitz (2003), Gebser et al. (2012),
and Lifschitz (2002) and further pave the way to partially
ordered plans with parallel actions.

9. The only requirement is that evaluating a preference
must be encodable in ASP (and thus have a complexity not
beyond the second level of the polynomial time hierarchy)

References

Aziz, R.; Chu, G.; and Stuckey, P. 2013. Stable Model Seman-
tics for Founded Bounds. Theory and Practice of Logic Pro-
gramming 13(4-5): 517-532. dx.doi.org/10.1017/S1471068
41300032X

Balduccini, M. 2011. Industrial-Size Scheduling with
ASP+CP. In Proceedings of the Eleventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-
11), volume 6645 of Lecture Notes in Artificial Intelligence,
ed. J. Delgrande and W. Faber, 284-296. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-20895-9_33

Banbara, M.; Gebser, M.; Inoue, K.; Ostrowski, M.; Peano,
A.; Schaub, T.; Soh, T.; Tamura, N.; and Weise, M. 2015.
Aspartame: Solving Constraint Satisfaction Problems with
Answer Set Programming. In Proceedings of the Thirteenth
International Conference on Logic Programming and Nonmo-
notonic Reasoning (LPNMR-15), volume 9345 of Lecture
Notes in Artificial Intelligence, ed. F. Calimeri, G. Ianni, and

M. Truszczynski, 112-126. Berlin: Springer. dx.doi.org/10.
1007/978-3-319-23264-5_10

Bartholomew, M., and Lee, J. 2013. Functional Stable Mod-
el Semantics and Answer Set Programming modulo Theo-
ries. In Proceedings of the Twenty-Third International Joint Con-
ference on Artificial Intelligence (IJCAI-13), ed. F. Rossi,
718-724. Palo Alto, CA: AAAI Press.

Brewka, G., and Eiter, T. 1999. Preferred Answer Sets for
Extended Logic Programs. Artificial Intelligence 109(1-2):
297-356. dx.doi.org/10.1016/S0004-3702(99)00015-6

Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T. 2015.
Asprin: Customizing Answer Set Preferences without a
Headache. In Proceedings of the Twenty-Ninth National Con-
ference on Artificial Intelligence (AAAI-15), 1467-1474. Palo
Alto, CA: AAAI Press.

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer Set
Programming at a Glance. Communications of the ACM
54(12): 92-103. dx.doi.org/10.1145/2043174.2043195

Brewka, G.; Niemeld, I.; and Truszczynski, M. 2003. Answer
Set Optimization. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03), ed.
G. Gottlob and T. Walsh, 867-872. San Francisco: Morgan
Kaufmann Publishers.

Bruynooghe, M.; Denecker, M.; and Truszczynski, M. 2016.
ASP with First-Order Logic and Definitions. AI Magazine
37(3).

Delgrande, J.; Schaub, T.; and Tompits, H. 2003. A Frame-
work for Compiling Preferences in Logic Programs. Theory
and Practice of Logic Programming 3(2): 129-187.
dx.doi.org/10.1017/51471068402001539

Delgrande, J.; Schaub, T.; Tompits, H.; and Wang, K. 2004.
A Classification and Survey of Preference Handling
Approaches in Nonmonotonic Reasoning. Computational
Intelligence 20(2): 308-334. dx.doi.org/10.1111/j.0824-
7935.2004.00240.x

Drescher, C., and Walsh, T. 2010. A Translational Approach
to Constraint Answer Set Solving. Theory and Practice of Log-
ic Programming 10(4-6): 465-480. dx.doi.org/10.1017/
$1471068410000220

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2003. Com-
puting Preferred Answer Sets by Meta-Interpretation in
Answer Set Programming. Theory and Practice of Logic Pro-
gramming 3(4-5): 463-498.

Eiter, T.; lanni, G.; and Krennwallner, T. 2009. Answer Set
Programming: A Primer. In Fifth International Reasoning Web
Summer School (RW-09), volume 5689 of Lecture Notes in
Computer Science, ed. S. Tessaris, E. Franconi, T. Eiter, C.
Gutierrez, S. Handschuh, M. Rousset, and R. Schmidt, 40—
110. Berlin: Springer-Verlag.

Erdem, E., and Lifschitz, V. 2003. Tight Logic Programs. The-
ory and Practice of Logic Programming 3(4-5): 499-518.
dx.doi.org/10.1017/S1471068403001765

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of
ASP. AI Magazine 37(3).

Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
Complexity of Recursive Aggregates in Answer Set Pro-
gramming. Artificial Intelligence 175(1): 278-298.
dx.doi.org/10.1016/j.artint.2010.04.002

Ferraris, P. 2011. Logic Programs with Propositional Con-
nectives and Aggregates. ACM Transactions on Computation-
al Logic 12(4): 25. dx.doi.org/10.1145/1970398.1970401

Gebser, M.; Kaminski, R.; Kaufmann, B.; Romero, J.; and

Articles

FALL 2016 43

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841300032X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-20895-9_33
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_10
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2899%2900015-6
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F2043174.2043195
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068402001539
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1111%2Fj.0824-7935.2004.00240.x
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068410000220
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068403001765
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2010.04.002
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1970398.1970401
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841300032X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_10
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1111%2Fj.0824-7935.2004.00240.x
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068410000220

Articles

Schaub, T. 2015. Progress in Clasp Series 3. In Proceedings of
the Thirteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR-15), volume 9345 of
Lecture Notes in Artificial Intelligence, ed. F. Calimeri, G.
lanni, and M. Truszczynski, 368-383. Berlin: Springer.
dx.doi.org/10.1007/978-3-319-23264-5_31

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. San Rafael,
CA: Morgan and Claypool Publishers.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + Control: Preliminary Report. In Tech-
nical Communications of the Thirtieth International Conference
on Logic Programming (ICLP-14), Theory and Practice of Log-
ic Programming, Online Supplement .arXiv Volume:
1405.3694v1. Ithaca, NY: Cornell University Library.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3/4): 365-385. dx.doi.org/10.1007/BF03037169

Janhunen, T., and Niemeld, 1. 2016. The Answer Set Pro-
gramming Paradigm. AI Magazine 37(3).

Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and Solving in Answer Set Programming. Al
Magazine 37(3).

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, E. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Com-
putational Logic 7(3): 499-562. dx.doi.org/10.1145/1149114.
1149117

Lierler, Y.; Maratea, M.; and Ricca, F. 2016. Systems, Engi-
neering Environments, and Competitions. Al Magazine
37(3).

Lifschitz, V. 2002. Answer Set Programming and Plan Gen-
eration. Artificial Intelligence 138(1-2): 39-54.
dx.doi.org/10.1016/5S0004-3702(02)00186-8

Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Liu, G.; Janhunen, T.; and Niemel4, I. 2012. Answer Set Pro-
gramming via Mixed Integer Programming. In Proceedings of
the Thirteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR-12), ed. G. Brewka, T.
Eiter, and S. Mcllraith, 32-42. Palo Alto, CA: AAAI Press.

Marek, V., and Truszczynski, M. 1999. Stable Models and an
Alternative Logic Programming Paradigm. In The Logic Pro-
gramming Paradigm: A 25-Year Perspective, ed. K. Apt, V.
Marek, M. Truszczynski, and D. Warren, 375-398. Berlin:
Springer-Verlag. dx.doi.org/10.1007/978-3-642-60085-2_17

Mellarkod, V.; Gelfond, M.; and Zhang, Y. 2008. Integrating
Answer Set Programming and Constraint Logic Program-
ming. Annals of Mathematics and Artificial Intelligence 53(1-
4): dx.doi.org/10.1007/s10472-009-9116-y

Niemeld, I. 1999. Logic Programs with Stable Model Seman-
tics as a Constraint Programming Paradigm. Annals of Math-
ematics and Artificial Intelligence 25(3-4): 241-273.
dx.doi.org/10.1023/A:1018930122475

Ostrowski, M., and Schaub, T. 2012. ASP modulo CSP: The
Clingcon System. Theory and Practice of Logic Programming
12(4-5): 485-503. dx.doi.org/10.1017/51471068412000142
Papadimitriou, C. 1994. Computational Complexity. Boston,
MA: Addison-Wesley.

Sakama, C., and Inoue, K. 2000. Prioritized Logic Program-
ming and its Application to Commonsense Reasoning. Arti-

44 Al MAGAZINE

ficial Intelligence 123(1-2): 185-222. dx.doi.org/10.1016/
S0004-3702(00)00054-0

Schlipf, J. 1995. The Expressive Powers of the Logic Pro-
gramming Semantics. Journal of Computer and System Sciences
51: 64-86. dx.doi.org/10.1006/jcss.1995.1053

Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138(1-2): 181-234. dx.doi.org/10.1016/S0004-
3702(02) 00187-X

Slaney, J., and Thiébaux, S. 2001. Blocks World Revisited.
Artificial Intelligence 125(1-2): 119-153. dx.doi.org/10.1016/
S0004-3702(00) 00079-5

Son, T., and Pontelli, E. 2006. Planning with Preferences
Using Logic Programming. Theory and Practice of Logic Pro-
gramming 6(5): 559-608. dx.doi.org/10.1017/5S147106
8406002717

Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The Well-
Founded Semantics for General Logic Programs. Journal of
the ACM 38(3): 620-650. dx.doi.org/10.1145/116825.
116838

Martin Gebser is a postdoctoral researcher at the Universi-
ty of Potsdam, Germany. His research interests include the-
oretical and practical aspects of declarative problem solving
methods. In particular, Gebser contributes to the develop-
ment of state-of-the-art solving systems in answer set pro-
gramming and related areas. He gathered practical expertise
in knowledge representation and reasoning technology by
working on applications in systems biology, system synthe-
sis, configuration, and related areas. Gebser cochaired the
ICLP doctoral consortium in 2013 and 2014 as well as the
answer set programming competition in 2009, 2014, and
2015.

Torsten Schaub is a university professor at the University of
Potsdam, Germany, and holds an international chair at
Inria Rennes, France. He is a fellow of ECCAI and the cur-
rent president of the Association of Logic Programming. His
current research focus lies on answer set programming and
its applications, which materializes at potassco.sourceforge.
net, the home of the open source project Potassco, which
bundles software for ASP developed at Potsdam.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_31
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF03037169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900186-8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-60085-2_17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10472-009-9116-y
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018930122475
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000142
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2800%2900054-0
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1006%2Fjcss.1995.1053
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%29+00187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2800%29+00079-5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068406002717
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F116825.116838
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fpotassco.sourceforge.net
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2800%2900054-0
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%29+00187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2800%29+00079-5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068406002717
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F116825.116838
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fpotassco.sourceforge.net

Systems, Engineering
Environments, and

Competitions

Yuliya Lierler, Marco Maratea, Francesco Ricca

B The goal of this article is threefold.
First, we trace the history of the devel-
opment of answer set solvers, by
accounting for more than a dozen of
them. Second, we discuss development
tools and environments that facilitate
the use of answer set programming tech-
nology in practical applications. Last,
we present the evolution of the answer
set programming competitions, prime
venues for tracking advances in answer
set solving technology.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

edge representation paradigm that found numerous

successful industrial and scientific applications includ-
ing product configuration, decision support systems for space
shuttle flight controllers, large-scale biological network
repairs, and team building and scheduling (see Erdem, Gel-
fond, and Leone [2016] for more details). The success story of
ASP is largely due to its modeling language and the availabil-
ity of efficient and effective answer set programming tools
that encompass grounders, solvers, and engineering envi-
ronments. Syntactically, simple answer set programs (or ASP
programs) look like Prolog logic programs. Yet solutions to
such programs are represented in ASP by sets of atoms called
answer sets, and not by substitutions, as in Prolog. An answer
set system typically consists of two tools, a grounder and a
solver, and is used to compute answer sets. Since 2007, the
series of ASP competitions has promoted the collection of
challenging benchmarks as well as supplied researchers with
a uniform platform for tracking the progress in the develop-
ment of ASP solving technologies. More recent introduction
of programming environments eased the development of
ASP programs and the implementation of software systems
based on ASP. In this article, we present a brief survey of (1)
existing answer set grounders and solvers, (2) engineering
tools and environments that support production of ASP-

Q nswer set programming (ASP) is a prominent knowl-

Articles

FALL 2016 45

Articles

based applications, and (3) ASP competitions. Our
goal is to provide an interested reader with an out-
look on existing ASP technologies together with suf-
ficient literature pointers rather than in-depth expla-
nation of research and engineering ideas behind
these technologies.

ASP Grounders and Solvers

In ASP, solutions to logic programs are represented by
sets of atoms called answer sets (stable models) (Gel-
fond and Lifschitz 1988). Answer set solvers, such as
Smodels (Simons, Niemeld, and Soininen 2002),
Smodels . (Ward and Schlipf 2004), and DLV (Leone
et al. 2006), to name some of the first implementa-
tions, compute answer sets of a given propositional
logic program. Conceptually, most answer set solvers
have a lot in common with satisfiability solvers (or
SAT solvers), systems that compute satisfying assign-
ments for propositional formulas in clausal normal
form. Tools called grounders complement answer set
solvers. A grounder is a software system that takes a
logic program with variables as its input and pro-
duces a propositional program as its output so that
the resulting propositional program has the same
answer sets as the input program. Propositional pro-
grams are crucial in devising efficient solving proce-
dures, yet it is the logic programming language with
variables that facilitates modeling and effective prob-
lem solving in ASP.

There are three main grounders available for ASP
practitioners: Lparse (Syrjanen 2001), DLV-grounder
(Leone et al. 2006), and GrinGo (Gebser, Schaub, and
Thiele 2007). Grounders Lparse and GrinGo are
stand-alone tools that are commonly used as front
ends for distinct answer set solvers. System DLV
encapsulates both a grounder and a solver. However,
calling the system with an option -instantiate pro-
duces propositional (ground) program for the given
input and exits the computation without accessing
the solving procedure of the system.

“Native” answer set solvers such as Smodels,
Smodels_, and DLV are based on specialized search
procedures in the spirit of the classic backtrack-search
Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm. The DPLL algorithm and its modifications are
at the core of the majority of modern SAT solvers.
This algorithm consists of performing three basic
operations: decision, unit propagate, and backtrack.
The unit propagate operation is based on a simple
inference rule in propositional logic that given a for-
mula F in clausal normal form allows utilization of
knowledge about unit clauses occurring in F or being
inferred so far by the DPLL procedure in order to con-
clude new inferences. Native answer set solvers
replace the unit propagate operation of DPLL by spe-
cialized operations based on inference rules suitable
in the context of logic programs. For example, Smod-
els implements five propagators called Unit Propa-

46 Al MAGAZINE

gate, All Rules Canceled, Backchain True, Backchain
False, and Unfounded (for details on these propagators
see, for instance, Lierler and Truszczynski [2011]). In
DLV the basic chronological backtrack-search was
improved introducing backjumping and look-back
heuristics (Maratea et al. 2008). Solver Smodels_.
extends the algorithm of Smodels by conflict-driven
backjumping and clause learning. Clause learning is
an advanced solving technique that originated in
SAT and proved to be powerful. The distinguishing
feature about the answer set solver DLV is its ability
to handle disjunctive answer set programs. In rules of
such programs a disjunction of atoms in place of a
single atom is allowed in the heads. The problem of
deciding whether a disjunctive program has an
answer set is X7-complete. The other systems capable
of dealing with such programs are GNT, Cmodels,
claspD, and WASP. Brochenin, Lierler, and Maratea
(2014) survey the key features of disjunctive answer
set solvers.

Answer sets of a “tight” logic program are in a one-
to-one correspondence with models of completion, a
propositional logic formula proposed by Clark
(1977). This observation immediately leads to an idea
that answer sets of a tight logic program can be found
by running a SAT solver on clausified program’s com-
pletion. Tightness is a simple syntactic condition that
many interesting ASP applications satisfy. An incep-
tion of a SAT-based answer set solver Cmodels
(Giunchiglia, Lierler, and Maratea 2006) is due to this
fact. It starts its computation by forming completion
of an input program. Then Cmodels calls a SAT solver
for enumerating models of program’s completion.
Lin and Zhao (2004) proposed a concept of loop for-
mula so that given a program, extending its comple-
tion by its loop formulas results in a propositional
formula, whose models are in a one-to-one corre-
spondence with answer sets. In general case, the
number of loop formulas can be exponentially larger
than the size of a program. Nevertheless, solvers
ASSAT (Lin and Zhao 2004) and Cmodels found
means to utilize the concept of a loop formula in
order to compute answer sets of a program. This com-
putation typically requires multiple interactions with
a SAT solver. Loop formulas are related to so called
unfounded sets, which is the basis behind Unfound-
ed propagator often employed in answer set solvers.
Both ASSAT and Cmodels take advantage of conflict-
driven backjumping and clause learning available in
SAT technology that they rely on.

Answer set solver clasp (Gebser, Kaufmann, and
Schaub 2012a) borrows the ideas from both native
and “loop formula”-based solvers. Just as Cmodels or
ASSAT, it starts its computation by forming the
clausified completion of an input program. Next it
implements a search procedure that relies on a unit
propagator stemming from SAT on the program’s
completion and an Unfounded propagator stemming
from native answer set solvers. System clasp imple-

Articles

200

File Edit View Program Profiler Execute Help

H 5 Dlal0 ale 2 & (] Bk ge] 7] 0] sokobaniar s 3] [send reess
o B Work 5) [encodingase —x\ (=5)[owine -x__ (5w
1
v [Expressions g
» (5 RWZOLS
¥ (54 Reachabiliy
o RW2015New v 7 Predicates
* (5 Testsuite » [actionstep
» B3 ckcio * [# next
» 5y colorabiliy w [eh
A *» [F right
» B idum2 * [M bottem
B keys * [A top
* [iQ news = [H adj
E [provapiotens actlonstep (5] - mexk{5,5%) » m location
» [§g provatess w [kaw sram
» B3 query i : :
" reging S fud SO
" ": sokaban -~ ' y i T it it =0x
E E d-sokoban_decr T append 3 7
¥ E S o wdd (L1, L) rial | T before
newkile 2 dl ad (L 121 lef 21 . T collide
¥ #‘E s ;!,) ko % conditioned_join
- ady (L, L pott . count
> B vasn I I T difference
- T fibanacci
3 i] 2 lecationiLy vl (L. Fell T headOfList
o | ., N | . . ¥ intersRCtion
maK
s Fi Do 1 op (F T path
o~y BSLPROR, 1 4 o, (P T pernation
T project
! * lig IDUMATIGEmEnT =
| > i e T T

Figure 1. The User Interface of ASPIDE.

ments conflict-driven backjumping and clause learn-
ing. The PC(ID)/answer set solvers MINISAT(ID) (Wit-
tocx, Marien, and Denecker 2008) and WASP
(Alviano et al. 2015; Alviano and Dodaro 2016) share
alot in common with the design of clasp. Lierler and
Truszczynski (2011) present a study that draws paral-
lels between several answer set solvers.

System LP2SAT (Janhunen 2006) represents a fam-
ily of “translation-based” solvers. This family relies on
a translation of propositional logic programs into log-
ic formulas so that models of the resulting formula are
in one-to-one correspondence with the answer sets of
the input program. This translation may add auxiliary
atoms in the process and may include the normaliza-
tion of aggregates as well as the encoding of level
mappings for nontight problem instances. The latter
can be expressed in different terms including acyclic-
ity checking. Pseudo-Boolean and SAT formulations
resulted in a variety of systems, such as LP2ACY-
CASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT
+CLASP, and LP2ACYCSAT+GLUCOSE. Systems
LP2DIFFZ3 and LP2DIFF+YICES utilize satisfiability
modulo theory solvers (Nieuwenhuis, Oliveras, and
Tinelli 2006) through a translation from logic pro-

grams to difference logic. Among other alternatives,
solver LP2MIP relies on a translation into a mixed
integer programming problem, and runs CPLEX as
back-end, while LP2NORMAL+CLASP normalizes
aggregates (of small to medium size) and uses clasp as
a back-end ASP solver.

ASP systems have been also extended to exploit
multicore and multiprocessor machines by introduc-
ing parallel evaluation methods. In particular, paral-
lel techniques for the instantiation of programs were
proposed as extensions of the Lparse (Pontelli, Bal-
duccini, and Bermudez 2003) and DLV (Perri, Ricca,
and Sirianni 2013) grounders. Recent approaches for
extending the algorithm of clasp include that of Geb-
ser, Kaufmann, and Schaub (2012b).

Automated algorithm selection techniques have
been employed in ASP for obtaining solvers perform-
ing well across a wide heterogeneous set of inputs.
The idea is to leverage a number of efficient imple-
mentations (or heuristically different variants of
these) and apply machine-learning techniques for
learning from a training set how to choose the “best”
solver for an input program. System CLASPFOLIO
(Gebser et al. 2011) combines variants of clasp, and is

FALL 2016 47

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=47&exitLink=http%3A%2F%2Fencoding.asp
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=47&exitLink=http%3A%2F%2Fnewfile2.di
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=47&exitLink=http%3A%2F%2Fencoding.asp

Articles

a representative of portfolio solving in ASP. System
ME-ASP (Maratea, Pulina, and Ricca 2014), instead,
implements a multiengine portfolio ASP solver, by
combining several solvers. The adoption of the ASP-
CORE-2 standard input language? allowed the appli-
cation of algorithm selection techniques also to the
grounding step.

Constraint answer set programming is a recent
direction of research that attempts to combine
advances in answer set programming with these in
constraint processing. This new area has already
demonstrated promising results, including the devel-
opment of the solvers ACSOLVER, CLINGCON, EZC-
SP, IDP, and MINGO. Lierler (2014) surveys the key
features of constraint answer set programming lan-
guages and systems. This direction of research is
inspired by the advances in the related field of satis-
fiability modulo theories.

Engineering Environments

The availability of efficient solvers makes ASP a valu-
able tool for many computationally intensive real-
world applications. Effective large-scale software
engineering requires infrastructure that includes
advanced editors, debuggers, etc. These tools are usu-
ally collected in integrated development environ-
ments (IDE) that ease the accomplishment of various
programming tasks by both novice and skilled soft-
ware developers. The development of application
programming interfaces (APIs) is also essential for
allowing ASP-based solutions within large software
frameworks common in the modern, highly techno-
logical world. The following subsections present an
overview of both the IDEs for writing ASP programs
and the available APIs for building full-fledged soft-
ware systems based on ASP.

Development Environments for ASP

Several tools have been proposed in the last few years
that aim at solving specific tasks arising during the
development of ASP programs, including specialized
editors, debuggers, testing tools, and visual program-
ming tools. The IDEs that collect several tools in the
same framework are also now available. SealLion
(Busoniu et al. 2013) is the first environment offering
debugging for programs with variables. It also fea-
tures unique tools for model-based engineering
(using ER diagrams to model domains of answer set
programs), testing through annotations, and bidirec-
tional visualization of interpretations. The ASPIDE
IDE (Febbraro, Reale, and Ricca 2011) is a compre-
hensive framework that integrates several tools for
advanced program composition and execution. To
provide an overview of insides of ASP IDEs we briefly
outline key features of ASPIDE.

A snapshot of the user interface of ASPIDE is
reported in figure 1. Logic programs are organized in
projects collected in a workspace (displayed in the

48 AI MAGAZINE

left panel in figure 1). The main editor for ASP pro-
grams (central frame in figure 1) offers code line
numbering, find/replace, undo/redo, copy/paste, col-
oring of keywords, dynamic highlighting of predicate
names, variables, strings, and comments. The editor
is able to complete (on request) predicate names
(learned while reading from the files belonging to the
same project), as well as variable names (suggested by
taking into account the rule one is currently writing).
Programs can be modified in an assisted way, for
instance, by considering bindings of variables, or by
applying custom rewritings (that can be user
defined). Syntax errors and some syntactic conditions
(for instance, safety) are checked while writing and
promptly outlined. ASPIDE suggests quick fixes that
can be applied (on request) by automatically chang-
ing the affected part of code. Common programming
patterns (such as guessing with disjunctive rules and
specific constraints) are available as code templates
that are expanded as rules (again on request). An out-
line view (left frame in figure 1) graphically repre-
sents program elements for quick access to the corre-
sponding definition. Users accustomed to graphic
programming environments can draw logic programs
by exploiting a QBE-like tool for building logic rules
(Febbraro, Reale, and Ricca 2010). The user can
switch from the text editor to the visual one (and vice
versa) thanks to a reverse-engineering mechanism
from text to graphical format. The execution of ASP
programs is fully customizable through a number of
shortcuts, including toolbar buttons and drop-down
menus, for a quick execution of files. The results are
presented to the user in a view combining tabular
representation of predicates and a treelike represen-
tation of answer sets. ASPIDE supports test-driven
software development in the style of JUnit (see more
details in Febbraro et al. [2011]).

Program development is enhanced in ASPIDE by
additional tools such as the dependency graph visu-
alizer, designed to inspect predicate dependencies
and browsing the program; the debugger to find bugs
(Dodaro et al. 2015); the DLV profiler; the ARVis com-
parator of answer sets; the answer set visualizer IDP-
Draw; and the data source plug-in that simplifies the
connection to external DBMSs through JDBC.
Notably, ASPIDE is an extensible environment that
can be extended by users providing new plug-ins that
support (1) new input formats, (2) new program
rewritings, and even (3) customization of the visual-
ization/output format of solver results. System ASPI-
DE is written in Java and is available for all the major
operating systems, including Linux, Mac OS, and
Windows.!

Building Full-Fledged

Applications with ASP

IDEs for ASP provide clear advantages for logic pro-
grammers, but are not enough to enable assisted
development of full-fledged industry-level applica-

tions (Grasso et al. 2011, Ricca et al. 2012). ASP is not
a full general-purpose language. Thus, ASP programs
are eventually embedded in software components
developed in imperative/object-oriented program-
ming languages.

The development of APIs, which offer methods for
interacting with an ASP system from an embedding
program, is a necessary step in accommodating the
use of ASP-based solutions within large software sys-
tems. Among the first proposals was the DLV Wrap-
per, a library that allows embedding ASP programs
and controlling the execution of the DLV system
from a Java program, and the ONTODLV API, a rich-
er API that allows embedding ontologies and reason-
ing modules developed using the ONTODLP lan-
guage (Ricca et al. 2009). More recently, the Potassco
group from the University of Potsdam supported the
embedding of ASP in Python and Lua programs using
GrinGo and clasp. These interfaces provide a finer-
grained access to grounder and solver functionality,
and also allow incremental solving.

In APIs, however, the burden of the integration
between ASP and Java is still in the hands of the pro-
grammer, who must take care of the (often repetitive
and) time-consuming development of scaffolding
code that executes the ASP system and gets data back
and forth from logic-based to imperative representa-
tions.

These observations inspired the development of a
hybrid language, called JASP (Febbraro et al. 2012),
that transparently supports a bilateral interaction
between ASP and Java. JASP introduces minimal syn-
tax extensions both to Java and ASP. Its specifications
are both easy to learn by programmers and easy to
integrate with other existing Java technologies. The
programmer can simply embed ASP code in a Java
program without caring about the interaction with
the underlying ASP system. An “ASP program” can
access Java variables, and the answer sets that result
from the execution of the ASP code are automatical-
ly stored in Java objects, possibly populating Java col-
lections, in a transparent way. A distinctive feature of
JASP is the clean separation between the two inte-
grated programming paradigms interacting through
a standard object-relational mapping (ORM) inter-
face. JASP supports both (1) a default mapping strat-
egy, which fits the most common programmers’
requirements, and (2) custom ORM strategies, which
can be specified according to the Java Persistence API
(JPA) to perfectly suit enterprise application develop-
ment standards. The framework also encompasses an
implementation of JASP as a plug-in for the Eclipse
platform, called JDLV.

Another hybrid language combining Java and ASP
was proposed by Oetsch, Pithrer, and Tompits (2011),
which employs a radically different strategy for the
interaction with Java. For instance, Java methods
including constructors can be called by exploiting
special atoms in ASP rules.

The ASP Competition Series

ASP competitions are the events of the ASP commu-
nity, where ASP solvers are evaluated for efficiency.
Since 2007, they take place biennially and are affili-
ated with the International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR);
the exception was the fifth event that took place in
2014, affiliated with the 30th International Confer-
ence on Logic Programming (ICLP). In this section
we present the history and evolution, in terms of for-
mat, solvers participation, and winners, of the ASP
competition series, by first summarizing the editions
up to the fourth edition, and then focusing on the
2014 and 2015 events.

ASP Competitions up to 2013

In September 2002, participants of the Dagstuhl Sem-
inar on Nonmonotonic Reasoning, Answer Set Pro-
gramming, and Constraints (Brewka et al. 2002)
agreed that standardization was one of the key issues
for the development of ASP. This led to the the ini-
tiative to establish an infrastructure for benchmark-
ing ASP solvers, as already in use in related research
fields of SAT and constraint programming. The first
informal competition took place during that work-
shop in Dagstuhl, featuring five systems, namely
DLV, Smodels, ASSAT, Cmodels, and ASPPS. The sec-
ond informal edition took place in 2005, during
another Dagstuhl meeting. Since then, the ASP com-
petitions have been established as reference events
for the community.

The First ASP Competition (Gebser et al. 2007) was
organized in Potsdam with two main goals. The first
goal was to collect benchmarks. It was achieved
through a call for benchmarks to members of the
community. The second goal was to set up a fair com-
petition environment. In the competition, only deci-
sion problems were considered. There were three cat-
egories of benchmarks involved: (1) MGS (modeling,
grounding, solving), where benchmarks were speci-
fied by a problem statement, a set of instances, and
the names of the predicates and their arguments to
be used by programmers to encode solutions; (2)
SCORE (solver, core language), where benchmarks
consisted of ground normal and disjunctive pro-
grams in the format common to DLV and Lparse; and
(3) SLparse (solver, Lparse language), where bench-
marks consisted of ground programs in Lparse format
with aggregates.

Ten ASP solvers participated, with several new
solvers compared to the first informal events, name-
ly ASPER, clasp, NOMORE, GNT, LP2SAT, and
PBMODELS, thus establishing the advent of CDCL
solvers and solvers based on eager translation-based
approaches to ASP solving. Solvers were ranked in
terms of number of solved instances: DLV won the
MGS and SCORE categories, while clasp was the best
solver on the SLparse category.

The Second ASP Competition (Denecker et al.

Articles

FALL 2016 49

Articles

2009) was organized by Katholieke Universiteit
Leuve. Differently from the precursor event, it was a
model and solve team competition: A number of
well-specified benchmarks (collected, again, through
a call for benchmarks, and divided into categories
based on complexity) had to be modeled by the par-
ticipant teams and solved with a system of their
choice. Moreover, optimization problems were intro-
duced in the runnings. Sixteen solvers entered the
competition: among others, IDP and approaches
based on compilation into SMT participated for the
first time. The Potassco team (Potsdam University)
won the overall competition, and performed best on
both decision and optimization problems.

In the 2011 and 2013 editions, the format consist-
ed of two different tracks: a model and solve and a
system track. The former was the continuation of the
Second ASP Competition tradition, while the later
was in spirit of the First ASP Competition, which
aimed at fostering language standardization and at
allowing participants to compete on given encodings
under fixed conditions. Both tracks featured a select-
ed suite of domains, chosen again by means of an
open call for the benchmarks stage, and organized in
classes based on complexity.

The Third ASP Competition (Calimeri, lanni, and
Ricca 2014) was organized by the University of Cal-
abria. Eleven systems participated in the system
track, among them the first portfolio answer set
solver, CLASPFOLIO, and a number of translation-
based solvers. Six teams entered the model and solve
track, including the Fast Downward team from the
planning community. Winners were determined
with a scoring computed by the number of solved
instances and the CPU time, plus the quality of the
solution in case of optimization problems: claspD
won the system track, while the Potassco team won
the model and solve track. The portfolio solver
CLASPFOLIO was the best system on the NP class,
which included NP-complete problems and any
problem in NP not known to be polynomially solv-
able.

The Fourth ASP Competition (Alviano et al. 2013)
was jointly organized by TU Vienna and the Univer-
sity of Calabria. The design of the event was similar
to the previous edition, with some important
changes. The competition introduced the standard
input language ASP-CORE-2.0? for the system track
(an evolution of the ASP-CORE language proposed in
2011); exceptions were made and problem encodings
in legacy formats were still admitted. Also a system
track for parallel systems was introduced. Sixteen
solvers entered the system track: most of these
solvers participated in the earlier editions, with the
notable exception of the WASP solver. Seven teams
entered the model and solve track. About the results:
claspD and its parallel version claspD-MT (Potsdam
University) won the system track, while the Potassco
team was the winner of the model and solve track.

50 AI MAGAZINE

The Fifth and Sixth ASP Competitions

The fifth and the sixth editions of the ASP competi-
tion series introduced significant modifications to the
trend. We first outline the main changes, and then
we speak of the two events separately.

The model and solve track was no longer an inte-
gral part of the events. Rather, it was organized as an
(informal) on-site event. The reasons for this are that,
first, organizing, and even more participating in,
such a track requires a substantial amount of work.
In addition, the participation from neighboring
research communities was rather limited, probably
due to the presence of competitions in the related
research communities and the nonnegligible effort of
participating. The first on-site event, called ASP Mod-
eling Competition 2014, saw five participating teams.
Each team was formed by three researchers and was
allocated a fixed amount of time for solving a few
problems.

The Fifth Answer Set Programming Competition
(Calimeri et al. 2016) broke the usual timeline of the
competition series in order to join the Olympic
Games at the Vienna Summer of Logic, in affiliation
with the 30th International Conference on Logic Pro-
gramming (ICLP). It was jointly organized by the Aal-
to University, the University of Calabria, and the Uni-
versity of Genoa. This event did not feature a call for
benchmarks and mostly relied on 2013 benchmarks.
It was mainly conceived as a rerun of the system track
of the previous event: participants to the 2013 event
were invited to submit new versions of their solvers,
but also new solvers were welcome. Several significant
design changes and improvements in the competition
settings were introduced, that is, (1) benchmark class-
es (called tracks in this edition) were defined based on
the presence of language constructs (for example,
aggregates, choice rules, presence of queries) in prob-
lem encoding rather than on a complexity basis, in
order to both push the adoption of the new standard
and allow participation also to solvers that may have
not included all constructs, (2) novel encodings for
almost all problems were proposed, to overcome some
observed limitations of 2013 encodings, and (3) a sim-
plified scoring schema for decision problems, based
on solved instances only, and a scoring schema for
optimization problems solely based on the solvers’s
ranking on solution quality, were employed. Sixteen
solvers entered the competition. Answer set solver
clasp was the winner on the single-processor catego-
ry, while its multithreaded version clasp-MT won the
multithreaded category. Interestingly, the solver
LP2NORMAL+CLASP, which normalizes aggregates
and then resorts to clasp, was the best solver in an
intermediate track, allowing for the full ASP-CORE-2
language, except optimization statements and no
head cycle-free disjunction.

The Sixth ASP Competition (Gebser, Maratea, and
Ricca 2015) was jointly organized by the same institu-
tions as the previous event. Its design maintained

some choices of the last event, for
example, tracks based on language fea-
tures, the scoring schemes, and the
adherence to the ASP-CORE-2 standard
language. It also presented some novel-
ties, for instance (1) a call for bench-
marks stage focused on obtaining new
benchmarks arising from applications
of practical impact, and/or being ASP
focused, that is, whose encodings are
nontight, and (2) a benchmarks selec-
tion stage was introduced to classify
instances according to their expected
hardness. Moreover, a “marathon”
track was added, where the best per-
forming systems are given more time
for solving hard instances. Thirteen
solvers entered the competition. The
winner of the regular track was the mul-
tiengine solver ME-ASP, while the win-
ner of the marathon track was WASP.

Conclusion

Answer set programming is a thriving
research field that features dozens of
solvers and applications. Engineering
environments for ASP facilitate the
adoption of the technology by a broad
spectrum of users. Quest for the ideal
settings of the ASP competitions attests
to the ever-changing, fast-paced life of
the field, which strives to advance
answer set programming.

Acknowledgments

This work was partially supported by
MIUR under PON project SI-LAB
BA2KNOW Business Analitycs to
Know, and by Regione Calabria, pro-
gramme POR Calabria FESR 2007-
2013, projects ITravel PLUS and
KnowRex: Un sistema per il riconosci-
mento e lestrazione di conoscenza.

Notes
1. Available from www.mat.unical.it/ric-
ca/aspide.
2. The ASP-Core-2 Input Language Format

is available from www.mat.unical.it/asp-
comp2013/files/ASP-CORE-2.01c.pdf.

References

Alviano, M., and Dodaro, C. 2016. Comple-
tion of Disjunctive Logic Programs. In Pro-
ceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence. Palo
Alto, CA: AAAI Press.

Alviano, M.; Calimeri, F.; Charwat, G.; Dao-

Tran, M.; Dodaro, C.; Ianni, G.; Krennwall-
ner, T.; Kronegger, M.; Oetsch, J.; Pfandler,
A.; Pihrer, J.; Redl, C.; Ricca, F,; Schneider,
P.; Schwengerer, M.; Spendier, L. K.; Wall-
ner, J. P.,; and Xiao, G. 2013. The Fourth
Answer Set Programming Competition: Pre-
liminary Report. In Logic Programming and
Nonmonotonic Reasoning, 12th International
Conference, LPNMR 2013, Lecture Notes in
Computer Science volume 8148, 42-53.
Berlin: Springer.

Alviano, M.; Dodaro, C.; Faber, W.; Leone, N.;
and Ricca, F. 2015. Advances in WASP. In Log-
ic Programming and Nonmonotonic Reasoning
— 13th International Conference, LPNMR 2015,
Lecture Notes in Computer Science volume
93485, 40-54. Berlin: Springer. dx.doi.org/10.
1007/978-3-319-23264-5_5

Brewka, G.; Niemeld, I.; Schaub, T.; and
Truszczyniski, M. 2002. Workshop on Non-
monotonic Reasoning, Answer Set Pro-
gramming and Constraints. Papers present-
ed at the Dagstuhl Seminar Nr. 02381,
Nonmonotonic Reasoning, Answer Set Pro-
gramming and Constraints, System Compe-
tition. September 15-20, Waldern, Ger-
many (www.dagstuhl .de/02381).
Brochenin, R.; Lierler, Y.; and Maratea, M.
2014. Abstract Disjunctive Answer Set
Solvers. In ECAI 2014: 21st European Confer-
ence on Artificial Intelligence, Including Presti-
gious Applications of Intelligent Systems (PAIS
2014), volume 263 of Frontiers in Artificial
Intelligence and Applications, 165-170.
Amsterdam: IOS Press.

Busoniu, P.; Oetsch, J.; Piihrer, J.; Skocovsky,
P.; and Tompits, H. 2013. SeaLion: An
Eclipse-Based IDE for Answer-set Program-
ming with Advanced Debugging Support.
Theory and Practice of Logic Programming
13(4-5): 657-673. dx.doi.org/10.1017/
$1471068413000410

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, [.;
Kaminski, R.; Krennwallner, T.; Leone, N.;
Ricca, F.; and Schaub, T. 2013. The ASP-
Core-2 Input Language Format. Technical
Report, Universita Della Calabria, Consen-
za, Italy. www.mat.unical.it/aspcomp2013/
files/ASP-CORE-2.01c.pdf

Calimeri, F.; Gebser, M.; Maratea, M.; and
Ricca, F. 2016. Design and Results of the
Fifth Answer Set Programming Competi-
tion. Artificial Intelligence 231: 151-181.
dx.doi.org/10.1016/j.artint.2015.09.008

Calimeri, F,; Ianni, G.; and Ricca, F. 2014.
The Third Open Answer Set Programming
Competition. Theory and Practice of Logic
Programming 14(1): 117-135. dx.doi.org/
10.1017/S1471068412000105 ~
Clark, K. L. 1977. Negation as Failure. In
Logic and Data Bases, 293-322. New York:
Plenum Press.

Denecker, M.; Vennekens, J.; Bond, S.; Geb-
ser, M.; and Truszczynski, M. 2009. The Sec-

Articles

ond Answer Set Programming Competition.
In Logic Programming and Nonmonotonic Rea-
soning, 10th International Conference, LPNMR
2009, Lecture Notes in Computer Science
volume 5753, 637-654. Berlin: Berlin:
Springer. dx.doi.org/10.1007/978-3-642-
04238-6_75

Dodaro, C.; Gasteiger, P.; Musitsch, B.; Ric-
ca, F; and Shchekotykhin, K. 2015. Interac-
tive Debugging of Nonground ASP Pro-
grams. In Logic Programming and
Nonmonotonic Reasoning, 13th International
Conference, LPNMR 2015, Lecture Notes in
Computer Science volume 9345, 279-293.
Berlin: Springer.

Erdem, E.; Gelfond, M.; Leone, N. 2016.
Applications of Answer Set Programming.
Al Magazine 37(3).

Febbraro, O.; Leone, N.; Grasso, G.; and Ric-
ca, F. 2012. JASP: A Framework for Integrat-
ing Answer Set Programming with Java. In
Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth Inter-
national Conference (KR-12). Palo Alto, CA:
AAAI Press.

Febbraro, O.; Leone, N.; Reale, K.; and Ricca,
F. 2011. Unit Testing in ASPIDE. In Applica-
tions of Declarative Programming and Knowl-
edge Management: 19th International Confer-
ence, INAP 2011, and 25th Workshop on Logic
Programming, WLP 2011, Lecture Notes in
Computer Science volume 7773, 345-364.
Berlin: Springer.

Febbraro, O.; Reale, K.; and Ricca, F. 2010. A
Visual Interface for Drawing ASP Programs.
In Proceedings of the 25th Italian Conference
on Computational Logic, volume 598 of
CEUR Workshop Proceedings. Aachen, Ger-
many: RWTH Aachen University.

Febbraro, O.; Reale, K.; and Ricca, F. 2011.
ASPIDE: Integrated Development Environ-
ment for Answer Set Programming. In Logic
Programming and Nonmonotonic Reasoning,
11th International Conference, Lecture Notes
in Computer Science volume 6645, 317-
330. Berlin: Springer.

Gebser, M.; Kaminski, R.; Kaufmann, B.;
Schaub, T.; Schneider, M. T.; and Ziller, S.
2011. A Portfolio Solver for Answer Set Pro-
gramming: Preliminary Report. In Logic Pro-
gramming and Nonmonotonic Reasoning —
11th International Conference, LPNMR 2011,
Lecture Notes in Computer Science volume
6645, 352-357. Berlin: Springer.

Gebser, M.; Kaufmann, B.; and Schaub, T.
2012a. Conflict-Driven Answer Set Solving:
From Theory to Practice. Artificial Intelli-
gence 187: 52-89. dx.doi.org/10.1016/
j.artint.2012.04.001

Gebser, M.; Kaufmann, B.; and Schaub, T.
2012b. Multithreaded ASP Solving with
Clasp. Theory and Practice of Logic Program-
ming 12(4-5): 525-545. dx.doi.org/10.1017/
$1471068412000166

FALL 2016 51

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Fricca%2Faspide
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.01c.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000410
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.01c.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2015.09.008
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000105
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-04238-6_75
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000166
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Fricca%2Faspide
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.01c.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-23264-5_5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000410
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.01c.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000105
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-04238-6_75
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068412000166
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fwww.dagstuhl+.de%2F02381

Articles

Gebser, M.; Liu, L.; Namasivayam, G.; Neu-
mann, A.; Schaub, T.; and Truszczyniski, M.
2007. The First Answer Set Programming
System Competition. In Logic Programming
and Nonmonotonic Reasoning, 9th Interna-
tional Conference, LPNMR 2007, Lecture
Notes in Computer Science volume 4483,
3-17. Berlin: Springer. dx.doi.org/10.1007/
978-3-540-72200-7_3

Gebser, M.; Maratea, M.; and Ricca, F. 2015.
The Design of the Sixth Answer Set Pro-
gramming Competition: Report. In Logic
Programming and Nonmonotonic Reasoning,
13th International Conference, LPNMR 2015,
Lecture Notes in Computer Science volume
9345. Berlin: Springer.

Gebser, M.; Schaub, T.; and Thiele, S. 2007.
GrinGo: A New Grounder for Answer Set
Programming. In Logic Programming and
Nonmonotonic Reasoning, 9th International
Conference, LPNMR 2007, Lecture Notes in
Computer Science volume 4483, 266-271.
Berlin: Springer. dx.doi.org/10.1007/978-3-
540-72200-7_24

Gelfond, M., and Lifschitz, V. 1988. The Sta-
ble Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of
the Fifth International Conference and Sympo-
sium, 1070-1080. Cambridge, MA: The MIT
Press.

Giunchiglia, E.; Lierler, Y.; and Maratea, M.
2006. Answer Set Programming Based on
Propositional Satisfiability. Journal of Auto-
mated Reasoning 36(4): 345-377. dx.doi.org/
10.1007/s10817-006-9033-2

Grasso, G.; Leone, N.; Manna, M.; and Ric-
ca, F. 2011. ASP at Work: Spin-off and Appli-
cations of the DLV System. In Logic Pro-
gramming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays Dedicated to
Michael Gelfond on the Occasion of His 65th
Birthday, volume 6565 of Lecture Notes in
Computer Science, 432-451. Berlin:
Springer.

Janhunen, T. 2006. Some (In)translatability
Results for Normal Logic Programs and
Propositional Theories. Journal of Applied
Non-Classical Logics 16(1-2): 35-86.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T,
Gottlob, G.; Perri, S.; and Scarcello, F. 2006.
The DLV System for Knowledge Representa-
tion and Reasoning. ACM Transactions on
Computational Logic 7(3): 499-562. dx.doi.
org/10.1145/1149114.1149117

Lierler, Y. 2014. Relating Constraint Answer
Set Programming Languages and Algo-
rithms. Artificial Intelligence 207 (February):
1-22. dx.doi.org/10.1016/j.artint.2013.10.
004

Lierler, Y., and Truszczynski, M. 2011. Tran-
sition Systems for Model Generators: A Uni-
fying Approach. Theory and Practice of Logic
Programming 11(4-5): 629-646. dx.doi.org/
10.1017/S1471068411000214

52 Al MAGAZINE

Lin, F, and Zhao, Y. 2004. ASSAT: Comput-
ing Answer Sets of a Logic Program by SAT
Solvers. Artificial Intelligence 157(1-2): 115-
137. dx.doi.org/10.1016/j.artint.2004.04.004

Maratea, M.; Ricca, F,; Faber, W.; and Leone,
N. 2008. Look-Back Techniques and Heuris-
tics in DLV: Implementation, Evaluation,
and Comparison to QBF Solvers. Journal of
Algorithms 63(1-3): 70-89. dx.doi.org/10.
1016/j.jalgor.2008.02.006

Maratea, M.; Pulina, L.; and Ricca, F. 2014.
A MultiEngine Approach to Answer-Set Pro-
gramming. Theory and Practice of Logic Pro-
gramming 14(6): 841-868. dx.doi.org/10.
1017/S1471068413000094

Nieuwenhuis, R.; Oliveras, A.; and Tinelli,
C. 2006. Solving SAT and SAT Modulo The-
ories: From an Abstract Davis-Putnam-
Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6): 937-977. dx.doi.
0rg/10.1145/1217856.1217859

Oetsch, J.; Piihrer, J.; and Tompits, H. 2011.
Extending Object-Oriented Languages by
Declarative Specifications of Complex
Objects Using Answer-Set Programming. In
the Computing Research Repository CoRR
abs/1112.0922. New York: Association for
Computing Machinery.

Pontelli, E.; Balduccini, M.; and Bermudez, F.
2003. Nonmonotonic Reasoning on Beowulf
Platforms. In Practical Aspects of Declarative
Languages, 5th International Symposium, PADL
2003, Lecture Notes in Computer Science
volume 2562, 37-57. Berlin: Springer.

Perri, S.; Ricca, F.; and Sirianni, M. 2013. Par-
allel Instantiation of ASP Programs: Tech-
niques and Experiments. Thoery and Practice
of Logic Programming 13(2): 253-278. dx.doi.
0rg/10.1017/51471068411000652

Ricca, F.; Gallucci, L.; Schindlauer, R.; Del-
I’Armi, T.; Grasso, G.; and Leone, N. 2009.
OntoDLV: An ASP-Based System for Enter-
prise Ontologies. Journal of Logic and Com-
putation 19(4): 643-670. dx.doi.org/10.
1093/logcom/exn042

Ricca, F.; Grasso, G.; Alviano, M.; Manna,
M.; Lio, V.; liritano, S.; and Leone, N. 2012.
Team-Building with Answer Set Program-
ming in the Gioia-Tauro Seaport. Theory and
Practive of Logic Programming 12(3): 361-381.
dx.doi.org/10.1017/5147106841100007X
Simons, P.; Niemeld, I.; and Soininen, T.
2002. Extending and Implementing the Sta-
ble Model Semantics. Artificial Intelligence
138(1-2): 181-234. dx.doi.org/10.1016/
S0004-3702(02)00187-X

Syrjanen, T. 2001. Omega-Restricted Logic
Programs. In Logic Programming and Nonmo-
notonic Reasoning, 10th International Confer-
ence, LPNMR 2009, Lecture Notes in Com-
puter Science volume 2173, 267-279.
Berlin: Springer. dx.doi.org/10.1007/3-540-
45402-0_20

Ward, J., and Schlipf, J. S. 2004. Answer Set
Programming with Clause Learning. In Log-
ic Programming and Nonmonotonic Reasoning,
7th International Conference, LPNMR 2004,
Lecture Notes in Computer Science volume
2923, 302-313. Berlin: Springer.

Wittocx, J.; Marien, M.; and Denecker, M.
2008. The IDP System: A Model Expansion
System for an Extension of Classical Logic.
Paper presented at the Second Workshop on
Logic and Search, Leuven, Belgium, 6-7
November.

Yuliya Lierler is an assistant professor of
computer science at the University of
Nebraska at Omaha. Her research interests
are in the area of knowledge representation,
automated reasoning, declarative problem
solving, and natural language understand-
ing. Her work spans theoretic foundations
as well as practical implementations of
methods for automated reasoning based on
model generation, and applications of these
methods. She completed her Ph.D. in com-
puter science at the University of Texas at
Austin in 2010.

Marco Maratea (www.star.dist.unige.it/
~marco) is an associate professor in com-
puter engineering at the University of
Genoa, Italy. He obtained is Ph.D. at the
Faculty of Engineering at University of
Genoa in 2005. From 2010 to 2014 he was
an assistant professor at the University of
Genova. In fall 2015 he was a university lec-
turer at the Institute for Information Sys-
tems of the Faculty of Informatics at the
Vienna University of Technology, in the
DBAI group. His research interests include
artificial intelligence, logic programming,
and knowledge representation and reason-
ing, in particular answer set programming.

Francesco Ricca is an associate professor in
the Department of Mathematics of the Uni-
versity of Calabria, Italy. He received his
Laurea Degree in computer science engi-
neering in 2002 and a Ph.D. in computer
science and mathematics in 2006 from the
University of Calabria, Italy. He is interested
in declarative logic-based languages, consis-
tent query answering and data integration,
ontologies and, in particular, on the issues
concerning their practical applications: sys-
tem design and implementation, and devel-
opment tools. Ricca is coauthor of more
than 70 refereed articles published in inter-
national journals, collections, and confer-
ence proceedings.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2004.04.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jalgor.2008.02.006
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000094
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1217856.1217859
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068411000652
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1093%2Flogcom%2Fexn042
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841100007X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-45402-0_20
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-72200-7_3
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-72200-7_24
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10817-006-9033-2
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2013.10.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068411000214
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-72200-7_3
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-540-72200-7_24
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10817-006-9033-2
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1149114.1149117
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2013.10.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068411000214
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jalgor.2008.02.006
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000094
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1217856.1217859
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068411000652
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1093%2Flogcom%2Fexn042
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900187-X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-45402-0_20
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fwww.star.dist.unige.it%2F%7Emarco
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fwww.star.dist.unige.it%2F%7Emarco

Applications of
Answer Set Programming

Esra Erdem, Michael Gelfond, Nicola Leone

W Answer set programming (ASP) has
been applied fruitfully to a wide range
of areas in Al and in other fields, both
in academia and in industry, thanks to
the expressive representation languages
of ASP and the continuous improve-
ment of ASP solvers. We present some
of these ASP applications, in particular,
in knowledge representation and rea-
soning, robotics, bioinformatics, and
computational biology as well as some
industrial applications. We discuss the
challenges addressed by ASP in these
applications and emphasize the
strengths of ASP as a useful Al para-

digm.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

tation and reasoning (KR) paradigm. It has rich high-
level representation languages that allow recursive def-
initions, aggregates, weight constraints, optimization
statements, default negation, and external atoms. With such
expressive languages, ASP can be used to declaratively repre-
sent knowledge (for example, mathematical models of prob-
lems, behaviour of dynamic systems, beliefs and actions of
agents) and solve combinatorial search problems (for exam-
ple, planning, diagnosis, phylogeny reconstruction) and
knowledge-intensive problems (for example, query answer-
ing, explanation generation). The idea is to represent a prob-
lem as a “program” whose models (called “answer sets” [Gel-
fond and Lifschitz 1988, 1991]) correspond to the solutions
of the problem. The answer sets for the given program can
then be computed by special software systems called answer
set solvers, such as DLV, Smodels, or clasp.
Due to the continuous improvement of ASP solvers and
the expressive representation languages of ASP, ASP has been
applied fruitfully to a wide range of areas in Al and in other

3 nswer set programming (ASP) is a knowledge represen-

Articles

FALL 2016 53

Articles

fields. Areas of Al that include applications of ASP are
planning, probabilistic reasoning, data integration
and query answering, multiagent systems, natural
language processing and understanding, learning,
theory update/revision, preferences, diagnosis,
description logics, semantic web, multicontext sys-
tems, and argumentation. Other areas that include
applications of ASP are, for instance, computational
biology, systems biology, bioinformatics, automatic
music composition, assisted living, software engi-
neering, bounded model checking, and robotics.

ASP has also been used in industry, for instance, for
decision support systems (Nogueira et al. 2001) (used
by United Space Alliance), automated product con-
figuration (Tiihonen, Soininen, and Sulonen 2003)
(used by Variantum Oy), intelligent call routing
(Leone and Ricca 2015) (used by Italia Telecom) and
configuration and reconfiguration of railway safety
systems (Aschinger et al. 2011) (used by Siemens).

In this article, we will describe only some of these
ASP applications, in particular, in knowledge repre-
sentation and reasoning, robotics, bioinformatics, as
well as some industrial applications. For a wide vari-
ety of ASP applications and relevant references, we
refer the reader to the ASP applications table.!

ASP and Knowledge Representation

One of the main goals of Al is to better understand
how to build software components of agents capable
of reasoning and acting in a changing environment.
Most Al researchers agree that to exhibit such behav-
ior the agent should have a mathematical model of
its environment and its own capabilities and goals. A
logic-based approach to AI (McCarthy 1990) suggests
that this model should contain a knowledge base
(KB) — a collection of statements in some declarative
language with precisely defined syntax and seman-
tics. As a rule, such a KB should include common-
sense knowledge — information an ordinary person
is expected to know — as well as some specialized
knowledge pertinent to a particular set of activities
the agent is built to perform. Early proponents of log-
ic-based Al believed that such a KB could be built in
classical first-order logic (FOL) which, at the time,
was commonly used for formalization of mathemat-
ical reasoning. It was quickly discovered, however,
that this logic may not be a fully adequate tool for
representing nonmathematical (especially common-
sense) knowledge. The main problem was difficulty
with using FOL for defeasible (or nonmonotonic) rea-
soning. In precise terms, a consequence relation A =
F between statements of a declarative language is
called monotonic if, for every A, B, and F, if A = F
then (A A B) F. This property guarantees that, once
proven, a statement stays proven. If this condition is
not satisfied, that is, if addition of new information
can force a reasoner to withdraw its previous conclu-
sion, the consequence relation is called nonmonoto-

54 AI MAGAZINE

nic. Though not encountered in mathematics, non-
monotonicity seems to be a prevailing feature of
commonsense reasoning. It is especially relevant to
reasoning with so called defaults — statements of the
form “Normally (typically, as a rule) elements of class
C have property P.” We all learn rather early in life
that parents normally love their children, citizens are
normally required to pay taxes, and so forth. We also
learn, however, that these rules are not absolute and
allow various types of exceptions. It is natural to
assume that these and other defaults should be
included in a reasoner’s KB. Learning correct ways to
reason with defaults and their exceptions is necessary
for building an agent capable of using such a KB. One
of the best available solutions to this problem uses
the knowledge representation language CR-Prolog
(Balduccini and Gelfond 2003) — a simple extension
of the original ASP language of logic programs with
two types of negation and epistemic disjunction.

A program I of CR-Prolog consists of a first-order
signature, a collection II" of standard ASP rules of the
form

Il |k <L, 0, not 1

S a1r+- - HOE 1,
and a collection I1* of consistency-restoring rules (or
simply cr-rules)? of the form:

lys——1,.-,1,,not |

m’ m+lre e

.,hot 1.

Here each /; is a literal, that is, an atom p(f) or its
negation —p(7). The last statement says that 7 does not
have property p. In contrast, default negation not has
an epistemic character — not I is often read as “it is
not believed that [is true.” Similarly, the connective
| (also denoted by or) is often called epistemic dis-
junction with [, | I, being read as “I, is believed to be
true or [, is believed to be true.” Intuitively, a regular
ASP rule Head « Body says that if the body of the rule
is believed then the reasoner must believe its head. A
cr-rule says that if the body of the rule is believed,
then the reasoner may possibly believe its head; how-
ever, this possibility may be used only if II" is incon-
sistent.

Informally, program II can be viewed as a specifi-
cation for answer sets — sets of beliefs that could be
held by a rational reasoner associated with II. Answer
sets are represented by collections of ground literals.
In forming such sets the reasoner must satisfy the
rules of IT together with a so-called rationality princi-
ple, which says that the reasoner associated with the
program shall believe nothing that he is not forced to
believe by the program’s rules. In the absence of cr-
rules this idea is captured by the standard answer set
semantics.

The definition of an answer set for an arbitrary CR-
Prolog program is as follows. For a collection R of cr-
rules, by a(R) we denote the collection of regular rules
obtained by replacing labeled arrows in cr-rules of R
by <. A minimal (with respect to the preference rela-

tion of the program) collection R of cr-rules of IT such
that IT" U a(R) is consistent (that is has an answer set)
is called an abductive support of II. A set A is called
an answer set of I1 if it is an answer set of the regular
ASP program IT" U a(R) for some abductive support R
of I

In the following, we assume that the rules that are
in sans-serif font are in the ASP Core language ASP-
Core-2,3 whereas the rules in math font (for example,
cr-rules) are in languages (for example, CR-Prolog)
that extend the ASP Core language in different ways.
The schematic variables (respectively, object con-
stants) in rules are denoted by strings whose first let-
ters are in uppercase (resp. in lowercase).

Example 1 [Representing Defaults]
A default “parents normally love their children” can
be represented by the following rule:
(1) loves(P,C) :-
parent(P,C), not -loves(P,C).
Consider a program P, consisting of this rule and a
fact:

(2) parent(mary,john).

Since the answer set semantics of CR-Prolog incorpo-
rates the rationality principle and no rule of the pro-
gram forces the reasoner to believe that Mary does
not love John, the first rule allows it to conclude that
she does. Additional information,

(3) -loves(mary,john)

will not lead to a contradiction. The new statement
will render the first rule inapplicable and allow the
reasoner to withdraw its earlier conclusion. State-
ment (3) is an example of so-called direct exceptions
to defaults, that is, exceptions that directly contradict
the default conclusion. The situation is not always
that neat. Let us now consider a program P, consist-
ing of statements (1) and (2) above, together with a
new rule:
(4) cares(P,C) :- loves(P,C) .

It is easy to see that P, entails cares(mary, john). 1If,
however, we were to learn that Mary does not care for
John and expanded P, by

(5) -cares(mary,john)

the new program, P, would become inconsistent,
that is, will not have answer sets. In our everyday rea-
soning we do not seem to have difficulties in dealing
with such indirect exceptions to defaults. We would
avoid the contradiction by simply concluding that
Mary and John constitute an (indirect) exception to
default (1). So the fact (5) is the only conclusion that
can be derived from the program. To model this type
of reasoning, we should make it possible for our pro-
gram to recognize that the relationship between par-
ents and their children may be not that of love, but
still be able to use our default whenever possible. This
is done using a cr-rule.

Indirect exceptions to default (1) can be represent-
ed as follows:

=loves(P,C) <—— parent(P,C).

The new program P, consisting of regular rules (1),
(2), and (4) and cr-rule (6) entails that Mary cares
about John. A consistent answer set of the program
can be obtained from its regular rules only and cr-
rule (6) is not used. If, however, we expand P, by
statement (5), regular rules of the program are not
sufficient to avoid the contradiction. Consistency
restoring rule (6) will be activated and the reasoner
will conclude that Mary does not love John.

The previous example is rather general and allows
for representation of different types of exceptions to
defaults. More information on this can be found in
Gelfond and Kahl (2014).

Reasoning about Effects of Actions

Gaining better understanding of basic principles and
mathematical models of default reasoning helped
researchers to move forward in solving a number of
other longstanding problems of AI and KR. In this
section we briefly describe an ASP-based solution of
one such problem — finding logical means for repre-
senting and reasoning about direct and indirect
effects of actions.

To act in a changing (dynamic) domain, a rational
agent should have a mathematical model of this
domain allowing it to predict such effects. Here we
limit ourselves to discrete dynamic domains repre-
sented by transition diagrams whose nodes corre-
spond to possible physical states of the domain and
whose arcs are labeled by actions.

A transition (o, g, 0,) indicates that the execution
of action a in state o, may cause the domain to move
to state o,. Due to the size of the diagram, the prob-
lem of finding a concise specification for it is not triv-
ial and has been a subject of research for a compara-
tively long time. Its solution requires a good
understanding of the nature of causal effects of
actions in the presence of complex interrelations
between fluents — propositions whose truth value
may depend on the state of the domain.

An additional level of complexity is added by the
need to specify what is not changed by actions in a
concise, clear, and elaboration tolerant way. A semi-
nal paper (Hayes and McCarthy 1969) in which the
problem of finding such a specification (called the
frame problem) was discussed also suggested a direc-
tion in which its possible solution could be found.
The proposal was to reduce the solution of the frame
problem to the problem of finding a concise, accu-
rate, and elaboration tolerant representation of the
inertia axiom — a default that says that things nor-
mally stay as they are. The search for such a repre-
sentation substantially influenced Al research during
the next 30 years. An interesting account of the his-
tory of this research together with some possible
solutions can be found in (Shanahan 1997). We have
already discussed the ways of using ASP for repre-

Articles

FALL 2016 5S

Articles

senting defaults and their exceptions so it shall not
come as a surprise that ASP provides a good solution
to the frame problem. It also turned out that rules of
ASP languages can nicely capture causal relations
between fluents, which led to the development of a
powerful methodology for representing and reason-
ing about actions and their effects.

We illustrate this methodology by way of example
— representation of a simple hydraulic system of a
space shuttle. The example is taken from an actual
decision support software system (Nogueira et al.
2001) developed to help shuttle controllers to deal
with critical situations caused by multiple failures.

Example 2 [Effects of Actions]
Consider a hydraulic system viewed as a graph whose
nodes are labeled by tanks containing propellant, jets,
junctions of pipes, and so on. Arcs of the graph are
labeled by valves that can be opened or closed by a
collection of switches. The system is used to deliver
propellant from tanks to a proper combination of jets.

To axiomatize the knowledge pertinent to this
example, we describe the graph by a collection of
statements of the form connected(N,, V, N,) — valve
V labels the arc from N, to N,, and controls(S, V) —
switch S controls valve V. Fluents pos(S, open) and
pos(S, closed) define positions of switch S. Fluents
pos(V, open) and pos(V, closed), defining the position
of a valve, and fluent pressurized(N), which holds
when node N is reached by propellant from some
tank, will be defined in terms of positions of switch-
es of the system.

The following axiom

(1) -h(pos(X,P1),l) :-

h(pos(X,P2),l), P1 1= P2

guarantees that positions of switches and valves are
mutually exclusive, that is, cannot both be true at the
same time step. Here relation h(F, I), where h stands
for holds, is true if a fluent F holds (is true) at time-
step I of the system’s trajectory.

Now we concentrate on the representation of
action flip(S), which flips the switch S from position
open to position closed and vice versa. Note that this
action has comparatively complex effects including
the propagation of the delivery of propellent from
tanks to other nodes of the system. The effects will be
divided into direct and indirect.

The direct effect of flipping a switch S from closed
to open will be given by the following axiom

(2) h(pos(S,open),l+1) :-

occurs(flip(S),1), h(pos(S,closed),!)

where occurs(A, I) is true if action A occurs (hap-
pened, is executed) at I. The rule states that if action
flip(S) occurred at a time-step I, in which the fluent
pos(S, closed) was true, then at the next step, I + 1, the
fluent pos(S, open) would become true. A similar
axiom is needed for flipping a switch from the open
to closed position.

To represent indirect effects we simply need to

56 Al MAGAZINE

state the relations between fluents of the domain.
The next rule describes a relationship between fluents
representing positions of switches and valves.

(3) h(pos(V,P),) :-

controls(S, V), h(pos(S,P),I).
The rule states that if a switch is placed in a particu-
lar position, then so is the valve controlled by this
switch.

The next rule describes the relationship between
the values of fluent pressurized(N) for neighboring
nodes.

(4) h(pressurized(N2),l) :-

connected(N1,V,N2),

h(pressurized(N1),1),

h(pos(V,open),l).
The rule says that if nodes N, and N, are connected
by open valve V and node N; is pressurized then so is
node N,. We also assume that tanks are always pres-
surized and encode this as follows:

(5) h(pressurized(N),1) :- tank(N), step(l).

To complete the definition of this fluent we need
to state that no other nodes except those defined by
rules 4 and 5 are pressurized. This is done by the rule

(6) -h(pressurized(N),!) :- node(N), step(l),

not h(pressurized(N),1).

Suppose now that the system contains nodes n,, n,,
and n, where n, is a tank; n, and n, are connected by
valve v; n, and n, are connected by valve v,; v, and
v, are controlled by switches s, and s,, respectively.
Assume also that initially, the switches are closed.
One can see that at the initial step 0, node n, is pres-
surized (axiom 5), and nodes 1, and 1, are not (axiom
6). To compute the effects of flipping switch s, let us
expand the program by statement

occurs(flip(s1),0).

The direct effect of this action, determined by axiom
2, is h(pos(s,, open), 1). There are also indirect effects
that follow from axioms 3, 4, and 1: h(pos(v,, open),
1), h(pressurized(n,), 1), and —h(pos(v,, closed), 1). To
complete our formalization we need to add our solu-
tion to the frame problem, which will allow us to
conclude that flipping switch s, does not change the
status of switch s, and valve v,. As discussed earlier,
this can be done by simply axiomatizing the default
stating that normally the value of fluent pos(S, Val)
remains unchanged:
(7a) h(pos(S,val),l+1) :-
switch(S), h(pos(S,Val),l),
not -h(pos(S,Val),1+1).
(7b) -h(pos(S,Vval),I+1) :-

switch(S), -h(pos(S,Val),l),

not h(pos(S,Val),1+1).
This is, of course, a typical ASP representation of a
default that provides the solution to the frame prob-
lem. It guarantees that at step 1 switch s, is still
closed. Since positions of v, and the value of pressur-
ized(n,) are fully determined by positions of the
switches, nothing else is necessary — v, will remain
closed and n, depressurized.

The ability of ASP languages to represent defaults
and to express indirect effects of actions by a unidi-
rectional implication made it a good tool for repre-
senting knowledge about dynamic domains. Nowa-
days, however, such knowledge is more frequently
represented in so-called action languages (Gelfond
and Lifschitz 1998), which are more specialized,
higher-level languages designed for specifying state-
action-state transition diagrams. Consider, for exam-
ple, one such language, called AL (Gelfond and Kahl
2014). Axiom 2 from example 2 may be written in AL
as

flip(S) causes pos(S, open) if pos(S, closed)

which is a special case of a dynamic causal law of AL
— a statement of the form

A causes F if P.

The law says that execution of action A in a state that
satisfies property P causes fluent F to become true in
a resulting state. Axiom 4 from example 2 may be
written as
pressurized(N,) if pressurized(N,),

connected(N,, V, N,),

pos(V, open)
which is a special case of an action language AL state-
ment

Fif P

The statement guarantees that every state of the sys-
tem satisfying property P also satisfies F. The inertia
axioms 7a and 7b can be replaced by the simpler
statement

fluent(inertial, pos(S, Val))

which indicates that the fluent pos(S, Val) is subject to
the inertia axiom. Overall, use of action languages
leads to substantially simpler representations and
allows the system designer to avoid some ASP-related
details. ASP, however, continues to play an important
role in reasoning about actions.

First, answer set semantics of logic programs is
often used to define semantics of action languages.
Natural translations from action languages to logic
programs allow us to use the notion of answer set to
precisely define the effects of executing an action A
in a state o. Rules 1-6 of example 2 can be viewed as
part of such translation from the description of our
domain in an action language. The translation will
also contain a more general version of axioms 7a and
7b:

h(F1+1) :-

fluent(inertial,F), h(F,1), not -h(F,I+1)
-h(E1+1) i
fluent(inertial,F), -h(F1), not h(F1+1)
which provide a rather general solution of the frame
problem.

Second, translation from action languages to logic
programs enables us to reduce classical reasoning
tasks such as prediction, planning, and finding expla-
nations of unexpected events to computing answer

sets of logic programs. An interested reader may look
into Gelfond and Kahl (2014) for further details.

There are other interesting applications of ASP to
classical KR problems. These include its early use for
providing a declarative semantics to the negation as
failure construct of the Prolog programming lan-
guage (Gelfond and Lifschitz 1988) as well as com-
paratively recent work on combining subtle forms of
logical and probabilistic reasoning (Baral, Gelfond,
and Rushton 2009).

Applications of ASP to Robotics

ASP has been applied in various robotic applications,
such as assembly planning, mobile manipulation,
geometric rearrangement, multirobot path finding,
multirobot coordination, multirobot planning, plan
execution and monitoring, and human-robot inter-
action, to provide methods for high-level reasoning
(like planning, hypothetical reasoning, diagnostic
reasoning) and for declarative problem solving (like
team coordination, gridization of continuous space).

For instance, Erdem, Aker, and Patoglu (2012) use
ASP for planning of actions of multiple robots to col-
laboratively tidy up a house within a given time (fig-
ure 1). They illustrate applications of their ASP-based
planning, execution and monitoring approach with
dynamic simulations with PR2 robots.*

In another study Erdem et al. (2013) use ASP to
find an optimal global plan for multiple teams of
heterogeneous robots in a cognitive factory to man-
ufacture a given number of orders within a given
time (figure 2). They also use ASP for diagnosing plan
failures during monitoring of plan execution
(Erdem, Patoglu, and Saribatur 2015). They illustrate
applications of their ASP-based planning with
dynamic simulations and with an augmented reality
physical implementation that utilizes Kuka youBots
and Lego NXT robots controlled over Robot Operat-
ing System (ROS). They show applications of their
execution-monitoring algorithm, in particular, the
use of diagnostic reasoning for replanning and
repairs, with dynamic simulations using Kuka
youBots and a Nao humanoid robot.®

Havur et al. (2014) use ASP for geometric
rearrangement of multiple movable objects on a
cluttered surface, where objects can change locations
more than once by pick and/or push actions (figure
3). They use ASP for gridization of the continuous
plane for a discrete placement of the initial configu-
rations and the tentative final configurations of
objects on the cluttered surface, and for planning of
robots’ actions. The authors illustrate applications of
their method with the CoCoA service robot, which
features a holonomic mobile base and two 7 degrees
of freedom (DoF) arms with grippers.®

Zhang, Sridharan, and Wyatt (2015) use ASP to
describe objects and relations between them, and
utilize this knowledge to improve localization of tar-

Articles

FALL 2016 57

Articles

Figure 1. Multiple Robots Tidying Up a House.

get objects in an indoor domain using (primarily)
visual data. Such a use of ASP has been illustrated by
a physical implementation with a wheeled robot
navigating in an office building.”

In these robotic applications, there are some
important challenges from the point of view of
robotic planning and diagnosis. The following dis-
cusses how ASP can handle them.

Hybrid Reasoning

One of the key challenges addressed in these robotic
applications is hybrid reasoning, which can be
understood as integrating high-level reasoning tasks,
such as planning, hypothetical reasoning, and diag-
nosis, with low-level external computations. These
external computations include, for instance, feasibil-

58 Al MAGAZINE

ity checks of robotic actions using probabilistic
motion-planning methods, as well as automatic
extraction of relevant commonsense knowledge from
the existing knowledge bases available on the web.
Such a variety of hybrid reasoning is possible in ASP,
thanks to “external atoms” (Eiter et al. 2006). These
atoms provide a general interface between high-level
reasoning and low-level external computations, in
the spirit of semantic attachments in theorem prov-
ing. More precisely, an external atom is an expression
of the form
&Yy, ..., V)X, 00 X,)

where Yy, ..., Y, and X, ..., X, are two lists of terms
(called input and output lists, respectively), and g is
an external predicate name. Intuitively, an external
atom provides a way for deciding the values of an

Articles

Figure 2. Multiple Robots Collaboratively Working in a Cognitive Factory.

output tuple with respect to the values of an input
tuple. External atoms allow us to embed results of
external computations into ASP programs. Therefore,
external atoms are usually implemented in a pro-
gramming language of the user’s choice.

Integrating High-Level Reasoning

with Low-Level Feasibility Checks

Consider, for instance, multiple robots rearranging
objects on a cluttered table (Havur et al. 2014). The
objects can only move when picked up and placed, or
pushed by robots, and the order of pick-and-place
and push operations for rearranging objects may
matter to obtain a feasible kinematic solution. There-
fore, motion planning (for example, finding a con-
tinuous trajectory from one configuration of the
robot to another configuration) and other low-level
feasibility checks alone are not sufficient to solve
them. However, manipulation of objects also requires
feasibility checks, such as whether the robot will be
able to move an object from one location to another
location without colliding with the other objects, or
whether the robot will be able to reach the object on
the table and grasp it without any collisions. There-
fore, task planning only (for example, finding a
sequence of robotic actions from an initial state to a
goal state) is not sufficient to solve the problem
either. These examples illustrate the necessity for a
hybrid approach to planning that integrates task
planning with feasibility checks.

Figure 3. A Mobile Service Robot
Rearranging Objects on a Cluttered Tabletop.

FALL 2016 59

Articles

One of the preconditions of the action pickPlace(R,
O, C) of a robot R picking and placing an object O
onto location C is that the object O is graspable by
the end effector of the robot. This precondition can
be formalized in ASP as follows:

« occurs(pickPlace(R, O, C), I),

not &reachableGraspable[O, R]().

Here &reachableGraspable[O, R]() is an external atom;
it returns true if and only if the end effector of the
manipulator R can successfully reach and grasp the
given object O according to kinematics and force-clo-
sure calculations of OPENRAVE. Note that these cal-
culations are done in a continuous configuration
space using real numbers, and thus are not possible
in ASP.

One of the preconditions of the action push(R, O,
C) of a robot R pushing an object O to location C is
that the volume swept by the object O from its cur-
rent configuration toward another configuration in
C does not collide with other objects. This precondi-
tion can be described as follows:

« occurs(push(R, O, C), I),

not & pushPossible[location, O, I]().
Here &pushPossible is an external predicate as well: it
takes as input all locations of objects at time step I,
and checks whether the swept volume of the object
O collides with other objects using Open Dynamics
Engine (ODE).

Embedding Commonsense Knowledge

in High-Level Reasoning

Consider, for instance, the housekeeping domain
with multiple robots (Erdem, Aker, and Patoglu
2012). The commonsense knowledge about expected
locations Loc of objects Ep (for example, dish in
kitchen, bed in bedroom) can be extracted from the
existing commonsense knowledge base ConceptNet
(Liu and Singh 2004) by means of queries through its
Python API, and can be defined by external atoms of
the form &in_place[Ep, Loc](). Then, one can repre-
sent the expected locations of objects Ep in the house
by a new fluent of the form at_desired_location(Ep) as
follows:

h(at_desired_location(Ep), I) <

h(at(Ep, Loc), 1), &in_placelEp, Loc|().
This rule formalizes that the object Ep is at its desired
location if it is at some “appropriate” position Loc in
the right room.

Another line of research that represents common-
sense knowledge for service robotics applications is
by Chen et al. (2010). In these applications, com-
monsense knowledge such as “a long-shape object B
whose center-of-mass is on the table, is initially in
balance if there is a can A on one end E; of it and
another can B on the other end E, of it” is formulat-
ed in ASP:

h(balance(B,A,C),0) :-

h(on(A,E_1),0), h(on(C,E_2),0),
endof(E_1,B), endof(E_2,B).

60 Al MAGAZINE

Optimizations in Planning and Diagnosis

There are various sorts of desired optimizations in
robotic applications. For instance, in planning, an
optimal plan can be understood as a plan with mini-
mum makespan or a plan with minimum total cost
of actions. In diagnostic reasoning, an optimal diag-
nosis can be understood as a hypothesis with a small-
est number of broken parts of robots. Such optimiza-
tions are possible in ASP, thanks to “optimization
statements.”

For instance, consider the cognitive factories
domain with multiple teams of heterogeneous robots
(Erdem et al. 2013; Erdem, Patoglu, and Saribatur
2015). The following expression

#minimize {C,R,| : h(cost(R,C),l),

robot(R), step(l)}
is used to minimize the sum of all costs C of robotic
actions performed in a local plan, where costs of
actions performed by robot R at every time step are
defined by fluents of the form cost(R, C).

The following statement minimizes the total num-
ber of the broken parts of robots while finding a diag-
nosis for a discrepancy:

#minimize {1,P,R: broken(R,P), comp(R,P)}

where atoms of the form comp(R, P) describe robots
and their parts, and atoms of the form broken(R, P)
describe that part P of the robot R is broken.

Complex Constraints in Replanning

During plan execution, discrepancies between the
observed state and the expected one may be detected
that are relevant for the rest of the plan. These dis-
crepancies may be due to an unexpected obstacle in
the environment, change of locations of objects, bro-
ken robots, or failures of some actions. Once the
cause of a discrepancy is detected, a new plan from
the current state can be computed. While replan-
ning, some guidance from earlier experiences and
causes of discrepancies might be helpful to compute
a better plan that does not fail due to the same rea-
sons. ASP allows us to include such a guidance, by
including constraints into the representation of the
planning problem description. These constraints
might express not only the new knowledge about the
environment, robots, and/or goals, but also what sort
of actions should not be executed under what condi-
tions and when. For instance, in the housekeeping
domain (Erdem, Aker, and Patoglu 2012), if some
robot’s plan fails because the robot cannot pick up an
object that turns out to be quite heavy, the robot
might want to delay asking for help as much as pos-
sible so that the other robots are not distracted. Such
a complex constraint (for example, heavy objects can
be picked with help only during the last three steps
of the plan) can be represented in the planning prob-
lem description using ASP.

Commonsense Knowledge and Exceptions

Consider, for instance, the housekeeping domain
with multiple robots (Erdem, Aker, and Patoglu
2012). Normally, the movable objects in an untidy
house are not at their desired locations. Such com-
monsense knowledge can be described by means of
defaults, as in the following rules:

-h(at_desired_location(Ep),l) :-

endpoint(Ep), step(l),

not h(at_desired_location(Ep),1).
In a similar way, the tidiness of a house is defined by
means of defaults:

-h(tidy,l) :- -h(at_desired_location(Ep),!)

h(tidy,l) :- not -h(tidy,l), step(l).

The second rule above expresses that the house is
normally tidy. The first rule above describes the
exceptions: when an object is not at its expected loca-
tion, the house is untidy.

Let us now consider diagnostic reasoning in cog-
nitive factories with multiple teams of heterogeneous
robots (Erdem, Patoglu, and Saribatur 2015). Nor-
mally, the robots and their parts run smoothly. How-
ever, there may be exceptions: some parts P of robots
R that are not broken currently (at time-step I) may
get broken at the next state (at any time-step I). This
commonsense knowledge can be represented by
means of defaults as well:

-h(broken(R,P),1) :- comp(R,P), step(l),

not h(broken(R,P),l)
h(broken(R,P),I+1) :- comp(R,P), step(l),

-h(broken(R,P),I),

not -h(broken(R,P),I+1).

Other examples of the use of ASP to represent
expected locations of objects, by means of defaults,
and to find diagnoses, by means of cr-rules, can be
found in Zhang et al. (2014).

Applications of ASP to
Computational Biology
and Bioinformatics

ASP has been applied in various computational biol-
ogy and bioinformatics applications, providing a
declarative problem-solving framework for combina-
torial search problems (for example, haplotype infer-
ence, consistency checking in biological networks,
phylogeny reconstruction) and providing a knowl-
edge representation and reasoning framework for
knowledge-intensive reasoning tasks (for example,
integrating, query answering and explanation gener-
ation over biomedical ontologies).

Tran and Baral (2009) introduce a method to mod-
el a biological signaling network as an action descrip-
tion in ASP to allow prediction, planning, and expla-
nation generation about the network. They illustrate
an application of their method to generate hypothe-
ses about the various possible influences of a tumor
suppressor gene on the p53 pathway. Gebser et al.

(2011) introduce a method to model biochemical
reactions and genetic regulations as influence graphs
in ASP, to detect and explain inconsistencies between
experimental profiles and influence graphs. With this
method, they compare the yeast regulatory network
with the genetic profile data of SNF2 knockouts, and
find the data to be inconsistent with the network.

Brooks et al. (2007) use ASP to solve the problem of
reconstructing phylogenies (that is, evolutionary
trees) for specified taxa, with a character-based cladis-
tics approach. They apply their method to infer phy-
logenies for Alcataenia species as well as Indo-Euro-
pean languages (figure 4) and Chinese dialects; these
phylogenies are found plausible by the experts. Based
on these phylogenies, phylogenetic networks are
reconstructed as well (Erdem, Lifschitz, and Ringe
2006).

In the NMSU-PhyloWS project (Le et al. 2012), ASP
is used to query the repository CDAOStore of phylo-
genies. These queries are used, for instance, to find
the trees that satisfy a given property (for example,
whose size is smaller than a specified constant, with
a specified ratio of internal nodes to external nodes),
to find the similarity of two trees with respect to a
distance measure (for example, the Robinson-Foulds
distance), to compute clades with specific properties
(for example, the minimum spanning clade for taxa
in a specified tree).

Erdem et al. (2011) and Erdem and Oztok (2015)
use ASP to answer complex queries over biomedical
ontologies and databases that consider the relevant
parts of these knowledge resources, and to generate
the shortest explanations to justify these answers.
They apply their methods to find answers and expla-
nations to some complex queries related to drug dis-
covery (for example, “What are the genes that are tar-
geted by the drug Epinephrine and that interact with
the gene DLG4?”, “What are the genes related to the
gene ADRB1 through a gene-gene relation chain of
length at most three?” and “What are the most sim-
ilar three genes that are targeted by the drug Epi-
nephrine?”) over the biomedical knowledge
resources PharmGKB, DrugBank, BioGRID, CTD,
SIDER, and Disease Ontology.

Dovier, Formisano, and Pontelli (2009) use ASP to
study a variation of the protein structure prediction
problem: the two-dimensional HP-protein structure
prediction problem. The goal is to find a folding in
the two-dimensional square lattice space that maxi-
mizes the number of hydropic-hydropic contacts
between given amino acids.

Erdem and Ture (2008) use ASP to solve the prob-
lem of haplotype inference by pure parsimony (HIPP)
and its variations. Identifying maternal and paternal
inheritance is essential for finding the set of genes
responsible for a particular disease. However, due to
technological limitations, we have access to geno-
type data (genetic makeup of an individual), and
determining haplotypes (genetic makeup of the par-

Articles

FALL 2016 61

Articles

Proto- Proto-Greco-
Indo-Iranian Armenian
Proto-
Balto-Slavic
Proto-
Germanic
Y

Albanian

Proto- Proto-
Italo-Celtic Anatolian
Proto-
Tocharian

Figure 4. The Most Plausible Phylogeny Reconstructed for Indo-European Languages.

ents) experimentally is a costly and time consuming
procedure. With these biological motivations, HIPP
asks for the minimal number of haplotypes that form
a given set of genotypes.

In these bioinformatics applications, one can iden-
tify some important challenges addressed by ASP;
these challenges illustrate also the strengths of ASP.

Declarative Problem Solving

The declarative representation formalism of ASP
allows us to easily include domain-specific informa-
tion and constraints in the program, and thus to pre-
vent the construction of implausible solutions. For
instance, including some temporal and geographical
constraints about Indo-European languages provided
by historical linguists (for example, “Albanian can-
not be a sister of IndoIranian or BaltoSlavic”) helps in
computing plausible phylogenies more efficiently.

Well-studied properties of programs in ASP allow
us to easily prove the correctness of the formulation
of the problem in ASP, as shown in Erdem, Lifschitz,
and Ringe (2006).

With a declarative representation of the problem
in ASP, one can perform various reasoning tasks, such
as ontological query answering and explanation gen-
eration (Le et al. 2012; Erdem et al. 2011; Erdem and
Oztok 2015), planning and diagnosis (Tran and Bar-
al 2009), consistency checking and explanation gen-
eration (Gebser et al. 2011), and repair and predic-
tion (Gebser et al. 2010).

62 Al MAGAZINE

Integration of Heterogeneous Knowledge

To answer complex queries over a variety of biomed-
ical ontologies (Erdem et al. 2011), ASP allows us to
extract relevant parts of them (thanks to external
atoms) and integrate them by rules. For instance, the
drug names can be extracted from a drug ontology,
by first extracting the relevant triples from the ontol-
ogy:

tripleD(X, Y, Z) <

& rdf [“URIforDrugOntology”|(X, Y, Z)

and then extracting drug names from the triples:

drugName(A) :-

tripleD(_,”drugproperties:name”,A).

Then, to answer queries like “What are the drugs that
treat the disease depression and that do not target the
gene ACYP1?” the extracted relevant knowledge can
be integrated by rules as follows:

whatDrugs(DRG) :- cond1(DRG), cond2(DRG)
cond1(DRG) :- drugDisease(DRG,"” Depression”)
cond2(DRG) :- drugName(DRG),

not drug_gene(DRG,”ACYP1").

Expressivity of Representation

ASP features rich, expressive formalisms (for example,
the support of recursive definitions and negation as
failure), and efficient solvers that support special syn-
tactic constructs (for example, aggregates and opti-
mization statements).

For instance, in Gebser et al. (2011), candidates for
minimal inconsistent components in an influence

graph, where two distinct vertices are not reachable
from each other by a cycle, can be eliminated by the
following constraint:

:- active(U), active(V),

not cycle(U,V), U<V.
where the definition of a cycle requires recursion:

reach(U,V) :- edge(U, V)

reach(U,V) :- edge(U,W),

reach(W, V), vertex(V)

cycle(U, V) :- reach(U, V), reach(V,U), U!=V.

To answer queries like “What are the genes related
to the gene ADRB1 through a gene-gene relation
chain of length at most three?” the auxiliary concept
of reachability of a gene from another gene by means
of a chain of gene-gene interactions is required
(Erdem et al. 2011); this concept can be defined in
ASP recursively as follows:

geneReachable(X,1) :-

geneGene(X,Y), startGene(Y)

geneReachable(X,N+1) :-

geneGene(X,Z), geneReachable(Z,N),

max_chain_length(L), 0 < N, N < L.

Aggregates allow concise and easy-to understand
formulations of problems. According to Le et al.
(2012), we can identify phylogenies by the parsimo-
ny tree length, which is defined by the total number
of characters of its taxa, by the following rules:

parsimonyLength(T,L) :- tree(T),

L = #count {Char: belongsChar(_,Cell,Char),
belongsTU(_,Cell, TU),
representsTU(T,_, TU)}.

Negation as failure is useful to represent defaults
(as seen in the examples of robotics applications) and
the concept of unknown. For instance, we can define
that some drugs’ toxicity is unknown as follows
(Erdem et al. 2011):

unknownToxicityDrug(X) :- drugSynonym(R,X),

not drugToxic(R), not -drugToxic(R).

Industrial ASP Applications

As pointed out in the introduction, the availability of
efficient ASP solvers has recently enabled the imple-
mentation of many advanced ASP applications, not
only in academia but also in industry. In this section,
we briefly overview a number of real-world industri-
al applications of ASP. In particular, we will focus on
ASP applications to e-tourism, workforce manage-
ment, intelligent call routing, and e-medicine that
have been implemented by using the DLV system,
and applications to products and services configura-
tion and decision support systems that have been
implemented by using clasp and Smodels systems.

e-Tourism

ASP has been profitably applied in a couple of appli-
cations arising in the tourism industry. In the fol-
lowing, we overview an ASP-based application that
has been integrated into an e-tourism portal and
implements an intelligent advisor that selects the

Articles

%detect possible and suggested places
possiblePlace(Place) :- askFor(TripKind,_),
placeOffer (Place, TripKind).
suggestPlace(Place) :- possiblePlace(Place),
askFor (_,Period),
suggestedPeriod(Place, Period),
not badPeriod(Place, Period).
%select packages to suggest to the user
suggestOffer(0) :- touristicOffer(0, Place),
suggestPlace(Place).

Figure 5. A Program That Creates a Selection of Holiday Packages.

most promising offers for customers of a travel
agency (Ricca et al. 2010). The goal is to devise a tool
that helps the employees of a travel agency in find-
ing the best possible travel solution in a short time.
It can be seen as a mediator system that finds the best
match between the offers of the tour operators and
the requests of the tourists. The system improves the
business of the travel agency by reducing the time
needed to single out and sell the touristic offers, and
increases the level of customer satisfaction by sug-
gesting the offers that best match the user profile. By
analyzing the touristic domain in cooperation with
the staff of a travel agency, a knowledge base has
been specified that models the key entities that
describe the process of organizing and selling a com-
plete holiday package. In this framework, ASP has
been first used as the intelligent engine of a seman-
tic-based information extractor (Manna, Scarcello,
and Leone 2011), which analyzes the text files
describing the touristic offers, extracts the relevant
information (for example, place, date, prize), and
classifies them in an ontology. But the main usage of
ASP in this application has been for developing sev-
eral search modules that simplify the task of selecting
the holiday packages that best fit the customer needs.
As an example, we report (a simplified version of) a
logic program that creates a selection of holiday
packages in figure 5.

Input predicate askFor(TripKind,Period) specifies
the kind of trip requested by the customer and the
period she or he wants to travel. Predicate touristi-
cOffer(Offer, Place) specifies, for each touristic offer
available at the travel agency, what place it refers
to. Predicates placeOffer(Place, TripKind) and badPeri-
od(Place, Period) are derived by other modules of the
knowledge base and define, respectively, the places
that are appropriate for a kind of trip, and the peri-
ods that should be avoided for a place (for example,
because of bad weather). The first two rules select,
respectively, possible places (that is, the ones that
offer the kind of holiday requested by the customer),

FALL 2016 63

Articles

assign(E,Sh,Sk) | nAssign(E,Sh,Sk) :-
hasSkill(E,Sk), employee(E,_),
shift(Sh,Day,Dur), not absent(Day,E),
not excluded(Sh,E),
neededSkill(Sh,Sk),
workedHours (E,Wh), Wh+Dur<36.

:- shift(Sh,_,_),
neededEmployee (Sh,Sk,EmpNum) ,

#tcount{E: assign(E,Sh,Sk)}!=EmpNum.

:- assign(E,Sh,Skl), assign(E,Sh,Sk2),
Sk1l!=Sk2.

:- wstats(El,Sk,LastTimel),
wstats(E2,Sk,LastTime2),
LastTimel>LastTime2, assign(El,Sh,Sk),
not assign(E2,Sh,Sk).

:- workedHours(E1,Whl), workedHours(E2,Wh2),
threshold(Tr), Whl+Tr<wh2,
assign(E1,Sh,Sk), not assign(E2,Sh,Sk).

Figure 6. A Program for Computing Teams.

and places to be suggested (because they offer the
required kind of holiday in the specified period). The
last rule selects, within the available holiday pack-
ages, the ones that offer a holiday that matches the
original input (possible offer). This is one of the sev-
eral reasoning modules that have been devised for
implementing the intelligent search and integrated
in the e-tourism portal (Ricca et al. 2010).

Workforce Management

An interesting ASP application has been developed in
the framework of the efficient management of
employees of the Gioia Tauro seaport — the largest
transhipment port of the Mediterranean sea. The
problem that this application has dealt with is a form
of work force management problem. It amounts to
computing a suitable allocation of the available per-
sonnel of the seaport such that cargo ships mooring
in the port are properly handled. To accomplish this
task, several constraints have to be satisfied. An
appropriate number of employees, providing several
different skills, is required, depending on the size and
load of the cargo ships. Moreover, the way an
employee is selected and the specific role she will
play in the team (each employee is able to cover sev-
eral roles according to her skills) are subject to many
conditions (for example, fair distribution of the
working load, turnover of heavy or dangerous roles,
employees’ contract rules, and so on). To cope with
this crucial problem ASP has been exploited for
developing a team builder. First of all, the input —
the employees and their skills — was modeled by the
predicate hasSkill(employee, skillName). The specifica-
tion of a shift for which a team needs to be allocated

64 Al MAGAZINE

was modeled by predicate shift(id, date, duration), the
skills necessary for a certain shift by neededSkill(shift,
skill), weekly statistics that specify, for each employ-
ee, the last allocation date per skill by predicate
wstat(employee, skill, lastTime), employees excluded
due to a management decision by excluded(shift,
employee), absent employees by predicate absent(day,
employee), and total amount of working hours in the
week per employee by predicate workedHours(employ-
ee,weekHours). A simplified version of the program
computing teams is shown in figure 6.*

The first rule is disjunctive. It generates the search
space by guessing the assignment of a number of
available employees to the shift in the appropriate
roles. Absent or excluded employees, together with
employees exceeding the maximum number of week-
ly working hours, are automatically discarded. Then,
inadmissible solutions are discarded by means of four
integrity constraints: the first constraint discards
assignments with a wrong number of employees for
some skill; the second one avoids that an employee
covers two roles in the same shift; the third imple-
ments the turnover of roles; and the fourth con-
straint guarantees a fair distribution of the workload.
Note that only the kernel part of the employed logic
program is reported here (in a simplified form), and
many other constraints were developed, tuned, and
tested.

The user interface allows for modifying manually
computed teams, and the system is able to verify
whether the manually modified team still satisfies the
constraints. In case of errors, causes are outlined and
suggestions for fixing a problem are proposed. for
example, if no team that satisfies all constraints can
be generated, then the system suggests that the user
relax some constraints. In this application, the pure
declarative nature of the language allowed for refin-
ing and tuning both problem specifications and ASP
programs while interacting with the stakeholders of
the seaport. The system, developed by a spin-off com-
pany of the University of Calabria called Exeura s.r.],
has been used by the company ICO BLG, an auto-
mobile logistics firm in the seaport of Gioia Tauro.
Further details can be found in Ricca et al. (2012).

Intelligent Call Routing

Contact centers are used by many organizations to
provide remote assistance to a variety of services.
Their front ends are flooded by a huge number of
telephone calls every day. In this scenario the ability
to route customers automatically to the most appro-
priate service brings a two-fold advantage: improved
quality of service and reduction of costs.

The company Exeura developed a platform for cus-
tomer profiling for phone-call routing based on ASP
that is called zLog.>

The key idea is to classify customer profiles and try
to anticipate their actual needs for creating a person-
alized experience of customer care service. Call-cen-

Articles

e D D b *-i-:---..n..-.l-u.;

ciFaadanaanig

VCEGLELELEEES

Figure 7. A Visual Definition of Customer Categories in zLog.

ter operators can define customer categories, but it is
very likely that these employees may not have the
competence for defining categories with a tradition-
al programming language. Thus, the definition of
customer categories is carried out through a user-
friendly visual interface (see figure 7) that allows one
to specify and modify categories. Once a new catego-
ry has been defined, zLog automatically generates an
ASP program that provides its logical encoding and
that can be executed by DLV over the database to
populate the category. A category’s definition criteria
include customer behavioral aspects, such as recent
history of contacts (for example, telephone calls to
the contact center, messages sent to customer assis-
tance) or basic customer demographics (for example,
age, residence). The latter is useful, for instance, in
case of natural disasters, or type of contract. When a
customer calls the call center, she or he is automati-
cally assigned to a category (based on his or her pro-
file) and then routed to an appropriate human oper-
ator or automatic responder.

Telecom Italia employs the zLog platform in a pro-
duction system that handles its call centers. Every
day, more than 1 million telephone calls asking for
diagnostic services reach the call centers of Telecom
Italia. The needs are to optimize the operator assign-
ment process, in order to reduce the average call

response time, and to improve customer support
quality. The zLog platform can detect the customer
category in less than 100 milliseconds (starting from
her or his telephone number) and manage more than
400 calls per second. As a result, zLog enables huge
time savings for more than 1 million daily calls.

e-Medicine

Medical knowledge bases, resulting from the integra-
tion of several different databases, often present
errors and anomalies that severely limit their useful-
ness. ASP has been successfully employed in this con-
text. In particular, a multisource data-cleaning sys-
tem, based on ASP and called DLVCleaner, has been
realized, which detects and automatically corrects
both syntactic and semantic anomalies in medical
knowledge bases (Leone and Ricca 2015), based on
ontological domain descriptions and measures for
string similarities (Greco and Terracina 2013). DLV-
Cleaner automatically generates ASP programs that
are able to identify and possibly correct errors with-
in the medical data. DLVCleaner has been employed
to clean up the data stored in the tumor registries of
the Calabria region, integrating information from
several local health-care centers, including public
hospitals, private health-care centers, family doctors,
and others. The main input table consisted of

FALL 2016 65

Articles

1,000,000 tuples collecting records from 155 munic-
ipalities, whereas the dictionary stored about 15,000
tuples. DLVCleaner recognized that almost 50 per-
cent of input tuples were wrong. Moreover, 72 per-
cent of the wrong tuples were automatically correct-
ed by DLVCleaner, which for an additional 26
percent of the tuples suggested multiple corrections
to be evaluated by the user. Only 2 percent of input
tuples have been detected as wrong and not
repairable.

By using ASP in this application, a simplified and
flexible specification of the logic of the data-cleaning
task is obtained.

Configuration and Reconfiguration of
Products and Services

One of the first industrial applications of ASP (using
the ASP solver Smodels) was for product configura-
tion (Tiihonen, Soininen, and Sulonen 2003), used
by Variantum Oy. The most recent configuration and
reconfiguration applications have been carried out
by the group of Gerhard Friedrich at Alpen-Adria
Universitdat Klagenfurt, Austria, and deployed by
Siemens.

In particular, ASP has been applied (with the ASP
solver clasp) for the configuration of railway safety
systems in order to compute the connection struc-
ture between sensors, indicators, and communica-
tion units. The task of this part of a railway safety sys-
tem is to detect objects that entered but did not leave
a section, thus blocking a track. It turned out that
this configuration problem is NP-hard and is chal-
lenging for the state-of-the-art problem-solving
frameworks, that is, SAT, CSP, MIP, and ASP
(Aschinger et al. 2011). However, by applying ASP it
was possible to solve configuration problems that
could not be solved by specialized configuration
tools.

Besides configuration, the reconfiguration of prod-
ucts and services plays an important role in practice.
In many areas of configurable systems where the cus-
tomer requirements change, the configured system is
also subject to adaptations. ASP is applied to model
the possible changes of existing systems and to com-
pute reconfiguration solutions that optimize the
adaptation actions. for example, maximize the num-
ber of reused modules and minimize the costs of
additional equipment (Friedrich et al. 2011).

In addition to configuration tasks, ASP was applied
to diagnose and repair systems. Friedrich et al. (2010)
describe a system that computes repair plans for
faulty workflow instances employing ASP. Given the
workflow structure, a set of possible repair actions,
and a workflow instance where an exception was trig-
gered, a contingency plan is generated such that after
the execution of this plan a correct completion of the
workflow instances is achieved.

66 Al MAGAZINE

Decision Support Systems

ASP has been used by United Space Alliance to check
correctness of plans and find plans for the operation
of the reaction control system (RCS) of the space
shuttle (Nogueira et al. 2001) (as briefly discussed in
example 2). The RCS is the shuttle’s system mainly
for maneuvering the aircraft while it is in space. The
RCS is computer controlled during takeoff and land-
ing. While in orbit, however, astronauts have the pri-
mary control. During normal shuttle operations,
there are prescripted plans that tell the astronauts
what should be done to achieve certain goals. The sit-
uation changes when there are failures in the system.
The number of possible sets of failures is too large to
preplan for all of them. Meanwhile, RCS consists of
fuel and oxidizer tanks, valves, and other plumbing
to provide propellant to the maneuvering jets of the
shuttle, and it consists of electronic circuitry to con-
trol the valves in the fuel lines and to prepare the jets
to receive firing commands. The actions of flipping
switches have many ramifications on the states of
valves, and thus this application domain presents the
further challenges of the ramification problem.
Thanks to the expressivity of ASP in representing
dynamic systems and handling the ramification
problem (as explained in example 2), an intelligent
system has been implemented using ASP with the
ASP solver Smodels to verify and generate such pre-
plans.

Some Challenges Addressed
by ASP in Industrial Applications

To deal with industrial applications, ASP has to
address various software engineering challenges.
Thanks to its powerful and expressive framework,
using ASP-based software development provides
many advantages, such as flexibility, readability,
extensibility, and ease of maintenance. Indeed, the
possibility of modifying complex reasoning tasks by
simply editing a text file with the ASP rules, and test-
ing it on-site together with the customer, has been
often a great advantage of ASP-based development.
This aspect of ASP-based software development was a
success reason especially for the workforce-manage-
ment application, where the high complexity of the
requirements was a main obstacle, and the availabil-
ity of an executable specification language, like ASP,
allowed clarifying and formalizing the requirements
much more quickly together with the customer.

Realizing complex features of an application in
such a way also brings about advantages of lower
(implementation) costs, compared to traditional
imperative languages.

Another challenge in industrial applications is
computational efficiency. Fortunately, ASP solvers
implement optimization techniques to handle such
challenges. For instance, in the Intelligent call-rout-
ing application, an immediate response has to be giv-
en to queries over huge data sets. Thanks to the avail-

ability of the Magic Set optimization
technique (Alviano et al. 2012), DLV
can localize the computation to the
small fragment of the database that is
relevant for the specific query at hand;
using this optimization technique
leads to a tremendous speedup of the
computation.

Conclusion

We have discussed some applications of
ASP in knowledge representation and
reasoning, robotics, and bioinformatics
and computational biology as well as
some industrial applications. In these
applications, ASP addresses various
challenges. For instance, representation
of defaults to handle exceptions and
the commonsense law of inertia to be
able to reason about the effects of
actions are some of the important chal-
lenges in knowledge representation
and reasoning. Hybrid reasoning, rea-
soning about commonsense knowl-
edge and exceptions, optimizations
over plans or diagnoses are some of the
important challenges addressed by ASP
in robotic applications. Provability of
formulation of computational prob-
lems, expressing sophisticated concepts
that require recursion and/or aggre-
gates, and integration of heterogeneous
knowledge are some of the important
challenges addressed by ASP in bioin-
formatics and computational biology.
Similar challenges are also addressed in
industrial applications, such as data
cleaning, extraction of relevant knowl-
edge from large databases, and soft-
ware-engineering challenges. Thanks
to the expressive declarative languages
of ASP that support default negation,
aggregates, recursion, external atoms,
consistency restoring rules and opti-
mization statements, the presence of
theoretical results that help for analysis
of ASP formulations, and the sophisti-
cated methods (like Magic Sets) imple-
mented in the ASP solvers to improve
computational efficiency, these chal-
lenges can be addressed by ASP.

Acknowledgements

Thanks to Gerhard Brewka, Francesco
Calimeri, Wolfgang Faber, Martin Geb-
ser, Tomi Janhunen, Volkan Patoglu,
Simona Perri, Enrico Pontelli,
Francesco Ricca, Torsten Schaub, Tran

Son, and Mirek Truszczynski for their
comments on an earlier draft of this
article. The work of Esra Erdem is par-
tially supported by TUBITAK Grants
111E116 and 114E491 (Chist-Era
COACHES). The work of Nicola Leone
is partially supported by the Italian
Ministry of University and Research
under PON project Ba2Know (Business
Analytics to Know) Service Innovation
- LAB, No. PONO3PE 00001 1.

Notes

1. Available at www.dropbox.com/s/
pe26le4qi6bcyyh/aspAppTable.pdf?dl=0.
2. The definition of a program also includes
the fourth component — a preference rela-
tion on sets of cr-rules. In what follows, we
assume that a set with the smaller number of
rules is preferred to that with the larger one.
3. www.mat.unical.it/aspcomp2013/files/AS
P-CORE-2.03c .pdf

4. The full version makes use of sophisticat-
ed constructs, like weak constraints and
more complex aggregates (Alviano and
Leone 2015).

5. www.exeura.eu/en/solution/customer-

Eroﬁling.

References

Alviano, M., and Leone, N. 2015. Complex-
ity and Compilation of GZ-Aggregates in
Answer Set Programming. Theory and Prac-
tice of Logic Programming 15(4-5): 574-587.
dx.doi.org/10.1017/5147106841500023X
Alviano, M.; Faber, W.; Greco, G.; and
Leone, N. 2012. Magic Sets for Disjunctive
Datalog Programs. Artificial Intelligence 187:
156-192. dx.doi.org/10.1016/j.artint.2012.
04.008

Aschinger, M.; Drescher, C.; Friedrich, G.;
Gottlob, G.; Jeavons, P.; Ryabokon, A.; and
Thorstensen, E. 2011. Optimization Meth-
ods for the Partner Units Problem. In Inte-
gration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems: 8th International Conference,
CPAIOR 2011, Lecture Notes in Computer
Science 6697, 4-19. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-21311-3_4

Balduccini, M., and Gelfond, M. 2003. Log-
ic Programs with Consistency-Restoring
Rules. In Logical Formalization of Com-
monsense Reasoning: Papers from the 2003
AAAI Spring Symposium, Technical Report
$S-03-05, 9-18. Menlo Park, CA: AAAI Press.

Baral, C.; Gelfond, M.; and Rushton, J. N.
2009. Probabilistic Reasoning with Answer
Sets. Theory and Practice of Logic Program-
ming 9(1): 57-144. dx.doi.org/10.1017/S147
1068408003645

Articles

Brooks, D. R.; Erdem, E.; Erdogan, S. T,;
Minett, J. W.; and Ringe, D. 2007. Inferring
Phylogenetic Trees Using Answer Set Pro-
gramming. Journal of Automated Reasoning
39(4): 471-511. dx.doi.org/10.1007/s10817-
007-9082-1

Chen, X.; Ji, J.; Jiang, J.; Jin, G.; Wang, F;
and Xie,]J. 2010. Developing High-Level
Cognitive Functions for Service Robots. In
Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), 989-996. Richland, SC:
International Foundation on Autonomous
Agents and Multiagent Systems.

Dovier, A.; Formisano, A.; and Pontelli, E.
2009. An Empirical Study of Constraint
Logic Programming and Answer Set Pro-
gramming Solutions of Combinatorial
Problems. Journal of Experimental and Theo-
retical Artificial Intelligence 21(2): 79-121.
dx.doi.org/10.1080/09528130701538174

Eiter, T.; Ianni, G.; Schindlauer, R.; and
Tompits, H. 2006. Effective Integration of
Declarative Rules with External Evaluations
for Semantic-Web Reasoning. In Proceedings
of the Semantic Web: Research and Applica-
tions, 3rd European Semantic Web Conference,
ESWC 2006, Lecture Notes in Computer Sci-
ence 4011. Berlin: Springer. dx.doi.org/10.
1007/s11370-012-0119-x

Erdem, E.; Aker, E.; and Patoglu, V. 2012.
Answer Set Programming for Collaborative
Housekeeping Robotics: Representation,
Reasoning, and Execution. Intelligent Service
Robotics 5(4): 275-291. dx.doi.org/10.1017/
$1471068413000598

Erdem, E., and Oztok, U. 2015. Generating
Explanations for Biomedical Queries. Theo-
ry and Practice of Logic Programming
15(1):35-78. dx.doi.org/10.1017/S14710
68413000598

Erdem, E., and Tture, F. 2008. Efficient Hap-
lotype Inference with Answer Set Program-
ming. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence,
436-441. Menlo Park, CA: AAAI Press.
Erdem, E.; Erdem, Y.; Erdogan, H.; and
Oztok, U. 2011. Finding Answers and Gen-
erating Explanations for Complex Biomed-
ical Queries. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial
Intelligence. Palo Alto, CA: AAAI Press.
Erdem, E.; Lifschitz, V.; and Ringe, D. 2006.
Temporal Phylogenetic Networks and Logic
Programming. Theory and Practice of Logic
Programming 6(5): 539-558. dx.doi.org/10.
1017/51471068406002729

Erdem, E.; Patoglu, V.; and Saribatur, Z. G.
2015. Integrating Hybrid Diagnostic Rea-
soning in Plan Execution Monitoring for
Cognitive Factories with Multiple Robots.
In Proceedings of the IEEE International Con-
ference on Robotics and Automation, ICRA
2015, 2007-2013. Piscataway, NJ: Institute

FALL 2016 67

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fwww.dropbox.com%2Fs%2Fpe261e4qi6bcyyh%2FaspAppTable.pdf%3Fdl%3D0
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.03c+.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841500023X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.008
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-21311-3_4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068408003645
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10817-007-9082-1
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1080%2F09528130701538174
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs11370-012-0119-x
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000598
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000598
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068406002729
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fwww.dropbox.com%2Fs%2Fpe261e4qi6bcyyh%2FaspAppTable.pdf%3Fdl%3D0
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fwww.mat.unical.it%2Faspcomp2013%2Ffiles%2FASP-CORE-2.03c+.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.artint.2012.04.008
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068408003645
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10817-007-9082-1
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs11370-012-0119-x
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000598
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000598
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068406002729
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Facademicjobsonline.org%2Fajo%2Fjobs%2F7736
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Fwww.exeura.eu%2Fen%2Fsolution%2Fcustomer-profiling

Articles

for Electrical and Electronics Engineers.
dx.doi.org/10.1109/ICRA.2015.7139461
Erdem, E.; Patoglu, V.; Saribatur, Z. G.;
Schiiller, P.; and Uras, T. 2013. Finding Opti-
mal Plans for Multiple Teams of Robots
Through a Mediator: A Logic-Based
Approach. Theory and Practice of Logic Pro-
gramming 13(4-5): 831-846. dx.doi.org/10.
1017/51471068413000525

Friedrich, G.; Fugini, M.; Mussi, E.; Pernici,
B.; and Tagni, G. 2010. Exception Handling
for Repair in Service-Based Processes. IEEE
Transactions on Software Engineering 36(2):
198-215. dx.doi.org/10.1109/TSE.2010.8

Friedrich, G.; Ryabokon, A.; Falkner, A. A.;
Haselbock, A.; Schenner, G.; and Schreiner,
H. 2011. (Re)Configuration Based on Model
Generation. Paper presented at the Second
Workshop on Logics for Component Con-
figuration, Perugia, Italy, 12 September.
dx.doi.org/10.4204/eptcs.65.3

Gebser, M.; Guziolowski, C.; Ivanchev, M.;
Schaub, T.; Siegel, A.; Thiele, S.; and Veber,
P. 2010. Repair and Prediction (Under
Inconsistency) in Large Biological Networks
with Answer Set Programming. In Principles
of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Con-
ference. Menlo Park, CA: AAAI Press.
Gebser, M.; Schaub, T.; Thiele, S.; and Veber,
P. 2011. Detecting Inconsistencies in Large
Biological Networks with Answer Set Pro-
gramming. Theory and Practice of Logic Pro-
gramming 11(2): 1-38. dx.doi.org/10.1017/
$1471068410000554

Gelfond, M., and Kahl, Y. 2014. Knowledge
Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Program-
ming Approach. New York: Cambridge Uni-
versity Press. dx.doi.org/10.1017/CBO978
1139342124

Gelfond, M., and Lifschitz, V. 1988. The Sta-
ble Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of
the Fifth International Conference and Sympo-
sium, 1070-1080. Cambridge, MA: The MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classi-
cal Negation in Logic Programs and Dis-
junctive Databases. New Generation Comput-
ing 9(3/4): 365-385. dx.doi.org/10.1007/
BF0O303 7169

Gelfond, M., and Lifschitz, V. 1998. Action
Languages. Electronic Transactions on Artifi-
cial Intelligence, ETAI 2(3-4): 193-210.

Greco, G., and Terracina, G. 2013. Frequen-
cy-Based Similarity for Parameterized
Sequences: Formal Framework, Algorithms,
and Applications. Information Sciences
237(July): 176-195. dx.doi.org/10.1016/j.
ins.2013.03.016

Havur, G.; Ozbilgin, G.; Erdem, E.; and
Patoglu, V. 2014. Geometric Rearrangement

68 Al MAGAZINE

of Multiple Movable Objects on Cluttered
Surfaces: A Hybrid Reasoning Approach. In
Proceedings of the 2014 IEEE International
Conference on Robotics and Automation, ICRA
2014, 445-452. Piscataway, NJ: Institute for
Electrical and Electronics Engineers.
dx.doi.org/ 10.1109/icra.2014.6906894

Hayes, P. J., and McCarthy, J. 1969. Some
Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine
Intelligence 4 ed. B. Meltzer and D. Michie.
Edinburgh: Edinburgh University Press.
463-502.

Le, T.; Nguyen, H.; Pontelli, E.; and Son, T. C.
2012. ASP at work: An ASP Implementation
of Phylows. In Technical Communications
of the 28th International Conference on
Logic Programming, ICLP 2012, 359-369.
Saarbriicken, German: Schloss Dagstuhl —
Leibniz-Zentrum fuer Informatik.

Leone, N., and Ricca, F. 2015. Answer Set
Programming: A Tour from the Basics to
Advanced Development Tools and Industri-
al Applications. Tutorial Lecture presented
at Reasoning Web — Web Logic Rules: 11th
International Summer School 2015, Berlin,
Germany, July 31 - August 4.

Liu, H., and Singh, P. 2004. ConceptNet: A
Practical Commonsense Reasoning Toolkit.
BT Technology Journal 22(4): 211-226.
dx.doi.org/10.1023/B:BTTJ.0000047600
.4421.6d

Manna, M.; Scarcello, F.; and Leone, N.
2011. On the Complexity of Regular-Gram-
mars with Integer Attributes. Journal of Com-
puter and Systems Sciences International 77 (2):
393-421.

McCarthy, J. 1990. Formalization of Common
Sense, Papers by John McCarthy, edited by V.
Lifschitz. Norwood, NJ: Ablex.

Nogueira, M.; Balduccini, M.; Gelfond, M.;
Watson, R.; and Barry, M. 2001. An A-Prolog
Decision Support System for the Space Shut-
tle. In Practical Aspects of Declarative Lan-
guages, Third International Symposium, PADL
2001. Lecture Notes in Computer Science
1990, 169-183. Berlin: Springer.

Ricca, F,; Dimasi, A.; Grasso, G.; lelpa, S. M.;
liritano, S.; Manna, M.; and Leone, N. 2010.
A Logic-Based System for E-Tourism. Funda-
menta Informatica 105(1-2): 35-55. dx.doi.
0rg/10.1017/S147106841100007X

Ricca, F; Grasso, G.; Alviano, M.; Manna, M.;
Lio, V.; liritano, S.; and Leone, N. 2012.
Team-Building with Answer Set Program-
ming in the Gioia-Tauro Seaport. Theory and
Practice of Logic Programming 12(3): 361-381.
Shanahan, M. 1997. Solving the Frame Prob-
lem: A Mathematical Investigation of the Com-
monsense Law of Inertia. Cambridge, MA:
The MIT Press.

Tiihonen, J.; Soininen, T.; and Sulonen, R.
2003. A Practical Tool for Mass-Customising

Configurable Products. In Proceedings of the
14th International Conference on Engineering
Design, 1290-1299. Edinburgh, UK: The
Design Society.

Tran, N., and Baral, C. 2009. Hypothesizing
about Signaling Networks. Journal of Applied
Logic 7(3): 253-274. dx.doi.org/10.1016/].

jal.2008.10.001

Zhang, S.; Sridharan, M.; and Wyatt, J. L.
2015. Mixed Logical Inference and Proba-
bilistic Planning for Robots in Unreliable
Worlds. IEEE Transactions on Robotics 31(3):
699-713. dx.doi.org/10.1109/TRO.2015.
2422531

Zhang, S.; Sridharan, M.; Gelfond, M.; and
Wyatt, J. L. 2014. Towards an Architecture
For Knowledge Representation and Reason-
ing in Robotics. In Social Robotics: 6th Inter-
national Conference, ICSR 2014. Lecture
Notes in Computer Science 8755, 400-410.
Berlin: Springer. dx.doi.org/10.1007/978-3-
319-11973-1 41

Esra Erdem is an associate professor in
computer science and engineering at Saban-
ci University. She received her Ph.D. in
computer sciences at the University of Texas
at Austin (2002) and carried out postdoc-
toral research at the University of Toronto
and Vienna University of Technology from
2002 to 2006. Her research is about the
mathematical foundations of knowledge
representation and reasoning and their
applications to cognitive robotics and com-
putational biology.

Michael Gelfond is a professor of computer
science at Texas Tech University. He received
his Ph.D. from the Institute of Mathematics
of the Russian Academy of Sciences, St.
Petersburg in 1974.Gelfond contributed to
the development of the stable model/answer
set semantics of logic programming and the
answer set programming paradigm, which is
founded on the stable model semantics. He
is a fellow of the AAAI and recipient of three
Test of Time awards from the International
Association of Logic Programming.

Nicola Leone is a professor of computer sci-
ence at the University of Calabria, where he
heads the Department of Mathematics and
Computer Science and leads the Al Lab. Until
2000 was a professor of database systems at
Vienna University of Technology. He is inter-
nationally renowned for his research on
knowledge representation, answer set pro-
gramming, and database theory, and for the
development of DLV, a state-of-the-art ASP
system. He published more than 250 papers
in prestigious conferences and journals, and
has more than 8000 citations, with h-index
46. He is a fellow of ECCAI (now EurAl) and
recipient of an ACM Test of Time award.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2Ficra.2014.6906894
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FB%3ABTTJ.0000047600.4421.6d
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841100007X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jal.2008.10.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FTRO.2015.2422531
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-11973-1_41
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FICRA.2015.7139461
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000525
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FTSE.2010.8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.4204%2Feptcs.65.3
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2Fs1471068410000554
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FCBO9781139342124
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF0303+7169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ins.2013.03.016
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS1471068413000525
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2Fs1471068410000554
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FCBO9781139342124
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF0303+7169
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ins.2013.03.016
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FB%3ABTTJ.0000047600.4421.6d
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1017%2FS147106841100007X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jal.2008.10.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FTRO.2015.2422531
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-11973-1_41

First-Order Logic with
Inductive Definitions for
Model-Based Problem Solving

Maurice Bruynooghe, Marc Denecker, Mirostaw Truszczynski

B In answer set programming (ASP),
programs can be viewed as specifica-
tions of finite Herbrand structures. Oth-
er logics can be (and, in fact, were) used
toward the same end and can be taken
as the basis of declarative programming
systems of similar functionality as ASP.
We discuss here one such logic, the log-
ic FO(D), and its implementation
IDP3. The choice is motivated by
notable similarities between ASP and
FO(ID), even if both approaches trace
back to different origins.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

cles in this issue, is based on an extension of the lan-

guage of logic programming under the answer set
semantics. In ASP, an instance of a computational problem is
encoded by an answer set program in such a way that the
Herbrand models of the program determine all solutions for
the problem instance. Thus, at an abstract level, answer set
programs are specifications of finite Herbrand structures
(those that are models of the programs), and the key reason-
ing task supported by ASP systems is to compute them. That
task is often referred to as model generation.

Other logics that can express constraints on Herbrand
structures (or even non-Herbrand structures) could also be
used as the basis for this form of declarative problem solving.
Implementing the model-generation task for theories in such
logics yields declarative programming tools with the same
basic functionality as that of ASP systems. Two examples of
such an alternative approach are the model generators NP-
SPEC (Cadoli et al. 2000) and aspps (East and Truszczynski
2006) for extended Datalog. In both cases, the specification
language is an extension of Datalog with clausal constraint
rules. This formalism captures the class NP in the sense that
any decision problem from the class NP can be specified. The
system NP-SPEC offers a compiler for recursion- and nega-
tion-free NP-SPEC problems to SAT whereas aspps is a native
system supporting recursive Datalog, making it suitable to
model problems involving transitive closure.

A further step in this direction is the logic FO(ID). The ori-
gin of the logic FO(ID) can be traced to the fundamental
problem of logic programming that also triggered the devel-
opment of stable semantics and later ASP, namely, the prob-
lem of negation as failure (Lifschitz 2016). The essence of the
negation problem was that negation as failure in Prolog had

Q nswer set programming (ASP), described in other arti-

Articles

FALL 2016 69

Articles

so many useful and intuitive applications, and yet,
the original view of logic programs as sets of materi-
al implications (Horn clauses extended with negation
in the body) could not account for the derivation of
a single negative literal. As noted by Lifschitz (his
article appears in this issue), one solution was
inspired by research in nonmonotonic reasoning and
consisted of adapting the semantics of default logic
(Reiter 1980) to the syntax of logic programs. This led
to stable semantics and later to ASP.

An alternative solution was to interpret a logic pro-
gram as a definition of its predicates. In this view, a
logic program consists of, for every predicate, an
exhaustive list of rules that define the cases in which
it is true. Unlike sets of implications, definitions
entail negative information. Moreover, a case-based
representation of definitions and, in particular,
inductive definitions is a common way to specify def-
initions in mathematical texts. The view of logic pro-
grams as a definition was already implicit in Clark’s
first-order completion semantics (Clark 1978). How-
ever, as was well known in mathematical logic and
databases, in general, inductive definitions cannot be
expressed in first-order logic (FO) (Aho and Ullman
1979). Hence, Clark’s semantics did not not correct-
ly interpret recursive logic programs as inductive def-
initions. This weakness spurred the development of
so-called canonical semantics such as the perfect
model (Apt, Blair, and Walker 1988) and the well-
founded model semantics (Van Gelder, Ross, and
Schlipf 1991). The latter (in a suitably extended ver-
sion) turned out to correctly formalize definitions,
including the most common forms of inductive defi-
nitions (Denecker 1998, Denecker and Vennekens
2014). Since definitional knowledge is an important
form of expert knowledge and since in general it can-
not be expressed in first-order logic, it is natural to
seek extensions of classical logic to incorporate it.
This has been recognized by the database communi-
ty, which developed such extensions in support of
more expressive database query languages (Abite-
boul, Hull, and Vianu 1995). It has also motivated a
similar effort in knowledge representation. In partic-
ular, these considerations led to the logic FO(ID), an
extension of first-order logic with inductive defini-
tions expressed as sets of logic programlike rules
under well-founded semantics that represent the base
cases and (possibly) inductive cases of the definition
(Denecker 2000; Denecker and Ternovska 2008).

The logic FO(ID) has a standard Tarskian model
semantics. A structure satisfies a theory if it satisfies
its first-order logic sentences and is a well-founded
model of its definitions. Thus, the logic FO(ID) can be
understood as a conjunction of its formulas and defi-
nitions and, in particular, it is a conservative exten-
sion of first-order logic. These features make the log-
ic FO(ID) well suited as the basis of declarative
knowledge representation systems.

Two systems were developed for significant frag-

70 AI MAGAZINE

ments of the FO(ID) language: enfragmo (Aavani et
al. 2012) and IDP3 (De Cat et al. 2014). The key infer-
ence task supported by these systems is (finite) mod-
el expansion: given an FO(ID) theory and a partial
structure as input, the goal is to output one or more
structures that are models of the theory and expand
the input structure. The enfragmo system provides
support for arithmetic and aggregates in its theories,
and also some limited support for inductive defini-
tions. The IDP3 system has a similar functionality as
enfragmo but provides a more advanced treatment
and support for inductive definitions; in addition to
model expansion, it also supports several other forms
of inference.

In this article, we present the logic FO(ID) and the
IDP3 system. Our presentation is not formal but
relies on a series of examples. We start by illustrating
the importance of structures in knowledge represen-
tation and how they lead to a methodology for
knowledge modeling and for declarative problem
solving through the model-expansion task. We then
describe the IDP3 system. This discussion is inter-
twined with references to the logic FO(ID), the theo-
retical foundation for the IDP3 system. Next we
briefly discuss the relationship between FO(ID)
(IDP3) and ASP and conclude with comments on the
role these formalisms may play in the future of com-
putational logic.

Structures in
Knowledge Representation

First-order logic has proved to be a powerful formal-
ism for representing knowledge largely because of
two key interrelated factors. Structures used as inter-
pretations of first-order formulas are well suited to
model practical situations and application domains;
and our intuitive understanding of how first-order
formulas constrain the space of possible structures
matches exactly the formal definition of the satisfia-
bility relation. Our goal in this section is to present
structures in their role as a fundamental abstraction
for knowledge representation. When modeling a
problem domain, we start by selecting symbols to
denote its functions and relations. Collectively, these
symbols form the vocabulary of the domain. Each
symbol in the vocabulary comes with a nonnegative
integer called the arity that denotes the number of
arguments of the corresponding function or relation.
If a is a relation or function symbol, we write a/k to
indicate the arity of a. Function symbols of arity O are
called constants.

To illustrate, let us consider a hypothetical soft-
ware company that holds weekly lunch meetings for
its software development teams. These lunch meet-
ings take place on certain weekdays. Some teams are
in a (scheduling) conflict (for instance, they may
share a team member). The meeting days for teams in
conflict must be different.

This short text describes a problem domain. The
underlined terms indicate relations and functions in
that domain. Figure 1 shows symbols that could be
selected to denote them, as well as their intended
meaning. Together, these symbols form the vocabu-
lary of the lunch meeting domain.

A structure (also called an interpretation) S over a
vocabulary consists of a nonempty universe D and,
for each symbol o in the vocabulary, the value o5 of
o in § (also called the interpretation of ¢ in S). More
specifically, for every relation symbol r/k, ¥ is a rela-
tion on D with k arguments (that is, 7S € D¥), and for
every function symbol f/k, f° is a function on D with
k arguments (that is, f5: DX - D). Figure 2 shows an
example of a structure over the vocabulary from fig-
ure 1.

A structure over a vocabulary is an abstract repre-
sentation of a concrete instance, or state of affairs, of
a problem domain modeled in terms of this vocabu-
lary. The universe of the structure is an abstraction of
the set of objects in that instance, while the relations
and functions of the structure — the values of the
symbols in the vocabulary — abstract the relations
and functions in the instance.

For instance, the structure S in figure 2 represents
a state of affairs with five teams referred to as T, ...,
Ty and five (working) days referred to as M, ..., F. The
structure also specifies conflicts between the teams
(for example, teams T, and T, are in conflict), and an
assignment of meeting days to teams (for example,
team T, meets on Monday). Since functions in struc-
tures are total, the function mtng_day? is also defined
on days. This is redundant, as those assignments do
not represent any pertinent information. The struc-
ture Sis an abstraction of a possible state of affairs of
our problem domain: one in which the properties of
the domain mentioned in the specification of this
problem domain are satisfied. Indeed, the mapping
mitng_day® assigns weekdays to teams (other assign-
ments it makes are immaterial or, as we said, redun-
dant), and two teams in conflict are not scheduled to
have lunch on the same day.

To formally model this domain, these and other
properties present in the informal description (some
only implicitly) need to be expressed as sentences of
the logic over the chosen vocabulary. Three proper-
ties relevant to our scenario are shown in figure 3. We
see there formal sentences in the language of first-
order logic over the vocabulary from figure 1, as well
as their informal reading. The first sentence says that
the relation conflict applies to teams only. It specifies
the types of the arguments of the relation conflict.
Incidentally, this information is not explicitly pres-
ent in the narrative. Nevertheless, it is implicit there
and can be included in any formal representation of
the problem. The second sentence is of a similar
nature. It describes the type of objects the function
ming_day maps to. The last sentence represents the
essential constraint of the problem that teams in con-

Relation symbols
team/1, day/1, conflict/2
team(x): x is a team
day(x): x is a weekday
conflict(x, y): x has a conflict with y

Function symbols (here only one)
mtng_day/1
mtng_day(x) = y: the time of lunch meeting
of xis y

Figure 1. A Vocabulary of
Symbols for the Lunch Meeting Domain.

Domain of §
DS = {T1, T, T,T,T,M,Tu, W, Th,F}
Relations
team® ={T1,T2,T3,T4,T5}
day’ ={M,Tu,W, Th,F}
conflict’ =
{(T,,T,), (T,,T), (T, T, (T, Ty, (T,, T}

Functions

mtng_day* =
(T, >MT,>W,T,>M,T, > Tu,T, > Tu,
M - M, Tu—» M,W - M, Th— M,F - M}

Figure 2. A Structure S for the Vocabulary from Figure 1.

flict do not hold their lunch meetings on the same
day.

First-order propositions (first-order logic sentences)
are true or false in structures (we also say satisfied or
unsatisfied, respectively). For example, the third
proposition of figure 3, expressing that conflicting
teams do not meet on the same day, is true in the
structure from figure 2. However, it is false in the
structure that is the same except that the interpreta-
tion of conflict is extended with the pair (T, T;).
Indeed, we now have two teams in conflict that are
scheduled to meet on the same day.

More formally, given a structure S interpreting all
symbols in a first-order sentence F, we can evaluate F
in S, that is, assign to it a logical value true or false.
When F evaluates to true in S, we say that Sis a mod-
el of F or that F is satisfied by S. The property of a sen-
tence being true in a structure yields a satisfaction
relation between structures and first-order logic sen-
tences. It provides first-order logic sentences with a

Articles

FALL 2016 71

Articles

Vocabulary: As in figure 1

Sentence:
VXVY (conflict(X, Y) — team(X) A team(Y))

Reads: forall X and Y, if X and Y are in
conflict then both X and Y are teams
Sentence: VXVY (mtng_day(X) =Y — day(Y))
Reads: for all X and Y, if Yis the meeting day
for X then Yis a day

Sentence: VXVY (conflict(X, Y) —
mtng_day(X) = mtng_day(Y))

Reads: for all X and Y, if X and Y are in conflict
then the meeting day for X is different from
the meeting day for Y

Figure 3. Relevant Properties as First-Order Sentences.

Vocabulary: As in Figure 1

Structure: S defined in Figure 2

Sentence: VXVY (conflict(X, Y) —» team(X) A
team(Y))

Evaluates to true . Indeed, for every (a, b) €
conflict’, both team(a) and team(b) hold in

S (figure 2)

Sentence: YXVY (conflict(X, Y) —
mtng_day(X) = mtng_day(Y))

Evaluates to true. Indeed, for every (a, b) €
conflict’,teams a and b meet on a different
day (figure 2)

Figure 4. The First-Order Semantics
Applied to Some Sentences from Figure 3.

semantics (the first-order semantics) that captures
precisely their informal reading. Figure 4 illustrates
these concepts for sentences from the language based
on our example vocabulary. The second sentence
would evaluate to false in case the relation conflict®
contained the extra pair (T,, Tj).

The satisfaction relation is of crucial importance.
In some cases, we fully know the relevant state of
affairs of the problem domain or, more precisely, we
know the structure that serves as its abstract repre-
sentation. However, in other cases the precise state of
affairs is not known or is only partially known. In
that case, our knowledge frequently consists of sepa-
rate informal propositions. They implicitly specify
possible states of affairs as those in which these
propositions hold true. As we argued, structures are
formal representations of states of affairs. Those

72 Al MAGAZINE

structures that represent possible states of affairs are
called intended. Given this terminology, knowledge
representation can then be understood as the art and
practice of formulating knowledge as a formal theo-
ry so that models of that theory are precisely the
intended structures. For instance, the original speci-
fications of the problem domain are correctly ex-
pressed by axioms in figure 3, which also shows their
informal semantics. The structure from figure 2 is an
intended one, and it indeed satisfies (is a model of) all
the sentences in figure 3. That latter claim can be ver-
ified formally and is also easy to see intuitively: con-
flicts are between teams, the mapping mtng_day’s
assigns days to teams (and also to days, but that is
immaterial), and two teams in conflict are not sched-
uled on the same day.

To say that all models of the theory are intended
structures here is slightly imprecise. For example, the
theory has infinite models that hardly count as
intended structures. The problem is that some implic-
it information such as what are weekdays and teams,
is not expressed in the theory. This information is
expressed in the values assigned to the symbols team
and day by structures like the one in figure 2.

To recapitulate, in this setting the satisfaction rela-
tion allows us to use sentences over the fixed vocab-
ulary to constrain structures over that vocabulary to
those that satisfy the sentences. These sentences can
be seen as specifications of classes of intended struc-
tures over that vocabulary, that is, the structures that
represent those states of affairs that are possible
(might be encountered in practice).

The setting we presented supports several impor-
tant reasoning problems. Say the manager in our run-
ning example is reviewing a schedule proposed by
one of her assistants or, more formally, the corre-
sponding structure. The manager wants to know
whether certain propositions hold for the schedule
or, formally, whether the formal sentences expressing
the propositions are satisfied in that structure. We call
that reasoning task model checking or querying. For
instance, we might want to know whether team T,
has its meeting scheduled on the same day as team T,
in the structure (schedule) in figure 2 (that query
would evaluate to false). Model checking is a special
instance of this task; it verifies that a structure satis-
fies the specifications, that is, that it indeed is an
intended structure. In the case of our example and
the structure in figure 2, it consists of verifying that
all statements of the theory in figure 3 are satisfied by
the structure.

Even more interesting and important is the situa-
tion when the schedule is yet to be constructed. How
can the manager find one? She knows the axioms in
figure 3. This information specifies the class of
intended structures, each of them representing a
valid instance of a lunch meeting domain. It is also
reasonable to assume that she knows which teams
she needs to schedule, what scheduling conflicts she

Articles

mtng_day =
(T, >MT,>WT,>MT,>WT, - Ty,
M- M, Tu—-> MW —> M, Th > M,F-> M}

Figure 5. Another Possible Schedule Function.

has to take into account, and which days are work
days. This information explicitly fixes the domain of
an intended structure as well as its relations team,
day, and conflict (for instance, to the values they
have in figure 2). Any function mtng_day that com-
pletes this explicitly given fragment of a structure to
an intended one yields a good schedule for the set-
ting of interest to the manager. The converse is also
true. Good schedules give rise to intended structures
(when combined with the explicitly given compo-
nents).

The task to find the missing function, which we
just described, is an example of the model-expansion
problem. In model expansion we assume that the
vocabulary is partitioned into input and output sym-
bols. Given a theory (that is, a set of sentences) over
the entire vocabulary and a structure over the vocab-
ulary consisting of the input symbols, called an input
structure, the goal is to extend the input structure
with relations and functions for output symbols so
that the resulting structure (now over the entire
vocabulary) satisfies the theory.

This applies to our example scenario. Here, team,
day, and conflict are input symbols and mtng_day is an
output symbol. The input structure consists of the
domain {T,, ..., T5, M, ..., F} and of the relations
team, day, and conflict as in figure 2. The theory
specifying intended structures is given in figure 3.
Under these assumptions, the model-expansion
problem asks for a specific function mtng day that
would expand the input structure to the one satisfy-
ing the three sentences (that is, to an intended struc-
ture). That function would offer a legal schedule of
lunch meetings for the five teams involved. The func-
tion shown in figure 2 is one of the possible solu-
tions. The function in figure 5 is another one.!

A more involved reasoning task is assigning meet-
ing days to teams interactively. The task involves
propagation inference that calculates the valid days
for every team. Each time the user assigns a meeting
day to a team, the propagation inference updates the
valid choices for the remaining teams. Still another
task is revision, assisting a user in assigning a differ-
ent meeting day to a particular team while preserving
as much as possible the meeting days assigned to the
other teams. All these reasoning tasks use the same
theory as a specification of valid structures.

e Vocabulary * Model checking

e Structure

® Theory
¢ Procedure - BigEEg R
o Trariin * Revision
* Query ® Optimization
® Deduction
- J U

Language Components Inference Methods

(query inference)

* Model expansion

Procedural interface: Lua

Lua code embedded in procedure components for calling
inference methods
.

Figure 6. High-Level Representation of
IDP3 as a Knowledge Base System.

To recapitulate, structures are important to us for
four key reasons. First, they provide natural abstrac-
tions of states of affairs of the problem domain, in
which sentences (properties) can be evaluated for sat-
isfaction. Second, they are useful to define computa-
tional tasks in the context of logic. Third, they can be
used to present input data, as in the query inference
(where the value of every symbol is known), or in
model expansion (where values of some symbols are
not known). Fourth, they can be used as representa-
tions of answers to model-expansion problems.

The IDP3 System

We will now present a software system, IDP3, that
implements the ideas presented above. In particular,
IDP3 allows us to define structures, input structures
and partial structures, as well as sentences to state
their properties.? An overview of the IDP3 system is
presented in figure 6. We use a series of simple exam-
ples to illustrate and discuss all key features of IDP3.

The IDP3 system separates information from the
reasoning task to be performed. In this way, it facili-
tates the use of the same knowledge to solve diverse
reasoning problems. To represent information, IDP3
uses an enriched variant of first-order logic. The infor-
mation is split over three components. The first com-
ponent is the vocabulary. The IDP3 syntax for describ-
ing vocabularies is illustrated in figure 7, where we
again use our software team’s domain as an example.
The vocabulary goes beyond the basic first-order log-
ic as it introduces not only the alphabet but also the
types and the signatures of the relation and function

FALL 2016 73

Articles

vocabulary V{
type day
type team
conflict(team,team)
mtng_day(team):day

Figure 7. An IDP3 Vocabulary Introducing Two Types, Day

and Team, and a Predicate and a
Function Together with Their Signatures.

day:

structure S:V{
={M;Tu;W,;Th;F}

team={T1;T2;T3;T4;T5}
conflict={(T1,T2);(T1,T5),;(T2,T3);(T2,T5);(T3,T4)}

Figure 8. An IDP3 Structure for the
Vocabulary V from Figure 7.

Note that implication translates into a double arrow, while the

Figure 9. Translation Table.

translation of < and > is not an arrow.

Figure 10. An IDP3 Theory over the Vocabulary of Figure 7
(Using Correspondences from Figure 9).

74 Al MAGAZINE

theory T:V{

| a[team] b[team]: conflict(a,b) =>
mtng_day(a) ~= mtng_day(b).

symbols. In IDP3, vocabularies are assigned identi-
fiers; the vocabulary in figure 7 is identified by V.

The second component is a structure. The IDP3 syn-
tax for a structure for our example domain is shown
in figure 8. The structure has an identifier (here S). It
refers to a vocabulary (here V) and introduces the
domains for the types declared in the vocabulary
(here by enumerating the elements of types day and
team). In addition it also enumerates the known
information about the declared relations and func-
tions. The interpretation of conflict is fully known,
and the relation is specified by the list of its tuples.
However, as nothing is known about the interpreta-
tion of mtng_day, nothing about this function is men-
tioned in the structure.

The last component used to express information is
a theory. An example theory appropriate for our
domain is shown in figure 10. The notation is essen-
tially first-order logic but in a keyboard-friendly syn-
tax. The IDP3 counterparts to standard mathematical
logic notation are given in figure 9.

The theory (as the other two components) has an
identifier (here T). The theory refers to a vocabulary
(in the example, through the identifier V), and
expresses the constraints that a structure must meet
to serve as a valid abstraction of the problem domain
(here, the function mitng_day is constrained so that
teams in conflict are not scheduled for their lunch
meetings on the same day). The types of the variables
are optional; if omitted, type inference will derive
them. In the case at hand, the type of the variables a
and b can be derived from the signature of conflict
and mtng_day.

For solving problems, the IDP3 system offers a pro-
cedural interface in Lua® and executes the procedure
main(). In main(), the IDP3 user can overwrite default
values of solver options, can invoke Lua functions
provided by the IDP3 designers as well as standard
Lua functions, and can also invoke functions written
by the user in the procedural component. The infor-
mation components (vocabularies, structures, and
theories) are first-class citizens in the Lua code and
can be passed as parameters to various functions. The
procedural component in figure 11 illustrates some
common use patterns of the Lua interface. In this
code, modelexpand, printmodels, and allmodels are Lua
functions provided with the IDP3 system, while # is
the Lua operator that returns the length of a Lua
sequence and print is the standard Lua printing func-
tion.

The modelexpand function invokes model-expan-
sion inference on a theory T and a structure S (both
referring to the same vocabulary), and returns a (pos-
sibly empty) Lua sequence of models of T that extend
S; by default, modelexpand is bound to return a single
model. To obtain more models, another bound can
be set with an assignment to the stdoptions.nbmodels
option. The printmodels function prints the number
of models in a sequence of models as well as each of

its models. To obtain the sequence of all models, one
can use the allmodels function. Indexing can be used
to select a particular element in a sequence; if the
sequence is empty (models do not exist), the special
Lua value nil is returned. Models are represented and
printed as structure components so that they can
serve as IDP3 input.

Definitions, Aggregates and Optimization

So far, we have seen two extensions of first-order log-
ic that are available in IDP3: types and partial func-
tions (a typed function is partial as it is only defined
for the values determined by the types in the signa-
ture). Other important extensions are aggregates and
definitions. To illustrate them, we elaborate on our
example; at the same time we also introduce anoth-
er reasoning task, optimization inference. The IDP3
code for the extended example is shown in figure 12.

In the extended scenario, we are concerned with
the workload of the company cafeteria where the
meetings take place. We introduce the concept of qui-
et_day, which we define as a day in which at most one
team holds its meeting. As stated before, definition
expressions in FO(ID) are modeled after the way defi-
nitions are expressed in text. They define one or
more predicate or function symbol in terms of a set
of parameter symbols; for example, the concept qui-
et_day is defined in terms of the function mtng_day,
which we call a parameter of the definition. To dis-
tinguish a definition expression from first-order log-
ic sentences, it is written as a set of rules placed
between “define {“ and “}.”4

Each rule expresses one (base or inductive) case.
The head and body of the rule are separated by “<-",
called the definitional implication to distinguish it
from the material implication => (both given in the
IDP syntax). The head is an atomic formula of one of
the defined predicates and the body can be any for-
mula in first-order logic. In contrast with logic pro-
gramming, variables are explicitly quantified. To give
such formal rule sets the intuitive reading of defini-
tions in mathematics, the semantics chosen for them
is an extension of the well-founded semantics (Van
Gelder, Ross, and Schlipf 1991; Denecker and Ter-
novska 2008), because the well-founded semantics
correctly formalizes the most common forms of defi-
nitions found in text (Denecker and Vennekens
2014). The IDP3 definition given in figure 12 formal-
ly expresses the intended meaning for the concept
quiet_day: a day d is a quiet day if it is not the case
that two different teams (f1, t2) have their meeting
day on d.

Similarly, we include in the vocabulary a function
nmbr_mtngs that we want to define as the function
that maps a day to the number of teams meeting on
this day. The new symbol ranges over the new type
number, which we introduce in the vocabulary as a
subtype of the natural numbers (a built-in type nat)
and specify in the structure as the set of numbers

procedure main(){
stdoptions.nbmodels=5
printmodels(modelexpand(T,S))
models=allmodels(T,S)
print(#models)
print(model[5])
print(model[980])

Figure 11. Solving The Model-Expansion Problem In IDP3.

This procedure applies model-expansion inference on our theo-
ry T and initial structure S in two different ways. The first line
sets the bound on the number of models to five. The second line
invokes model expansion and prints the sequence of five mod-
els. The third line also invokes model expansion but returns the
sequence of all models and assigns it to the Lua variable models.
The fourth line prints the number of models in the sequence,
the next line prints the fifth model, and the final line prints nil

as there are only 960 models.

from O to 10. As the relation quiet_day, also this func-
tion is defined in terms of the parameter mtng_day. In
general, functions are defined by sets of rules of the
form f{t,, ..., t,) = t <- body. In the case at hand, the
body degenerates to “true” and is omitted. Impor-
tantly, the function value here is given by the cardi-
nality aggregate #{tm : mtng day (tm) = d}. This aggre-
gate represents the cardinality of the set {(tm) |
ming_day(tm) = d}, that is, the number of teams meet-
ing on day d. Besides cardinality, IDP3 also supports
minimum, maximum, sum, and product aggregates.
They have a slightly different syntax. An overview of
the supported aggregates is given in figure 13.
Assume that the manager of the cafeteria wishes to
minimize the maximal workload for the cafeteria. To
solve this problem, another form of inference is
needed called optimization inference. This is done by
the procedure call minimize(T, S, m) in the main() pro-
cedure of figure 12. The procedure call contains yet
another sort of component of IDP3: the term compo-
nent. Its role is to give a name to a term. Referred to
by its name, the term can then be used inside Lua
procedures. Here, the term of interest is the maxi-
mum # in the set of pairs (d, n) defined as {(d, n) | n =
nmbr_mtngs(d)}. This is a simple maximum aggregate
in which there are no extra conditions on d. Accord-
ing to the translation table of figure 13, its IDP3 syn-
tax is max{d [day) : true : nmbr_mtngs(d)}. The middle
part, true, is the trivially true extra condition on the
selected values for d. The optimization inference per-
forms a search for a model that minimizes the value
of the term referred to by m. The call not only returns
a model, but also whether optimality could be shown

Articles

FALL 2016 75

Articles

The missing lines of code should be taken from Figures 7, 8, and 10.

vocabulary V{
’.&pe number isa nat
quiet_day(day)
nmbr_mtngs(day):number
structure S:V{
'r;imeer={0..1 0}
}
theory T:V{
define {
I d: quiet_day(d)<- ~(? t1t2: t1=+t2&
mtng_day(t1)=mtng_day(t2)=d).
}
define{
Id: nmbr_mtngs(d)=#{tm: mtng_day(tm)=d}
}

term m:V{
max{d[day] : true : nmbr_mtngs(d)}

procedure main() {
stdoptions.cpsupport=true
models, optimal, cost = minimize(T,S,m)
print(models[1])
print(optimal)
print(cost)

Figure 12. The Running Example Extended to Illustrate
Aggregates, Definitions, and Optimization.

FO IDP3

#{x : F}

sum{(x,t) : F}
prod{(x,0) : F}
max{(x,t) : F}
min{(x,t) : F}

#{x1 ...xn:F}
sum{x1... xn: F:t }
prod{x1 ...xn:F:t}
max{x1... xn: F:t }
min{x1... xn: F:t }

Figure 13. Translation Table for Aggregates.

76 Al MAGAZINE

and the value of the term. So, minimization is on the
maximal number of meetings on the same day. In
other words, the call minimize(T, S, m) returns a
schedule that minimizes the maximum number of
lunch meetings scheduled for a single day (informal-
ly, it offers a “balanced” schedule). The grounder of
the IDP3 system is unable to derive a bound on the
value of the optimization term m. To avoid an infi-
nite grounding, the option cpsupport must be on.

Partial Information and
Constructed Types

As an alternative elaboration of our example, assume
it is decided that team T'1 meets on Monday (“is cer-
tainly true”) and team T2 does not meet on Tuesday
(“is certainly false”). This partial knowledge can be
expressed in the structure as shown in figure 14 (we
note the use of markers <ct> and <cf>).

Alternatively, we may want to express this infor-
mation in the theory. However, in the theory we can
only express information about domain elements if
we have symbols in the vocabulary to refer to them.
Hence, we need to extend the vocabulary with con-
stants mon, tue, ..., t1, t2, ... to denote days and
teams; furthermore, the structure needs to be extend-
ed to specify the interpretation for the new constants
by means of the statements mon=M, ..., t1=T1,
Only then we can express constraints such as
mtng_day (t1) = mon or mtng_day (t2)~=tue in the the-
ory. This verbose way is a consequence of the fact
that functions and constants are not limited to their
Herbrand interpretation as in ASP and Prolog. A
shortcut is to make use of constructed types to
enforce Herbrand interpretations over certain types.
Figure 15 shows how constructed types impose the
same constraints on the function mtng_day. As the
domain of these types is fixed in the vocabulary, they
are not part of any structure.

More about Definitions

The definitions we discussed above are simple and
can be expressed in first-order logic as equivalences.
For example, the equivalence !d : quiet day(d) <~(?t1
12 : t1~=t2 & ming_day (t1) = ming_day (t1) = d) cor-
rectly expresses the definition of quiet_day. While this
works for all noninductive definitions, it is well
known that inductive definitions in general cannot
be expressed through first-order logic equivalences.

Definitions are the most substantial extension that
IDP3 offers with respect to first-order logic. Not only
do they offer the designer a facility to define con-
cepts, they also increase the expressiveness. The
archetypal example of a relation that cannot be
expressed in first-order logic is the transitive closure
of the edges in a graph. The inductive definition of
this relation, say 7, for a graph (N, E) with nodes N
and edges E is often stated as follows:

If (a, b) € E, then (a, b) € T,

If for some c € N, it holds that (a, ¢) € T and (¢, b) € T,
then also (a, b) € T. In IDP3, we can model it as in fig-
ure 16.

To further illustrate the power of definitions, we
present in figure 17 a representation of a simple
graph problem that requires selecting edges among
nodes so that in the resulting graph all vertices are
reachable from a (given) node root and none of the
(given) forbidden edges are selected. The main diffi-
culty is that the set of vertices reachable from the
root is not expressible in first-order logic. To over-
come this problem, we introduce the auxiliary unary
predicate symbol reachable and express it through the
inductive definition provided in figure 17. Addition-
al axioms express that the defined relation reachable
is the set of all nodes and no edges are forbidden. An
interesting aspect is that here, the defined relation
reachable is known initially while the parameter edge
in terms of which it is defined is unknown. Hence,
IDP3 searches for an interpretation of the parameter
edge such that the defined relation reachable has the
given value. This sort of input/output pattern is dif-
ferent from that of the Prolog and Datalog systems,
and it shows the declarative nature of definitions. It
is a powerful aspect of IDP3 as well as ASP systems.

In the example in figure 17, one can check that the
edges (A, D) and (D, C) must appear in every solution
for the relation edge. Also, at least one of (D, B) or (C,
B) must be present. Other allowed edges are not con-
strained. Thus, one possible value for edge is {(A, D),
(D, B), (D, O)} and another one is {(4, D), (C, B), (D,
O), (B, D)}.

FO(ID), (IDP3), and ASP

On the conceptual level, FO(ID) and ASP are quite
different. Whereas ASP has its foundation in nonmo-
notonic and commonsense reasoning, FO(ID) is
based on a definition construct inspired by the struc-
ture of definitions used in mathematics. Negation in
ASP is viewed as a nonclassical epistemic or default
operator. In FO(ID), it is the definitional rule opera-
tor « that is nonclassical, while negation in the bod-
ies of definition rules is classical. And yet, despite
these different foundations, there are strong struc-
tural relationships between ASP and FO(ID). On the
language level, FO(ID)’s rule-based definition con-
struct resembles ASP rules, and first-order logic
axioms resemble ASP constraints. We illustrate these
similarities with the problem of finding a Hamilton-
ian cycle in a directed graph. An answer set program
encoding the problem is shown in figure 18.

That program has a typical structure resulting from
following the generate-define-test (GDT) methodolo-
gy (Lifschitz 2002) (discussed in this issue by Faber,
Gebser, and Schaub [2016]). This methodology leads
to three sorts of modules. The first of them generates
the space of candidate solutions (in our example, the
space of all subsets of the set of edges of the input

Articles

structure S:V{

mtng day<ct> = {T1 —>M }
mtng day<cf> = {T2 —>Tu }
}

Figure 14. Partial Knowledge in a Structure.

vocabulary V{
type day constructed from {M,Tu,W,Th,F}
type team constructed from {T1,T2,T3,T4,T5}

}
theory T:V{

H{tng_day(ﬂ) =M.
mtng_day(T2) ~= Tu.

Figure 15. Constructed Types.

vocabulary V{
type node
edge(node,node)
trans(node,node)

structure S:V{
edge={...}

theory T:V
define {
I x y: trans(x,y) <— edge(x,y).
! x y: trans(x,y) <— ? z: trans(x,z) & trans(z,y).

Figure 16. Transitive Closure of the Edges in a Graph.

FALL 2016 77

Articles

vocabulary V {
type node
forbidden(node,node)
edge(node,node)
reachable(node)
root:node

structure S:V {
node = A..D // a shorthand for {A; B; C; D}
forbidden = {(A,A); (A,B); (A,C); (B,A);
(B,B); (B,C); (C,C); (C,D); (D,D)}
root=A

}
theory T:V {
// inductive definition of reachable
define {
reachable(root).
Ix:reachable(x) <- ?y:reachable(y)&edge(y,x)

// The graph is fully connected

! x: reachable(x).

// No forbidden edges

I x y: edge(x,y) => ~ forbidden(x,y).
}

Figure 17. A Graph Problem.

generate {In(x,y)}<—Edge(x,y)

define T (x, y)<—In(x, y).
T (x,0)<-T(x,2), T(z,y)

test <= In((x,y), In (x,2), y = z.
<=In(x, 2), In(y, 2), x = y
<—Node(x),Node(y), not T(x,y).

Figure 18. A Generate-Define-Test ASP Program Encoding

the Existence of a Hamiltonian Cycle Problem.

graph; they are possible instantiations of a relation
In). The generate module commonly relies on the
construct of choice rules (as in our example) or, alter-
natively, uses disjunctive rules. The second one
defines some additional concepts that are useful in
identifying solutions (here, the transitive closure of
the relation In). Finally, the third one specifies con-
straints of the problem. These constraints narrow
down the space of candidate solutions to those that
represent the valid ones (here, the constraints ensure
that exactly one edge comes into each node, exactly
one edge leaves each node, and finally, that all nodes

78 Al MAGAZINE

are connected to each other both ways; that last con-
dition requires an auxiliary concept of the transitive
closure). The horizontal lines in figure 18 make this
structure explicit.

The corresponding IDP3 solution to the problem
has a similar format. We present its theory compo-
nent in figure 19.

The similarity is striking. The first sentence plays
the role of the generate module in the program in fig-
ure 18. The definition of the transitive closure mir-
rors the define module. Finally, the last three sen-
tences are the three constraints of the test module
cast in the IDP3 syntax. As an aside, we note that a
direct translation from natural language to the IDP3
syntax of these constraints would more likely be as
in figure 20.

Almost all GDT programs can be translated into
IDP3 following the idea outlined above. The encod-
ing of the generate module does not require any spe-
cial syntax. In fact, in many cases the generate part of
a GDT program disappears entirely from the corre-
sponding IDP3 theory. The converse is also true. A
large class of IDP3 theories allows for automated
rewritings into the language of ASP. The key in such
translations is to properly construct the choice rules
to “open” some of the predicates.

Similarities between ASP and FO(ID) can be found
not only in the structure of programs (theories). On
the system level, the core of IDP3 is a model genera-
tor that is developed using similar technologies as
current ASP solvers, and offers similar functionalities.

Concluding Remarks

In this article, we focused on the model-generation
task because of its natural applications in solving
search and optimization problems. This is also the
focus of ASP and ASP implementations. We noted
that model generation can be implemented for other
logics. We mentioned some of them and then
described in detail the logic FO(ID) and the associat-
ed reasoning system IDP3.

However, it is important to point out that the
knowledge present in both FO(ID) theories as well as
in answer set programs can support many other rea-
soning tasks besides model generation. That observa-
tion has played a central role in the development of
the system IDP3 and is reflected in its functionality
(see figure 6). Similarly, it underlined some develop-
ments in ASP (see the article by Kaufmann et al.
[2016] in this issue). In particular, most implementa-
tions of ASP support skeptical and brave reasoning,
and add-ons facilitating abduction and planning
were developed for some systems, as well (Eiter et al.
2003, 1999).

The field of computational logic has an urgent
need for integrative frameworks that recognize that
many reasoning tasks are needed in knowledge-
intensive applications and that these tasks can all be

driven by a single well-designed underlying knowl-
edge base. Formalisms and systems discussed in this
special issue are on the intersection of several related
lines of research, building on the advances in classi-
cal logic, automated reasoning, logic programming,
databases, satisfiability, satisfiability modulo theories,
constraint programming, fix-point logics, and
description logics. As such, they are well suited to
play this integrative role. Their modeling capabilities,
which in important respects, such as the ability to
capture inductive definitions, go beyond SAT/CSP
formalisms, as well as the computational effective-
ness of their reasoning software demonstrate that.
We posit that developing FO(ID), ASP, and related
formalisms with this goal in mind is essential both
for the theory of logic-based computation and for
practical applications.

Notes

1. A more general version of the model-expansion problem
takes a partially instantiated structure (a fully specified
domain but possibly only partially instantiated relations
and functions for all vocabulary symbols) and asks if it can
be completed to a structure that satisfies the theory.

2. The IDP3 system has been developed by the Knowledge
Representation and Reasoning group at the University of
Leuven, dtai.cs.kuleuven.be/topics/kbs. The most recent
versions of the source code and documentation, as well as
other resources such as an online IDE, are available at the
IDP page, dtai.cs.kuleuven.be/software/idp.

3. Lua is a scripting language (lerusalimschy, de Figueiredo,
and Celes 1996) available at www.lua. org.

4. The keyword define is optional.

5. This theory can be accessed and experimented with on
the IDP-IDE webpage at dtai.cs.kuleuven.be/krr/idpide/
?present=forbidden.

Acknowledgments

This research was supported by the project GOA
13/010 Research Fund KULeuven and projects
G.0489.10, G.0357.12, and G.0922.13 of the
Research Foundation, Flanders.

References

Aavani, A.; Wu, X. N.; Tasharrofi, S.; Ternovska, E.; and
Mitchell, D. G. 2012. Enfragmo: A System for Modelling and
Solving Search Problems with Logic. In Proceedings of the
18th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning, LPAR 2012, volume 7180 of
LNCS, ed. N. Bjegrner and A. Voronkov, 15-22. Springer.
dx.doi.org/10.1007/978-3-642-28717-6_4

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Boston, MA: Addison-Wesley.

Aho, A. V,, and Ullman, J. D. 1979. The Universality of Data
Retrieval Languages. In Conference Record of the Sixth Annual
ACM Symposium on Principles of Programming Languages, Jan-
uary 1979, 110-120. New York: Association for Computing
Machinery. dx.doi.org/10.1145/567752.567763

Apt, K.; Blair, H.; and Walker, A. 1988. Towards a Theory of
Declarative Knowledge. In Foundations of Deductive Data-
bases and Logic Programming, ed. J. Minker, 89-142. San

theoryT:V {
I x y: In(x,y) => Edge(x,y).

define {
Ixy: T(x,y) <- In(x,y).
IxyzT(x,y) <- T(x,2) & T(z,y).
}

Ixyz: ~(In(x,y) &In(x,2) &y ~ = 2).
Ixyz ~(In(x,z) & In(y,z) & x ~ =y).
I xy: ~ (Node(x) & Node(y) & ~ T(x,y)).

Figure 19. An IDP3 Theory Encoding the Existence of a
Hamiltonian Cycle Problem.

I'xyzIn(xy) &In(x,z) =>y =2z
I'xyzIn(xy) &In(y,z) =>y =2z
Ix y: T(X,y).

Figure 20. A Direct IDP3 Representation
of the Test Constraints.

Mateo, CA: Morgan Kaufmann. dx.doi.org/10.1016/b978-
0-934613-40-8.50006-3

Cadoli, M.; lanni, G.; Palopoli, L.; Schaerf, A.; and Vasile, D.
2000. NP-SPEC: An Executable Specification Language for
Solving All Problems in NP. Computer Languages 26(2—4):
165-195. dx.doi.org/10.1016/50096-0551(01)00010-8
Clark, K. 1978. Negation as Failure. In Logic and Data Bases,
ed. H. Gallaire and J. Minker. New York-London: Plenum
Press. 293-322. dx.doi.org/10.1007/978-1-4684-3384-5_11

De Cat, B.; Bogaerts, B.; Bruynooghe, M.; and Denecker, M.
2014. Predicate Logic as a Modelling Language: The IDP
System. Unpublished paper (CoRR abs/1401.6312). Ithaca,
New York: Cornell University Library.

Denecker, M. 1998. The Well-Founded Semantics Is the
Principle of Inductive Definition. In Logics in Artificial Intel-
ligence: European Workshop, JELIA 1998 Proceedings, volume
1489 of Lecture Notes in Computer Science, ed. J. Dix, L.
del Cerro,and U. Furbach, U., 1-16. Berlin: Springer.
dx.doi.org/10.1007/3-540-49545-2_1

Denecker, M. 2000. Extending Classical Logic with Induc-
tive Definitions. In Computational Logic, CL 2000, volume
1861 of Lecture Notes in Computer Science, ed. J. Lloyd, V.
Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L.
Pereira, Y. Sagiv, and P. Stuckey, 703-717. Berlin: Springer.

Denecker, M., and Ternovska, E. 2008. A Logic of Nonmo-
notone Inductive Definitions. ACM Transactions on Com-
puter Logic 9(2): 14:1-14:52.

Denecker, M., and Vennekens, J. 2014. The Well-Founded
Semantics Is the Principle of Inductive Definition, Revisit-

Articles

FALL 2016 79

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdtai.cs.kuleuven.be%2Ftopics%2Fkbs
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdtai.cs.kuleuven.be%2Fsoftware%2Fidp
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdtai.cs.kuleuven.be%2Fkrr%2Fidpide%2F%3Fpresent%3Dforbidden
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-28717-6_4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F567752.567763
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fb978-0-934613-40-8.50006-3
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0096-0551%2801%2900010-8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-1-4684-3384-5_11
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-49545-2_1
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fwww.lua.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdtai.cs.kuleuven.be%2Fkrr%2Fidpide%2F%3Fpresent%3Dforbidden
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fb978-0-934613-40-8.50006-3

Articles

N T el I M n _/l il [

It's Time to Plan Your
Trip to
San Francisco
for AAAI-17!

The Thirty-First AAAI Conference on Artificial Intelli-
gence (AAAI-17) and the Twenty-Ninth Conference
on Innovative Applications of Artificial Intelligence
(IAAI-17) will be held February 4-9 at the Hilton San
Francisco Union Square in San Francisco, California,
USA. San Francisco is a world-class city full of delights
for every visitor. From the iconic Golden Gate bridge
to its renowned art galleries, science museums, and
picturesque neighborhoods, the City takes pride in its
unrivaled attractions and treasures. The Hilton Hotel
is located near Union Square and very close to shops,
restaurants, and entertainment venues, as well as
public transportation. The conference location is a
great starting point to explore the City's tremendous
ethnic and cultural diversity and its wide variety of
offerings. San Francisco is also perfectly positioned to
explore the entire Bay Area, whether for recreation or
business. The Napa Valley, Pacific Coast, Silicon Val-
ley, and East Bay are all a short distance away. As an
unrivaled center for Al and tech professionals, San
Francisco promises to be a vibrant home for AAAI-17.

For local information, please visit the San Francisco
travel site at www.sftravel.com.

ed. In Proceedings of the 14th International Conference on Prin-
ciples of Knowledge Representation and Reasoning, KR 2014, ed.
C. Baral, G. Giacomo, and T. Eiter. Palo Alto, CA: AAAI Press.
East, D., and Truszczynski, M. 2006. Predicate-Calculus-
Based Logics for Modeling and Solving Search Problems.
ACM Transactions on Computational Logic 7(1): 38-83. dx.
doi.org/10.1145/1119439.1119441

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 1999. The Diag-
nosis Frontend of the dlv System. AI Communications 12(1-
2):99-111.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2003. A Logic Programming Approach to Knowledge-State
Planning, II: The dlvk System. Artificial Intelligence 144(1-2):
157-211. dx.doi.org/10.1016/S0004-3702(02)00367-3
Faber, W.; Gebser, M.; and Schaub, T. 2016. Modeling and
Language Extensions. AI Magazine 37(3).

Ierusalimschy, R.; de Figueiredo, L. H.; and Celes, W. 1996.
Lua — An Extensible Extension Language. Software: Practice

80 AI MAGAZINE

and Experience 26(6): 635-652. dx.doi.org/10.1002/(sici)
1097-024x(199606)26:6<635::aid-spe26>3.0.c0;2-p
Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and Solving in Answer Set Programming. Al
Magazine 37(3).

Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Lifschitz, V. 2002. Answer Set Programming and Plan Gen-
eration. Artificial Intelligence 138: 39-54. dx.doi.org/10.
1016/S0004-3702(02)00186-8

Reiter, R. 1980. A Logic for Default Reasoning. Artificial Intel-
ligence 13(1-2): 81-132. dx.doi.org/10.1016/0004-3702(80)
90014-4

Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The Well-
Founded Semantics for General Logic Programs. Journal of
the ACM 38(3): 620-650. dx.doi.org/10.1145/116825.
116838

Maurice Bruynooghe has been, since October 2015, a pro-
fessor emeritus at the Department of Computer Science of
Katholieke Universiteit Leuven. After his Ph.D. work on log-
ic programming, also at Katholieke Universiteit Leuven, was
completed in 1979, he started the Declarative Languages
and Artificial Intelligence research group. His research has
been in logic programming, program analysis, inductive
logic programming, machine learning, and knowledge rep-
resentation and reasoning.

Marc Denecker is professor of computer science at
Katholieke Universiteit Leuven. He is interested in all
aspects of declarative information and its use for automat-
ed problem solving. His research is concerned with the for-
mal study of knowledge and information, with semantic
foundations of declarative specification languages in mon-
otone and nonmonotonic reasoning, with the development
of practical knowledge representation languages, of
methodologies and inference methods including propaga-
tion, constraint programming, satisfiability checking,
abduction: in general, any form of inference of use to solve
problems and perform tasks using declarative knowledge.
He is head of the research group Knowledge Representation
and Reasoning that developed the IDP language and system
that is presented in this article.

Mirostaw Truszczyfiski is a professor of computer science
at the University of Kentucky. His research interests include
knowledge representation, nonmonotonic reasoning, logic
programming, and constraint satisfaction. He has published
more than 180 technical papers, coauthored a research
monograph on nonmonotonic logics, and edited 10 article
collections and conference proceedings. His paper Stable
Logic Programming, a joint work with Victor Marek, helped
launch the field of answer set programming. Truszczynski
served on the Executive Committee of the Association of
Logic Programming, was chair of the Steering Committee of
Nonmonotonic Reasoning Workshops, and was president of
Knowledge Representation Inc. He served as an editor and
associate editor on boards of the Journal of Artificial Intelli-
gence Research and Artificial Intelligence Journal. He is now
editor-in-chief of Theory and Practice of Logic Programming,
and an associate editor of AI Communications. In 2013,
Truszczynski was elected Fellow of the Association for the
Advancement of Artificial Intelligence (AAAI).

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1119439.1119441
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900367-3
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1002%2F%28sici%291097-024x%28199606%2926%3A6%3C635%3A%3Aaid-spe26%3E3.0.co%3B2-p
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900186-8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2880%2990014-4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F116825.116838
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fwww.sftravel.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1119439.1119441
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1002%2F%28sici%291097-024x%28199606%2926%3A6%3C635%3A%3Aaid-spe26%3E3.0.co%3B2-p
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0004-3702%2802%2900186-8
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2880%2990014-4
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F116825.116838

Symbiotic Cognitive Computing

Robert Farrell, Jonathan Lenchner, Jeffrey Kephart, Alan Webb,
Michael Muller, Thomas Erickson, David Melville, Rachel Bellamy,
Daniel Gruen, Jonathan Connell, Danny Soroker, Andy Aaron,
Shari Trewin, Maryam Ashoori, Jason Ellis, Brian Gaucher, Dario Gil

B [BM Research is engaged in a
research program in symbiotic cognitive
computing to investigate how to embed
cognitive computing in physical spaces.
This article proposes five key principles
of symbiotic cognitive computing: con-
text, connection, representation, modu-
larity, and adaptation, along with the
requirements that flow from these prin-
ciples. We describe how these principles
are applied in a particular symbiotic
cognitive computing environment and
in an illustrative application for strate-
gic decision making. Our results suggest
that these principles and the associated
software architecture provide a solid
foundation for building applications
where people and intelligent agents
work together in a shared physical and
computational environment. We con-
clude with a list of challenges that lie
ahead.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

ardy! winning against the two best players of all time, Brad

Rutter and Ken Jennings (Ferrucci et al. 2010). Since this
demonstration, IBM has expanded its research program in
artificial intelligence (Al), including the areas of natural lan-
guage processing and machine learning (Kelly and Hamm
2013). Ultimately, IBM sees the opportunity to develop cog-
nitive computing — a unified and universal platform for
computational intelligence (Modha et al. 2011). But how
might cognitive computing work in real environments —
and in concert with people?

In 2013, our group within IBM Research started to explore
how to embed cognitive computing in physical environ-
ments. We built a Cognitive Environments Laboratory (CEL)
(see figure 1) as a living lab to explore how people and cog-
nitive computing come together.

Our effort focuses not only on the physical and computa-
tional substrate, but also on the users’ experience. We envi-
sion a fluid and natural interaction that extends through
time across multiple environments (office, meeting room,
living room, car, mobile). In this view, cognitive computing
systems are always on and available to engage with people in
the environment. The system appears to follow individual
users, or groups of users, as they change environments, seam-
lessly connecting the users to available input and output
devices and extending their reach beyond their own cogni-
tive and sensory abilities.

We call this symbiotic cognitive computing: computation that
takes place when people and intelligent agents come togeth-
er in a physical space to interact with one another. The intel-
ligent agents use a computational substrate of “cogs” for visu-
al object recognition, natural language parsing, probabilistic
decision support, and other functions. The term cog is from

In 2011, IBM’s Watson competed on the game show Jeop-

Articles

FALL 2016 81

Articles

Figure 1. The Cognitive Environments Lab.

CEL is equipped with movement sensors, microphones, cameras, speakers, and displays. Speech and gesture are used to run cloud-based
services, manipulate data, run analytics, and generate spoken and visual outputs. Wands, and other devices enable users to move visual ele-
ments in three dimensions across displays and interact directly with data.

the book The Society of Mind where Marvin Minsky
likened agents to “cogs of great machines” (Minsky
1988). These cogs are available to intelligent agents
through programmatic interfaces and to human par-
ticipants through user interfaces.

Our long-term goal is to produce a physical and
computational environment that measurably
improves the performance of groups on key tasks
requiring large amounts of data and significant men-
tal effort, such as information discovery, situational
assessment, product design, and strategic decision
making. To date, we have focused specifically on
building a cognitive environment, a physical space
embedded with cognitive computing systems, to sup-
port business meetings for strategic decision making.
Other applications include corporate meetings
exploring potential mergers and acquisitions, execu-
tive meetings on whether to purchase oil fields, and
utility company meetings to address electrical grid
outages. These meetings often bring together a group
of participants with varied roles, skills, expertise, and
points of view. They involve making decisions with a
large number of high-impact choices that need to be
evaluated on multiple dimensions taking into
account large amounts of structured and unstruc-
tured data.

While meetings are an essential part of business,
studies show that they are generally costly and
unproductive, and participants find them too fre-
quent, lengthy, and boring (Romano and Nunamak-
er 2001). Despite this, intelligent systems have the
potential to vastly improve our ability to have pro-
ductive meetings (Shrobe et al. 2001). For example,
an intelligent system can remember every conversa-
tion, record all information on displays, and answer
questions for meeting participants. People making
high-stakes, high-pressure decisions have high expec-
tations. They typically do not have the time or desire
to use computing systems that add to their workload
or distract from the task at hand. Thus, we are aim-

82 Al MAGAZINE

ing for a “frictionless” environment that is always
available, knowledgeable, and engaged. The system
must eliminate any extraneous steps between
thought and computation, and minimize disruptions
while bringing important information to the fore.

The remainder of this article is organized as fol-
lows. In the next section, we review the literature
that motivated our vision of symbiotic cognitive
computing. We then propose five fundamental prin-
ciples of symbiotic cognitive computing. We list
some of the key requirements for cognitive environ-
ments that implement these principles. We then pro-
vide a description of the Cognitive Environments
Lab, our cognitive environments test bed, and intro-
duce a prototype meeting-support application we
built for corporate mergers and acquisitions (M&A)
that runs in this environment. We wrap up by return-
ing to our basic tenets, stating our conclusions, and
listing problems for future study.

Background

In his paper “Man-Machine Symbiosis,” J. C. R. Lick-

lider (1960) originated the concept of symbiotic com-

puting. He wrote,
Present-day computers are designed primarily to solve
preformulated problems or to process data according
to predetermined procedures. ... However, many prob-
lems ... are very difficult to think through in advance.
They would be easier to solve, and they could be
solved faster, through an intuitively guided trial-and-
error procedure in which the computer cooperated,
turning up flaws in the reasoning or revealing unex-
pected turns in the solution.

Licklider stressed that this kind of computer-sup-
ported cooperation was important for real-time deci-
sion making. He thought it important to “bring com-
puting machines effectively into processes of
thinking that must go on in real time, time that
moves too fast to permit using computers in conven-

tional ways.” Licklider likely did not foresee the
explosive growth in data and computing power in
the last several decades, but he was remarkably pre-
scient in his vision of man-machine symbiosis.

Distributed cognition (Hutchins 1995) recognizes
that people form a tightly coupled system with their
environment. Cognition does not occur solely or
even mostly within an individual human mind, but
rather is distributed across people, the artifacts they
use, and the environments in which they operate.
External representations often capture the current
understanding of the group, and collaboration is
mediated by the representations that are created,
manipulated, and shared. In activity theory (Nardi
1996), shared representations are used for establish-
ing collective goals and for communication and coor-
dinated action around those goals.

Work on cognitive architectures (Langley, Laird,
and Rogers 2009; Anderson 1983; Laird, Newell, and
Rosenbloom 1987) focuses on discovering the under-
lying mechanisms of human cognition. For example,
the adaptive control of thought (ACT family of cog-
nitive architectures includes semantic networks for
modeling long-term memory and production rules
for modeling reasoning, and learning mechanisms for
improving both (Anderson, Farrell, and Sauers 1984).

Work on multiagent systems (Genesereth and
Ketchpel 1994) has focused on building intelligent
systems that use coordination, and potentially com-
petition, among relatively simple, independently
constructed software agents to perform tasks that
normally require human intelligence. Minsky (1988)
explained that “each mental agent in itself can do
some simple thing that needs no mind or thought at
all. Yet when we join these agents in societies — in
certain very special ways — this leads to true intelli-
gence.”

Calm technology (Weiser and Brown 1996) sug-
gests that when peripheral awareness is engaged, peo-
ple can more readily focus their attention. People are
typically aware of a lot of peripheral information,
and something will move to the center of their atten-
tion, for example when they perceive that things are
not going as expected. They will then process the
item in focus, and when they are done it will fade
back to the periphery.

We have used these ideas as the basis for our vision
of symbiotic cognitive computing.

Principles of Symbiotic
Cognitive Computing

Our work leads us to propose five key principles of
symbiotic cognitive computing: context, connection,
representation, modularity, and adaption. These
principles suggest requirements for an effective sym-
biosis between intelligent agents and human partici-
pants in a physical environment.

The context principle states that the symbiosis

should be grounded in the current physical and cog-
nitive circumstances. The environment should main-
tain presence, track and reflect activity, and build and
manage context. To maintain presence, the environ-
ment should provide the means for intelligent agents
to communicate their availability and function, and
should attempt to identify people who are available
to engage with intelligent agents and with one
another. To track and reflect activity, the environ-
ment should follow the activity of people and
between people and among people, and the physical
and computational objects in the environment or
environments. It should, when appropriate, commu-
nicate the activity back to people in the environ-
ment. At other times, it should await human initia-
tives before communicating or acting. To build and
manage context, the environment should create and
maintain active visual and linguistic contexts within
and across environments to serve as common ground
for the people and machines in the symbiosis, and
should provide references to shared physical and dig-
ital artifacts and to conversational foci.

The connection principle states that the symbiosis
should engage humans and machines with one
another. The environment should reduce barriers,
distractions, and interruptions and not put physical
(for example, walls) or digital barriers (for example,
pixels) between people. The environment should,
when appropriate, detect and respond to opportuni-
ties to interact with people across visual and audito-
ry modalities. The environment should provide mul-
tiple independent means for users to discover and
interact with agents. It should enable people and
agents to communicate within and across environ-
ments using visual and auditory modalities. The
environment should also help users establish joint
goals both with one another and with agents. Final-
ly, the environment should include agents that are
cooperative with users in all interactions, helping
users understand the users’ own goals and options,
and conveying relevant information in a timely fash-
ion (Grice 1975).

The representation principle states that the symbiosis
should produce representations that become the
basis for communication, joint goals, and coordinat-
ed action between and among humans and
machines. The environment should maintain inter-
nal representations based on the tracked users, joint
goals, and activities that are stored for later retrieval.
The environment should externalize selected repre-
sentations, and any potential misunderstandings, to
coordinate with users and facilitate transfer of repre-
sentations across cognitive environments. Finally,
the environment should utilize the internal and
external representations to enable seamless context
switching between different physical spaces and
between different activities within the same physical
space by retrieving the appropriate stored represen-
tations for the current context.

Articles

FALL 2016 83

Articles

The modularity principle states that the symbiosis
should be driven by largely independent modular
composable computational elements that operate on
the representations and can be accessed equally by
humans and machines. The environment should
provide a means for modular software components
to describe themselves for use by other agents or by
people in the environment. The environment should
also provide a means of composing modular software
components, which perform limited tasks with a sub-
set of the representation, with other components, to
collectively produce behavior for agents. The envi-
ronment should provide means for modular software
components to communicate with one another inde-
pendently of the people in the environment.

Finally, the adaptation principle states that the sym-
biosis should improve with time. The environment
should provide adequate feedback to users and
accept feedback from users. Finally, the environment
should incrementally improve the symbiosis from
interactions with users and in effect, learn.

We arrived at these principles by reflecting upon
the state of human-computer interaction with intel-
ligent agents and on our own experiences attempt-
ing to create effective symbiotic interactions in the
CEL. The context principle originates from our obser-
vation that most conversational systems operate
with little or no linguistic or visual context. Break-
downs often occur during human-machine dialogue
due to lack of shared context. The connection prin-
ciple arises out of our observation that today’s
devices are often situated between people and
become an impediment to engagement. The repre-
sentation principle was motivated by our observation
that people often resolve ambiguities, disagreements,
and diverging goals by drawing or creating other
visual artifacts. The use of external representations
reduces the domain of discourse and focuses parties
on a shared understanding. The modularity principle
arose from the practical considerations associated
with building the system. We needed ways of adding
competing or complementary cogs without reimple-
menting existing cogs. The adaptation principle was
motivated by the need to apply machine learning
algorithms to a larger range of human-computer
interaction tasks. Natural language parsing, multi-
modal reference resolution, and other tasks should
improve through user input and feedback.

One question we asked ourselves when designing
the principles was whether they apply equally to
human-human and human-computer interaction.
Context, connection, representation, and adaptation
all apply equally well to these situations. The modu-
larity principle may appear to be an exception, but
the ability to surface cogs to both human and com-
puter participants in the environment enables both
better collaboration and improved human-computer
interaction.

Cognitive environments that implement these

84 Al MAGAZINE

requirements enable people and intelligent agents to
be mutually aware of each others’ presence and activ-
ity, develop connections through interaction, create
shared representations, and improve over time. By
providing both intelligent agents and human partic-
ipants with access to the same representations and
the same computational building blocks, a natural
symbiosis can be supported.

It is impossible to argue that we have found a
definitive set of principles; future researchers may
find better ones or perhaps more self-evident ones
from which the ones we have articulated can be
derived. It may even be possible to create a better
symbiotic cognitive system than any we have created
and not obey one or more of our principles. We look
forward to hearing about any such developments.

We are starting to realize these principles and
requirements by building prototype cognitive envi-
ronments at IBM Research laboratories worldwide.

The Cognitive Environments
Laboratory

The Cognitive Environments Laboratory is located at
the IBM T. J. Watson Research Center in Yorktown
Heights, New York. The lab is meant to be a test bed
for exploring what various envisioned cognitive envi-
ronments might be like. It is more heavily instru-
mented than the vast majority of our envisioned cog-
nitive environments, but the idea is that over time
we will see what instrumentation works and what
does not. The lab is focused on engaging users with
one another by providing just the right technology to
support this engagement.

Perhaps the most prominent feature of the CEL is
its large number of displays. In the front of the room
there is a four by four array of high definition moni-
tors (1920 x 1080 pixel resolution), which act like a
single large display surface. On either side of the
room are two pairs of high definition monitors on
tracks. These monitor pairs can be moved from the
back to the front of the room along tracks inlaid in
the ceiling, enabling fast and immediate reconfigura-
tion of the room to match many meeting types and
activities. In the back of the room there is an 84-inch
touch-enabled 3840 x 2160 pixel display. The moni-
tors are laid out around the periphery of the room.
Within the room, visual content can either be moved
programmatically or with the aid of special ultra-
sound-enabled pointing devices called “wands” or
with combinations of gesture and voice, from moni-
tor to monitor or within individual monitors.

In addition to the displays, the room is outfitted
with a large number of microphones and speakers.
There are several lapel microphones, gooseneck
microphones, and a smattering of microphones
attached to the ceiling. We have also experimented
with array microphones that support “beam form-
ing” to isolate the speech of multiple simultaneous

speakers without the need for individual micro-
phones.

An intelligent agent we named Celia (cognitive
environments laboratory intelligent agent) senses the
conversation of the room occupants and becomes a
supporting participant in meetings. With the aid of a
speech-to-text transcription system, the room can
document what is being said. Moreover, the text and
audio content of meetings is continuously archived.
Participants can ask, for example, to recall the tran-
script or audio of all meetings that discussed “graph
databases” or the segment of the current meeting
where such databases were discussed. Transcribed
utterances are parsed using various natural language
processing technologies, and may be recognized as
commands, statements, or questions. For example,
one can define a listener that waits for key words or
phrases that trigger commands to the system to do
something. The listener can also test whether certain
preconditions are satisfied, such as whether certain
objects are being displayed. Commands can invoke
agents that retrieve information from the web or
databases, run structured or unstructured data ana-
lytics, route questions to the Watson question-
answering system, and produce interactive visualiza-
tions. Moreover, with the aid of a text-to-speech
system, the room can synthesize appropriate respons-
es to commands. The system can be configured to use
the voice of IBM Watson or a different voice.

In addition to the audio and video output sys-
tems, the room contains eight pan-tilt-zoom cam-
eras, four of which are Internet Protocol (IP) cam-
eras, plus three depth-sensing devices, one of which
is gimbal mounted with software-controllable pan
and tilt capability. The depth-sensing systems are
used to detect the presence of people in the room
and track their location and hand gestures. The cur-
rent set of multichannel output technologies (that
is, including screens and speakers) and multichannel
input technologies (that is, keyboard, speech-to-text,
motion) provide an array of mixed-initiative possi-
bilities.

People in the CEL can simultaneously gesture and
speak to Celia to manipulate and select objects and
operate on those objects with data analytics and serv-
ices. The room can then generate and display infor-
mation and generate speech to indicate objects of
interest, explain concepts, or provide affordances for
further interaction. The experience is one of inter-
acting with Celia as a gateway to a large number of
independently addressable components, cogs, many
of which work instantly to augment the cognitive
abilities of the group of people in the room.

Dependence on a single modality in a complex
environment generally leads to ineffective and
inconvenient interactions (Oviatt 2000). Environ-
ments can enable higher level and robust interac-
tions by exploiting the redundancy in multimodal
inputs (speech, gesture, vision). The integration of

speech and gesture modalities has been shown to
provide both flexibility and convenience to users
(Krum 2002). Several prototypes have been imple-
mented and described in the literature. Bolt (1980)
used voice and gesture inputs to issue commands to
display simple shapes on a large screen. Sherma
(2003) and Carbini (2006) extended this idea to a
multiuser interaction space. We have built upon the
ideas in this work in creating the mergers and acqui-
sitions application.

Mergers and Acquisitions
Application

In 2014 and 2015 we built a prototype system, situ-
ated in the Cognitive Environments Laboratory, for
exploring how a corporate strategy team makes deci-
sions regarding potential mergers and acquisitions.
As depicted in figure 2, one or more people can use
speech and gestures to interact with displayed objects
and with Celia. The system has proven useful for
exploring some of the interaction patterns between
people and intelligent agents in a high-stakes deci-
sion-making scenario, and for suggesting architec-
tural requirements and research challenges that may
apply generally to symbiotic cognitive computing
systems.

In the prototype, specialists working on mergers
and acquisitions try to find reasonable acquisition
targets and understand the trade-offs between them.
They compare companies side by side and receive
guidance about which companies are most aligned
with their preferences, as inferred through repeated
interactions. The end result is a small set of compa-
nies to investigate with a full-fledged “due diligence”
analysis that takes place following the meeting.

When the human collaborators have interacted
with the prototype to bring it to the point depicted
in figure 2, they have explored the space of mergers
and acquisitions candidates, querying the system for
companies with relevant business descriptions and
numeric attributes that fall within desired ranges,
such as the number of employees and the quarterly
revenue. As information revealed by Celia is inter-
leaved with discussions among the collaborators,
often triggered by that information, the collaborators
develop an idea of which company attributes matter
most to them. They can then invoke a decision table
to finish exploring the trade-offs.

Figure 3 provides a high-level view of the cognitive
environment and its multiagent software architec-
ture. Agents communicate with one another through
a publish-and-subscribe messaging system (the mes-
sage broker) and through HTTP web services using
the Representational State Transfer (REST) software
design pattern. The system functions can be divided
into command interpretation, command execution,
agent management, decision making, text and data
analysis, text-to-speech, visualization, and manage-

Articles

FALL 2016 85

Articles

Winlfram

Figure 2. The Mergers and Acquisitions Prototype Application.

People working with one another and with Celia to discover companies that match desired criteria obtain detailed information about like-
ly candidates and winnow the chosen companies down to a small number that are most suitable.

ment. We explain each of these functions in the sec-
tions that follow.

Command Interpretation

The system enables speech and gesture to be used
together as one natural method of communication.
Utterances are captured by microphones, rendered
into text by speech recognition engines, and pub-
lished to a “transcript” message channel managed by
the message broker. The message broker supports
high-performance asynchronous messaging suitable
for the real-time concurrent communication in the
cognitive environment.

We have tested and customized a variety of speech-
recognition engines for the cognitive environment.
The default engine is IBM Attila (Soltau, Saon, and
Kingsbury 2010). It has two modes: a first that ren-
ders the transcription of an utterance once a break is
detected on the speech channel (for example, half a
second of silence), and a second that renders a word-
by-word transcription without waiting for a pause. In
the former mode there is some probability that sub-
sequent words will alter the assessment of earlier
words. We run both modes in parallel to enable

86 Al MAGAZINE

agents to read and publish partial interpretations
immediately.

Position and motion tracking uses output from the
position and motion sensors in combination with
visual object recognition using input from the cam-
eras to locate, identify, and follow physical objects in
the environment. The user identity tracking agent
maps recognized people to unique users using
acoustic speaker identification, verbal introduction
(“Celia, I am Bob”), facial recognition upon entry, or
other methods. The speaker’s identity, if known, is
added to each message on the transcript channel,
making it possible to interleave dialogues to some
degree, but further research is needed to handle com-
plex multiuser dialogues. The persistent session infor-
mation includes persistent identities for users,
including name, title, and other information collect-
ed during and across sessions.

The natural language parsing agent subscribes to
the transcript channel, processes text transcriptions
of utterances containing an attention word (for
example, “Celia” or “Watson”) into a semantic repre-
sentation that captures the type of command and
any relevant parameters, and publishes the represen-
tation to a command channel. Our default parser is

Articles

! Software —
! Subsystem Decision Agents

(Probabilistic Decision
Support)

Analysis Agents

(Query Processor, Concept
Analyzer, Documents &

Visualization Agents

(Decision Table, Cog
Browser, Information

Databases) Formatter & Graph Viewer
Named Entity >
Resolution Command Executor —»| Text to Speech
A
Natural
Language Gestural &
Parsing Linguistic
A
< Reference
Command
User Identity || Message Expression
Tracking Broker | ————> Speech Transcript
|) Y Y
Speech Visual Object &IE) cl)\jlglt?gn Psegsslzitsr? t Display
Recognition Recognition Tracking T et S Manager
N
: Hardware
i Subsystem : Position :
: Microphones Cameras & Motion Displays Speakers
Sensors

Figure 3. Architecture of the Mergers and Acquisitions Prototype.

based on regular expression matching and template
filling. It uses a hierarchical, composable set of func-
tions that match tokens in the text to grammatical
patterns and outputs a semantic representation that
can be passed on to the command executor. Most
sentences have a subject-verb-object structure, with
“Celia” as the subject, a verb that corresponds to a
primitive function of one of the agents or a more
complex domain-specific procedure, and an object
that corresponds to one or more named entities, as
resolved by the named entity resolution agent, or
with modifiers that operate on primitive types such
as numbers or dates. Another parser we have running
in the cognitive environment uses a semantic gram-
mar that decomposes top-level commands into ter-
minal tokens or unconstrained dictation of up to five
words. The resulting parse tree is then transformed
into commands, each with a set of slots and fillers
(Connell 2014). A third parser using Slot Grammar
(SG) is from the Watson System (McCord, Murdock,
and Boguraev 2012). It is a deep parser, producing
both syntactic structure and semantic annotations
on input sentences. Interrogatives can be identified

by the SG parser and routed directly to a version of
the IBM Watson system, with the highest confidence
answer generated back to the user through text-to-
speech.

An important issue that arose early in the devel-
opment of the prototype was the imperfection of
speech transcription. We targeted a command com-
pletion rate of over 90 percent for experienced users,
but with word-recognition accuracies in the low to
mid 90 percent range and commands ranging from 5
to 20 or more words in length, we were not achiev-
ing this target. To address this deficiency, we devel-
oped several mechanisms to ensure that speech-
based communication between humans and Celia
would work acceptably in practice. First, using a half
hour of utterances captured from user interaction
with the prototype, we trained a speech model and
enhanced this with a domain-specific language mod-
el using a database of 8500 company names extract-
ed from both structured and unstructured sources.
The named entity resolution agent was extended to
resolve acronyms and abbreviations and to match
both phonetically and lexicographically. To provide

FALL 2016 87

Articles

better feedback to users, we added a speech tran-
script. Celia’s utterances are labeled with “Celia,” and
a command expression is also shown to reflect the
command that the system processed. If the system
doesn’t respond as expected, users can see whether
Celia misinterpreted their request, and if so, reissue
it. Finally, we implemented an undo feature to sup-
port restoration of the immediately prior state when
the system misinterprets the previous command.

The gestural and linguistic reference agent is
responsible for fusing inputs from multiple modes
into a single command. It maintains persistent refer-
ents for recently displayed visual elements and
recently mentioned named entities for the duration
of a session. When Celia or a user mentions a partic-
ular company or other named entity, this agent cre-
ates a referent to the entity. Likewise, when the dis-
play manager shows a particular company or other
visual element at the request of a user or Celia, a ref-
erent is generated. Using the referents, this agent can
find relevant entities for users or Celia based on lin-
guistic references such as pronouns, gestures such as
pointing, or both. Typically the referent is either
something the speaker is pointing toward or is some-
thing that has recently been mentioned. In the event
that the pronoun refers to something being pointed
at, the gestural and linguistic reference agent may
need to use the visual object recognition’s output, or
if the item being pointed at resides on a screen, the
agent can request the virtual object from the appro-
priate agent.

Command Execution

The command executor agent subscribes to the com-
mand channel and oversees command execution.
Some of its functions may be domain-specific. The
command executor agent communicates over HTTP
web services to the decision agents, analysis agents,
and visualization agents. Often, the command execu-
tor serves as an orchestrator, calling a first agent,
receiving the response, and reformulating that
response to another agent. Thus, the command
executor maintains state during the utterance. A sin-
gle request from a user may trigger a cascade of agent-
to-agent communication throughout the command
execution part of the flow, eventually culminating in
activity on the displays and/or synthesized speech
being played over the speakers.

Decision Making

In the mergers and acquisitions application, people
have high-level goals that they want the system to
help them achieve. A common approach from deci-
sion theory is to specify a utility function (Walsh et
al. 2004). Given a utility function defined in terms of
attributes that are of concern to the user, the system’s
objective is to take actions or adjust controls so as to
reach a feasible state that yields the highest possible
utility. A particularly attractive property of this

88 Al MAGAZINE

approach is that utility can be used to propagate
objectives through a system from one agent to anoth-
er. However, experience with our symbiotic cognitive
computing prototype suggests that this traditional
approach misses something vital: people start with
inexact notions of what they want and use computa-
tional tools to explore the options. It is only during
this sometimes-serendipitous exploration process
that they come to understand their goals better. Cer-
tain companies appeal to us, sometimes before we
even know why, and it can take a serious introspec-
tion effort (an effort that may be assisted by the cog-
nitive system) to discover which attributes matter
most to us or to realize we may be biased. This real-
ization prompted us to design a probabilistic decision
support agent (Bhattacharjya and Kephart 2014).
This agent starts with a set of candidate solutions to
the decision support problem and attributes, and a
highly uncertain model of user preferences. As the
user accepts or rejects its recommendations, or
answers questions about trade-offs, the agent pro-
gressively sharpens its understanding of the users’
objectives, which it models as a probability distribu-
tion of weights in the space of possible utility func-
tions. The agent is able to recommend filtering
actions, such as removing companies or removing
attributes, to help users converge on a small number
of targets for mergers and acquisitions.

Text and Data Analysis

The concept analyzer agent provides additional data
for decision making by extracting concepts and rela-
tionships from documents. While IBM Watson was
trained for general question answering using prima-
rily open web sources such as Wikipedia, we antici-
pate that most applications will also involve har-
nessing data from private databases and third-party
services. For the mergers and acquisitions applica-
tion, we developed a large database of company
annual reports. Concepts extracted from the reports
can be linked to the companies displayed in the
graph viewer and when a user asks for companies
similar to a selected company, the system is able to
retrieve companies through the concepts and rela-
tionships. The query processor agent provides a
query interface to a database of company financial
information, such as annual revenue, price-earnings
ratio, and income.

Persistent Session Information

We have added the ability for the cognitive environ-
ment to capture the state of the interaction between
users and agents either as needed or at the end of a
session. It does this by creating a snapshot of what
agents are active, what is being displayed, what has
been said, and what commands have been complet-
ed. The snapshots are saved and accessible from any
device thus enabling users to take products of the
work session outside of the cognitive environment.

The session capture feature allows users to review
past decisions and can support case-based reasoning
(Leake 1996). It also provides continuity because
users can stop a decision-making process and contin-
ue later. Finally, it allows for some degree of portabil-
ity across multiple cognitive environments.

Text-to-Speech

The text-to-speech agent converts text into spoken
voice. The current system has a choice of two voices:
a North American English female voice or a North
American English male voice (which was used by the
IBM Watson system). In order to keep interruptions
to a minimum, the speech output is used sparingly
and usually in conjunction with the visual display.

Visualization

The visualization agents work in the cognitive envi-
ronment’s multiuser multiscreen networked environ-
ment. Celia places content on the 25 displays and
either the visualization agents or the users then
manipulate the content in three dimensions. We
designed the M&A application visualizations to work
together in the same visual space using common
styles and behaviors. The display manager coordi-
nates content placement and rendering using place-
ment defaults and constraints. The cog browser
enables people to find and learn about the available
cogs in the cognitive environment. It displays a cloud
of icons representing the society of cogs. The icons
can be expanded to reveal information about each
cog and how they are invoked.

Many agents have functions that can be addressed
through speech commands or through gesture. For
example, the information formatter can display com-
pany information (on the right in figure 2) and
allows a user to say “products” or select the products
tab to get more information about the company’s
products. In addition, many of the agents that pro-
vide building blocks for Celia’s decision-making
functions are cogs that are also independently
addressable through visual interfaces and speech
commands. For example, the graph viewer can be
used by Celia to recommend companies but is also
available to users for visualizing companies meeting
various criteria.

Agent Management

We have implemented several management modules
that operate in parallel with the other parts of the
system to allow agents to find instances of other
agents that are running and thereby enable discov-
ery and communication. When an agent is first
launched, it registers itself to a life-cycle manager
module to advertise its REST interfaces and types of
messages it publishes over specific publish-and-sub-
scribe channels. When an agent requires the services
of a second agent, it can locate an instance of the sec-
ond agent by querying the lifecycle manager, there-

Articles

Exchange 1

Brian: Celia, this is Brian. | need help with acquisitions.
Celia: Hello Brian, how can | help you with mergers and acquisitions?

Exchange 2
Brian: Celia, show me companies with revenue between $25 million and $50
million and between 100 and 500 employees, pertaining to analytics.

Celia: Here is a graph showing 96 companies pertaining to biotechnology
(Celia displays the graph).

Exchange 3
Brian: Celia, place the companies named brain science, lintolin, and tata, in a
decision table.

Celia: Ok. (Celia shows a table with the 3 companies, one per row, and with
columns for the name of the company, the revenue, and number of employees).

Celia: | suggest removing Lyntolin. Brain Sciences, Incorporated has greater
revenue and greater number of employees (Celia highlights Brain Sciences and Lyntolin).

Figure 4. A Sample Dialogue Processed
by the Mergers and Acquisitions Prototype.

by avoiding the need to know details of the second
agent’s running instance.

The agents used in the M&A application and oth-
ers are available as cogs in the CEL and work as one
intelligent agent to provide access to cognitive com-
puting services. Taken together, the agents provide a
completely new computing experience for business
users facing tough decisions.

A sample dialogue is shown in figure 4. To handle
exchange 1, the system processes the first sentence
using the speech recognition engine and sends a
message with the transcribed text to the message
broker on the transcript channel. The natural lan-
guage parser listens on the transcript channel and
publishes a semantic representation based on a
dependency parse of the input that identifies the
name Brian in the object role. The user identity
tracking agent resolves the name against the persist-
ent identifier for Brian and publishes a command on
the command channel with a set user identifier. The
command executor then requests the speech recog-
nition agent to start using the speaker’s speech mod-
el. The next sentence is processed similarly, but the
gestural and linguistic reference agent resolves “I” to
“Brian.” The verb “help” is recognized as the main
action and the actor is the persistent identifier for
Brian. The command executor recognizes the repre-
sentation as the initialization of the mergers and
acquisitions application using a pattern rule. It calls
the display manager, which saves and hides the state
of the displays. The command executor then gener-
ates the response that is sent to the text to speech
agent. This requires querying the user identity track-

FALL 2016 89

Articles

ing agent to map the persistent identifier for Brian to
his name.

To handle exchange 2, a similar flow happens,
except the command executor calls the query proces-
sor agent to find companies matching the revenue
and company size criteria. Upon receiving the
response, the command executor calls the graph
viewer, which adds nodes representing each match-
ing biotechnology company to a force-directed graph
on the display (in the center in figure 2). The com-
mand executor also calls the text-to-speech agent to
play an acknowledgement over the speakers. The
user can then manipulate the graph using gestures or
issue further speech commands.

For exchange 3, the command executor first calls
the named entity resolver three times to resolve the
exact names of the companies referred to by the user;
for example it might resolve “brain science” into
“Brain Sciences, Incorporated.” Upon receiving these
responses, the command executor calls the query
processor agent to obtain company information,
which it then sends to the probabilistic decision sup-
port agent. This agent must interact with the deci-
sion table agent, which in turn uses the display man-
ager to display the output to the user. While all of
this is happening, the executor also calls the text-to-
speech agent to acknowledge the user’s request.
Coordination between speech and display thus hap-
pens in the command executor. During this interac-
tion, the transcript displayer and command display-
er display the utterance and the interpreted
command.

In the next section, we discuss our work to date on
the cognitive environment in terms of both prior
work and our original symbiotic cognitive comput-
ing principles.

Discussion

Prior intelligent decision-making environments
focus primarily on sensor fusion, but fall short of
demonstrating an intelligent meeting participant
(Ramos et al 2010). The New EasyLiving Project
attempted to create a coherent user experience, but
was focused on integrating I/O devices (Brumitt et al.
2000). The NIST Meeting Room has more than 280
microphones, seven HD cameras, a smart white-
board, and a locator system for the meeting attendees
(Stanford et al. 2003), but little in the way of intelli-
gent decision support. The CALO (Cognitive Assis-
tant that Learns and Organizes) DARPA project
includes a meeting assistant that captures speech,
pen, and other meeting data and produces an auto-
mated transcript, segmented by topic, and performs
shallow discourse understanding to produce a list of
probable action items (Voss and Ehlen 2007), but it
does not focus on multimodal interaction.

The experience of building and using the M&A
application has been valuable in several respects.

90 AI MAGAZINE

First, while we haven’t yet run a formal evaluation,
we’ve found that the concept of a cognitive environ-
ment for decision making resonates well with busi-
ness users. To date we have now had more than 50
groups of industry executives see a demonstration
and provide feedback. We are now working closely
with the mergers and acquisitions specialists at IBM
to bring aspects of the prototype into everyday use.
Second, the prototype has helped us to refine and at
least partially realize the symbiotic cognitive com-
puting principles defined in this article, and to gain a
better understanding of the nature of the research
challenges. Here we assess our work on the prototype
in terms of those principles.

First, how much of the symbiosis is grounded in
the physical and cognitive circumstances? We have
just started to explore the use of physical and lin-
guistic context to shape the symbiosis. Some aspects
of maintaining presence are implemented. For exam-
ple, motion tracking and visual recognition are used
to capture the presence of people in the room. How-
ever, endowing intelligent agents with the ability to
effectively exploit information about individual peo-
ple and their activities and capabilities remains a sig-
nificant research challenge. Multiple people in the
cognitive environment can interact with the system,
but the system’s ability to associate activities with
individual users is limited. The session capture agent
tracks both human commands and agent actions, but
additional work is required to reflect the activity of
people and agents in the environment back to par-
ticipants. The linguistic and gestural reference agent
maintains some useful context for switching between
applications, but additional research is needed to
exploit this context to enable an extended dialogue.

Second, how much does the cognitive environ-
ment support the connection principle, enabling
people and intelligent agents to engage with one
another? We feel that the architecture and imple-
mentation support all of the requirements, at least to
some degree. First, barriers between human intention
and system execution are reduced by multimodal
interactions that allow users to converse with the sys-
tem almost as if it were a human partner rather than
having to deal with the cumbersome conventions of
typical user interfaces, but the lack of affordances in
speech-based interaction remains a challenge. The
cog browser provides users with some understanding
of the capabilities of various cogs but the system does
not offer assistance. The system supports interactions
across multiple environments; cogs can in effect fol-
low the user to different physical spaces, marshaling
the input and output resources that they find there —
thereby reducing the time required to initiate system
computations and actions when moving across cog-
nitive environments. The cognitive environment
cooperates with users in multiple ways: decision
agents use elicitation techniques to develop an
understanding of user goals and trade-offs and then

to guide users toward decisions that best realize
them, Celia listens for commands and the command
executor responds only when adequate information
is available for a response. Because multiple users can
see the same display and Celia has access to displayed
objects through the display manager, Celia can track
and respond to their coordinated actions.

Does the cognitive environment support the rep-
resentation principle? The CEL and its agents main-
tain representations that are the basis for communi-
cation between participants and with Celia. The
identity and location of users in the room, the devel-
oping conversation with Celia and recognized com-
mands, and the state of ongoing decisions are all cap-
tured, externalized, and shared outside the
environment, providing common ground between
both people in the physical environment and those
connected to the environment only remotely or peri-
odically. In future work, we would like to recognize
individual differences in representation preferences,
and be able to conduct “private” interactions with
individual users through the media of their choice.

We have realized the modularity requirements of
self-description, composition, and intercomponent
communication by implementing the cognitive envi-
ronment as a multiagent system. Some agents are
strongly human centered, providing services such as
speech and gesture transcription, speech synthesis, or
visualization. Others mainly serve the needs of other
agents. For example, the life-cycle manager facilitates
agent communication and composition by enabling
agents to advertise their capabilities to one another
and use one another’s services. An important research
challenge is to create deeper semantic descriptions of
services to allow users to select and compose services
as needed through natural language dialogue.

How does the cognitive environment support
adaptation, improving with time? Currently most of
the system’s improvement is offline, not during the
dialogue. For example, we trained speech models and
extended the language model with custom diction-
aries. Users’ gestural vocabularies could also be mod-
eled and interpreted, or we could develop individu-
alized models of combinations of speech, gesture,
and larger movements. We currently capture useful
data during interactions with users that can be used
to improve interactions in the future. For example,
the system captures linguistic and gestural context,
which can in principle be mined by other agents
seeking to detect patterns that might be used to bet-
ter anticipate user needs. Ultimately we would like
cognitive systems to adapt to users’ goals and capa-
bilities, available I/O resources, and available cogs to
maximize the effectiveness of the entire session and
improve the symbiotic relationship between users
and the system.

Despite our successes with engineering a symbiot-
ic cognitive computing experience, practical applica-
tions continue to be a challenge: speech commands

in a noisy room are often misrecognized and we can-
not reliably identify individual speakers, the tracking
of gestures is still error prone with both wands and
hand gestures, and natural language inputs require
domain-specific natural language engineering to
map commands to the proper software services and
invoke decision, analysis, and visualization agents.
Despite these challenges, the cognitive environment
provides a valuable test bed for integrating a variety
of IBM Research cognitive computing technologies
into new scenarios and business applications.

Conclusions

This article introduced our work on symbiotic cog-
nitive computing. We outlined five principles: con-
text, connection, representation, modularity, and
adaptation, and we showed how key requirements
that flow from these principles could be realized in a
cognitive environment. We have started to apply
this environment to real business problems, includ-
ing strategic decision making for corporate mergers
and acquisitions.

Reaching a true symbiosis between cognitive com-
puting and human cognition is a significant multi-
year challenge. The IBM Watson question-answering
system and other intelligent agents can be embed-
ded in physical spaces, but additional research is
needed to create cognitive computing systems that
can truly sense the world around them and fully
interact with people to solve difficult problems.

Our future directions include detection and
understanding of emotion, cognitive computing in
virtual and mixed reality, simultaneous speech and
gesture understanding, integration of uncertain data
from sensors into real-time interaction, and machine
learning to improve decisions over time. We are also
interested in exploring tasks such as information dis-
covery, situational assessment, and product design
where difficult decisions require bringing together
people who have complementary skills and experi-
ence and providing them with large amounts of
structured and unstructured data in one collabora-
tive multisensory multimodal environment.

The IBM Watson Jeopardy! system demonstrated
the ability of machines to achieve a high level of per-
formance at a task normally considered to require
human intelligence. We see symbiotic cognitive
computing as the next natural step in the evolution
of intelligent machines: creating machines that are
embedded in the world and integrate with every
aspect of life.

Acknowledgements

Thanks also to Wendy Kellogg, Werner Geyer, Casey
Dugan, Felicity Spowart, Bonnie John, Vinay
Venkataraman, Shang Gao, Mishal Dholakia, Tomas
Beren, Yedendra Shirnivasan, Mark Podlaseck, Lisa
Amini, Hui Su, and Guru Banavar.

Articles

FALL 2016 91

Articles

References

Anderson, J. 1983. The Architecture of Cognition. Mahwah,
NJ: Lawrence Erlbaum Associates.

Anderson, J.; Farrell, R.; and Sauers, R. 1984. Learning to
Program in LISP. Cognitive Science 8(2): 87-129.
dx.doi.org/10.1207/s15516709cog0802_1

Bhattacharjya, D., and Kephart, J. O. 2014. Bayesian Inter-
active Decision Support for Multi-Attribute Problems with
Even Swaps. In Proceedings of the 30th Conference on Uncer-
tainty in Artificial Intelligence, 72-81. Seattle, WA: AUAI Press.
Bolt, R. A. 1980. Put-That-There. In Proceedings of the 7th
Annual Conference on Computer Graphics and Interactive Tech-
niques: SIGGRAPH ‘80, 262-270. New York: Association for
Computing Machinery. dx.doi.org/10.1145/800250.807503

Brumitt, B. L.; Meyers, B.; Krumm, J.; Kern, A.; and Shafer,
S. 2000. EasyLiving: Technologies for Intelligent Environ-
ments. In Handheld and Ubiquitous Computing, 2nd Interna-
tional Symposium, September, Lecture Notes in Computer
science Volume 1927, ed P. Thomas and H.-W. Gellersen,
12-27. Berlin: Springer.

Carbini, S.; Delphin-Poulat, L.; Perron, L.; and Viallet, J.
2006. From a Wizard of Oz Experiment to a Real Time
Speech and Gesture Multimodal Interface. Signal Processing
86(12): 3559-3577. dx.doi.org/10.1016/j.sigpro.2006.04.
001.

Connell, J. 2014. Extensible Grounding of Speech for Robot
Instruction. In Robots That Talk and Listen, ed.]J.
Markowitz,175-201. Berlin: Walter de Gruyter GmbH and
Co.

Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.;
Kalyanpur, A. A,; Lally, A.; Murdock, J. W.; Nyberg, E.;
Prager, J.; Schlaefer, N.; and Welty, C. 2010. Building Wat-
son: An Overview of the DeepQA Project. Al Magazine 31(3):
59-79.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software
Agents. Communications of the ACM 37(7), 48-53. dx.doi.
org/10.1145/176789.176794

Grice, P. 1975. Logic and Conversation. In Syntax and
Semantics. 3: Speech Acts, ed. P. Cole and J. Morgan, 41-58.
New York: Academic Press.

Hutchins, E. 1995. Cognition in the Wild. Cambridge, MA:
The MIT Press.

Kelly, J., and Hamm, S. 2013. Smart Machines: IBM’s Watson
and the Era of Cognitive Computing. New York: Columbia Uni-
versity Press.

Krum, D.; Omoteso, O.; Ribarsky, W.; Starner, T.; and
Hodges, L. 2002. Speech and Gesture Multimodal Control
of a Whole Earth 3D Visualization Environment. In Pro-
ceedings of the 2002 Joint Eurographics and IEEE TCVG Sym-
posium on Visualization, 195-200. Goslar, Germany: Euro-
graphics Association.

Laird, J.; Newell, A.; and Rosenbloom, P. 1987. SOAR: An
Architecture for General Intelligence. Artificial Intelligence
33(1): 1-64. dx.doi.org/10.1016/0004-3702(87)90050-6
Langley, P; Laird, J. E.; and Rogers, S. 2009. Cognitive Archi-
tectures: Research Issues and Challenges. Cognitive Systems
Research 10(2): 141-160. dx.doi.org/10.1016/j.cogsys.2006.
07.004

Leake, D. B. 1996. Case-Based Reasoning: Experiences, Lessons,
and Future Directions. Menlo Park, CA: AAAI Press.
Licklider, J. C. R. 1960. Man-Computer Symbiosis. IRE
Transactions on Human Factors in Electronics Volume HFE-

92 AI MAGAZINE

1(1): 4-11. www.dx.doi.org/10.1109/THFE2.1960.4503259
McCord, M. C.; Murdock, J. W.; and Boguraev, B. K. 2012.
Deep Parsing in Watson. IBM Journal of Research and Devel-
opment 56(3.4): 3:1-3:15.

Minsky, M. 1988. The Society of Mind. New York: Simon and
Schuster.

Modha, D. S.; Ananthanarayanan, R.; Esser, S. K.; Ndirango,
A.; Sherbondy, A. J.; and Singh, R. 2011. Cognitive Com-
puting. Communications of the ACM 54(8): 62-71. dx.doi.
org/10.1145/1978542.1978559

Nardi, B. A. 1996. Activity Theory and Human-Computer
Interaction. In Context and Consciousness: Activity Theory and
Human-Computer Interaction, ed. B. Nard, 7-16. Cambridge,
MA: The MIT Press.

Oviatt, S.; and Cohen, P. 2000. Perceptual User Interfaces:
Multimodal Interfaces that Process what Comes Naturally.
Communications of the ACM 43(3): 45-53. dx.doi.org/10.
1145/330534.330538Ramos, C.; Marreiros, G.; Santos, R.;
and Freitas, C. F. 2010. Smart Offices and Intelligent Deci-
sion Rooms. In Handbook of Ambient Intelligence and Smart
Environments, ed. H. Nakashima, H. Aghajan, and J. C.
Augusto, 851-880. Berlin: Springer. dx.doi.org/10.1007/978-
0-387-93808-0_32

Romano, N. C., and Nunamaker, J. F. 2001. Meeting Analy-
sis: Findings from Research and Practice. In Proceedings of the
34th Annual Hawaii International Conference on System Sci-
ences. Los Alamitos, CA: IEEE Computer Society.

Sharma, R.; Yeasin, M.; Krahnstoever, N.; Rauschert, I.; Cai,
G.; Brewer, I.; MacEachren, A.; Sengupta, K. 2003. Speech-
Gesture Driven Multimodal Interfaces for Crisis Manage-
ment. Proceedings of the IEEE 91(9): 1327-1354. dx.doi.
org/10.1109/JPROC.2003.817145

Shrobe, H.; Coen, M.; Wilson, K.; Weisman, L.; Thomas, K.;
Groh, M.; Phillips, B.; Peters, S.; Warshawsky, N.; and Finin,
P. 2001. The Intelligent Room. MIT Al Laboratory AFRL-IF-
RS-TR-2001-168 Final Technical Report. Rome, New York:
Air Force Research Laboratory.

Soltau, H.; Saon, G.; and Kingsbury, B. 2010. The IBM Atti-
la Speech Recognition Toolkit. In 2010 IEEE Workshop on
Spoken Language Technology, SLT 2010 — Proceedings, 97—
102. Piscataway, NJ: Institute for Electrical and Electronics
Engineers. dx.doi.org/10.1109/s1t.2010.5700829

Stanford, V.; Garofolo, J.; Galibert, O.; Michel, M; and
Laprun, C. 2003. The (NIST) Smart Space and Meeting Room
Projects: Signals, Acquisition Annotation, and Metrics. In
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP '03), 4, 6-10. Piscat-
away, NJ: Institute for Electrical and Electronics Engineers.
dx.doi.org/10.1109/icassp.2003.1202748

Voss, L. L., and Ehlen, P. 2007. The CALO Meeting Assistant.
In Proceedings of Human Language Technologies: The Annual
Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations. Stroudsberg, PA:
Association for Computational Linguistics 2007.
dx.doi.org/10.3115/1614164.1614173

Walsh, W. E.; Tesauro, G.; Kephart, J. O.; and Das, R. 2004.
Utility Functions in Autonomic Systems. In Proceedings of the
1st International Conference on Autonomic Computing (ICAC
2004), 70-77. Piscataway, NJ: Institute for Electrical and
Electronics Engineers. dx.doi.org/10.1109/ICAC.2004.
1301349

Weiser, M., and Brown, J. S. 1996. Designing Calm Technol-
ogy. PowerGrid Journal 1.01, 1-5.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1207%2Fs15516709cog0802_1
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F800250.807503
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.sigpro.2006.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F176789.176794
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0004-3702%2887%2990050-6
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.cogsys.2006.07.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fwww.dx.doi.org%2F10.1109%2FTHFE2.1960.4503259
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1978542.1978559
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F330534.330538Ramos
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-0-387-93808-0_32
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FJPROC.2003.817145
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2Fslt.2010.5700829
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2Ficassp.2003.1202748
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.3115%2F1614164.1614173
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FICAC.2004.1301349
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.sigpro.2006.04.001
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F176789.176794
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.cogsys.2006.07.004
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F1978542.1978559
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F330534.330538Ramos
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-0-387-93808-0_32
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FJPROC.2003.817145
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FICAC.2004.1301349

Robert Farrell is a research staff member at the IBM T. J.
Watson Research Center in Yorktown Heights, NY, USA. He
has a long-term research interest in the cognitive processes
of human learning, knowledge representation, reasoning,
and language understanding. His past work includes cogni-
tive models, intelligent tutoring systems, and social com-
puting applications. He is currently working on software to
extract knowledge from unstructured information sources.

Jonathan Lenchner is chief scientist at IBM Research-
Africa. Previously he was one of the founders of the IBM
Cognitive Environments Lab in Yorktown Heights, NY. His
research interests include computational geometry, robot-
ics, Al, and game theory. His recent work includes research
on humanoid robots and development of an immersive
environment to help a professional sports team with trades
and draft picks.

Jeffrey Kephart is a distinguished research staff member at
IBM T. J. Watson Research Center, and a Fellow of the IEEE.
He is known for his work on computer virus epidemiology
and immune systems, self-managing computing systems,
electronic commerce, and data center energy management.
Presently, he serves as a principal investigator on a cognitive
computing research project with a large energy company
and leads work on applying intelligent agent technologies
to corporate mergers and acquisitions.

Alan Webb is a senior software engineer at the IBM T. J.
Watson Research Center. His present research interests are
focused upon applying the principles of distributed cogni-
tion as an inspiration for pervasive cognitive environments.
He is currently working on a generalized system architec-
ture for the cognitive environment and development of the
mergers and acquisitions application.

Michael Muller is a research staff member in the Cognitive
User Experience group at IBM Research in Cambridge, MA.
His research areas have included collaboration in health
care, metrics and analytics for enterprise social software,
participatory design, and organizational crowdfunding. His
current work focuses on employee experiences in the work-
place.

Thomas Erickson is a social scientist and interaction
designer at the IBM T. J. Watson Research Center. His
research has to do with designing systems that enable
groups of people to interact coherently and productively in
both virtual and real environments.

David Melville is a research staff member at IBM T. J. Wat-
son Research Center. His research interests include immer-
sive data spaces, spatial computing, adaptive physical archi-
tecture, and symbiotic experience design.

Rachel Bellamy is a principal research staff member and
group manager at IBM T. J. Watson Research Center and
heads the Research Design Center. Her general area of
research is human-computer interaction and her current
work focuses on the user experience of symbiotic cognitive
computing.

Daniel Gruen is a cognitive scientist in the Cognitive User
Experience group at IBM Research in Cambridge, MA. He is
interested in the design of systems that let strategic decision
makers seamlessly incorporate insights from cognitive com-
puting in their ongoing deliberations and creative thinking.
He is currently working with a variety of companies to under-
stand how such systems could enhance the work they do.

Jonathan Connell is a research staff member at IBM T. J.
Watson Research Center. His research interests include com-
puter vision, machine learning, natural language, robotics,
and biometrics. He is currently working on a speech-driven
reactive reasoning system for multimodal instructional dia-

logue.

Danny Soroker is a research staff member at IBM T. J. Wat-
son Research Center. His research interests include intelli-
gent computation, human-computer interaction, algo-
rithms, visualization, and software design. He is currently
working on agents to support problem solving and decision
making for corporate mergers and acquisitions.

Andy Aaron is a research staff member at IBM T. J. Watson
Research Center. He was on the speech team for the IBM
Watson Jeopardy! match. Along with his work in speech
synthesis and speech recognition, he has done sound design
for feature films and produced and directed TV and films.

Shari Trewin is a research staff member at IBM T. J. Watson
Research Center. Her current research interests include mul-
timodal human-computer interaction and accessibility of
computer systems. She is currently working on knowledge
extraction from scientific literature and interaction designs
for professionals working with this extracted knowledge.

Maryam Ashoori is a design researcher at IBM T. J. Watson
Research Center. She has a passion for exploring the inter-
section between art and computer science. Her work has
resulted in several novel applications for the Cognitive
Environments Laboratory, including a "Zen Garden” for
unwinding after a long day and a service for sparking cre-
ativity for inventors.

Jason Ellis is a research staff member at IBM T. J. Watson
Research Center. His research interests include social com-
puting and usability. He is currently working on collabora-
tive user interfaces for cognitive systems.

Brian Gaucher is senior manager of the Cognitive Envi-
ronments Laboratory at IBM T. J. Watson Research Center.
He leads teams specializing in user experience design and
physical infrastructure of cognitive computing environ-
ments. His work focuses on the creation of highly interac-
tive physical spaces designed to improve decision making
through always-on ambient intelligence.

Dario Gil is the vice president of science and technology
for IBM Research. As director of the Symbiotic Cognitive
Systems department, he brought together researchers in
artificial intelligence, multiagent systems, robotics,
machine vision, natural language processing, speech tech-
nologies, human-computer interaction, social computing,
user experience, and interaction design to create symbiotic
cognitive computing technology, services, and applications
for business.

Articles

FALL 2016 93

Articles

94 Al MAGAZINE

Remembering Marvin Minsky

Kenneth D. Forbus, Benjamin Kuipers,

B Marvin Minsky, one of the pioneers
of artificial intelligence and a renowned
mathematicial and computer scientist,
died on Sunday, 24 January 2016, of a
cerebral hemmorhage. He was 88. In
this article, Al scientists Kenneth D.
Forbus (Northwestern University), Ben-
jamin Kuipers (University of Michigan),
and Henry Lieberman (Massachusetts
Institute of Technology) recall their
interactions with Minksy and briefly
recount the impact he had on their lives
and their research. A remembrance of
Marvin Minsky was held at the AAAI
Spring Symposium at Stanford Univer-
sity on March 22. Video remembrances
of Minsky by Danny Bobrow, Benjamin
Kuipers, Ray Kurzweil, Richard Wal-
dinger, and others can be on the sentient
webpage! or on youtube.com.

The photographs in this article were
taken at the AAAI-05 conference in
Pittsburgh, Pennsylvania.

Henry Lieberman

Kenneth D. Forbus

In his 1960 essay, Steps Toward Artificial Intelligence, Marvin

wrote:
A visitor to our planet might be puzzled about the role of com-
puters in our technology. On the one hand, he would read and
hear all about wonderful “mechanical brains” baffling their cre-
ators with prodigious intellectual performance. And he (or it)
would be warned that these machines must be restrained, lest
they overwhelm us by might, persuasion, or even by the reve-
lation of truths too terrible to be borne. On the other hand, our
visitor would find the machines being denounced on all sides
for their slavish obedience, unimaginative literal interpreta-
tions, and incapacity for innovation or initiative; in short, for
their inhuman dullness.

Similar conversations are being held today. But the balance
has shifted. In the 1960s through the 1980s many philoso-
phers and physicists made public comments that AI was
impossible, and its seeming achievements illusory. Today, of
course, physicists and philosophers are more likely to issue
dire warnings about the dangers of Al. That shows just how
far this young scientific enterprise has come since its found-
ing, by Marvin Minsky, John McCarthy, Allen Newell, Herb
Simon, and others, only 60 years ago.

Marvin was a cognitive scientist before the term was
invented. He looked to psychology, neuroscience, and biolo-
gy for clues to how minds worked, pulling together disparate
ideas through the lens of computation. While all of his work
has been influential, his final book, The Emotion Machine,
provides a grand synthesis that is worthwhile reading for
anyone interested in Al

In popular histories, Marvin has often been caricatured as
an enemy of neural models. Nothing could be further from

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=94&exitLink=http%3A%2F%2Fyoutube.com

=3

W . G B W—

A, “’-

© 2005, AAAI

-~

the truth. His interest in modeling brains as well as
minds was clear to all who knew him. For example,
it was Marvin who invited a freshly minted Ph.D.,
David Marr, whose thesis was a mathematical model
of the cerebellum, to join the Al Lab as a research sci-
entist. What Marvin could not abide were people
who did not clearly understand the limitations of
their models. Minsky and Papert’s analysis of percep-
trons provided needed clarity, delineating important
theoretical limitations on them. In his preface to the
second edition of Perceptrons, Marvin pointed out
that Rumelhart and McClelland’s own data showed
that their networks could not learn exclusive-or with-
out exponential amounts of data, as he predicted.
Similarly, Marvin was impatient with the primitive
neuroscience techniques such as single-cell record-
ings available for much of his life. The widespread
adoption of imaging techniques by neuroscientists
suggests that many modern researchers agree as to
the power of analyzing larger-scale neural systems.

I was lucky enough to start working at the MIT Al
Lab from the second week of my freshman year at
MIT in 1973, through the end of my Ph.D. work in
1984. Staying at the same institution was more com-
mon in those days. Al labs were very few in number
— most universities didn’t have them. Such labs had
access to resources, like computers and the ARPANET,
that most students didn’t have access to, even on the

Articles

MIT campus. Marvin had created a vibrant, thriving
laboratory. He loved to play with ideas, with anyone
who was interested. He could often be found in the
Playroom, a large open space, riffing about Al or just
about any other aspect of science or engineering (or
science fiction).

Like many brilliant people, Marvin could be eccen-
tric. For example, his basement was legendary for
being a kind of Sargasso Sea of papers and artifacts. In
fact, I saw a talk by a historian in the Playroom on
the history of Lisp that used it as a resource. The his-
torian dated events in Lisp’s creation by treating Mar-
vin’s basement as an archeological dig site, dating
documents based on their position within layers of
other papers. Marvin'’s desk was similarly cluttered.
This was a challenge for students who needed to get
a copy of their thesis to him to read, since the docu-
ment would quickly vanish into the morass. (People
didn’t read on screen back then, there weren’t
enough computers around.) Students came up with
various ways to ensure that their document attracted
Marvin’s attention. My technique was to use a tele-
phone cord to hang the thesis from the ceiling so
that it dangled over the middle of his desk, at eye lev-
el, bobbing gently. But his comments, once you got
his attention, were always insightful.

Artificial intelligence has come a long way in just
60 years. The scientific and engineering triumphs

FALL 2016 95

Articles

have already changed our lives in many ways, and
this process will continue for the foreseeable future.
And in doing so, we will continue that voyage that
Marvin and others started, to understand minds by
building them.

Benjamin Kuipers

Marvin Minsky was my advisor, and he was very
important in my life.

My story starts back when I was in high school,
and my dad and I would take long walks, talking
about math, science, and the nature of the mind. We
agreed that this was one of the great scientific prob-
lems of all time. I couldn’t wait to get to college, so I
could take a psychology course, and learn about the
science of the mind.

Well, I got to college. And I took a psychology
course. And it was a crashing disappointment. The
interesting parts weren’t rigorous, and the rigorous
parts weren'’t interesting. So I decided I had guessed
wrong about psychology, and majored in mathemat-
ics. After college, I went to MIT for graduate school in
pure math. I was planning to be pure as the driven
snow, committed to crystalline mathematical beau-
ty.

But in the spring of 1973, just as a lark, I took the
graduate Introduction to Artificial Intelligence course

96 Al MAGAZINE

offered by Marvin Minsky and Seymour Papert. The
skies opened! I realized that this was what I had been
looking for all along! Their computational methods
demonstrated ways to model interesting and impor-
tant properties of the mind. Like calculus and differ-
ential equations had transformed physics more than
three centuries before, symbolic knowledge represen-
tation and inference methods were beginning a his-
torical transformation of the science of the mind.
Like calculus and differential equations had grown
and evolved over centuries to become more and
more powerful tools for doing physics (and so much
else), I knew that these methods would grow and
evolve over the decades, and perhaps the centuries,
to become powerful enough to describe the mind. I
knew that this was what [wanted to spend my life
on.

I became a phantom grad student in the Math
Department, with a picture on the bulletin board in
Building 2, but physically at home in the AI Lab in
Tech Square. I was inspired by Marvin'’s essays, by his
students’ theses in Semantic Information Processing, by
class meetings in the iconic Minsky living room, and
by discussions in the Al Lab Playroom. Most of all, I
was inspired by circulating drafts of the famous
“frames paper.” There, in a precursor to The Society of
Mind, Marvin laid out his vision for the organization
of knowledge as rich descriptions of complex objects,

situations, and events, rather than at the finer gran-
ularity of logical sentences.

Marvin agreed to be my thesis advisor, as I under-
took a project to understand knowledge of space,
specifically the large-scale space of the “cognitive
map,” describing the structure of buildings and cities
at a larger scale than can be observed all at once. He
was a wonderful doctoral advisor for me, respecting
my ideas, and giving me full freedom to pursue them.
My priorities and my direction were deeply inspired
by his thinking, but he never pushed me to do things
his way. Someone quoted his advice on advising stu-
dents: “Make sure the students believe that all the
good ideas are their own.”

Every month or so, as I worked on my thesis
research, I would sit down in his office and tell him,
“I think I need some advising.” He would ask what I
was up to, and [would explain my progress. Then he
would tell me what seemed like a completely random
story, like a time that he and Seymour got lost in
Buenos Aires, while they were there for a conference.
I would leave thinking, “What was that all about?”
Then I would think about it, and think about it, and
eventually, I would realize that there was a really
great idea hidden in there, and it would contribute to
my thesis. But I never knew where the idea came
from.

At a rough time in my career, he was an enormous

help, and the situation resolved very much for the
better. I am very grateful, and I try to pay it forward.
He also gave brief and pointed praise, that I still treas-
ure, for coming up with an idea that he really liked.

Marvin had many different accomplishments, but
chief among them was being a founder of the field of
Al He and his colleagues started the process of creat-
ing the tools and ideas that are revolutionizing the
science of the mind. He was disappointed that we
haven’t come closer to achieving the goals of Al dur-
ing his lifetime.

Centuries ago, Newton and Leibniz created tools
and ideas that revolutionized the problem of physics,
and the work of understanding physics is still not
done. Likewise, the problem of the mind is a problem
for the centuries, not merely for the decades. Mar-
vin’s contributions have made lasting changes to our
understanding of the problem of the mind.

Henry Lieberman

Whenever we encountered each other, Marvin’s eyes
would light up, he’d smile, and, instead of “Hello” or
“How are you?”, his greeting was always: “What'’s
new?” I'd tell him what was new with me, or some
topic I was thinking about. He’d always react in a way
that was surprising, amusing, and profound.
Marvin would plant time bombs in your head.

Articles

FALL 2016 97

Articles

© 2005, AAAT

He’d say something, and you would have a hard time
deciding, was that serious? What did that mean? Did
he really believe that? What kind of point was he try-
ing to make? Three months later, you’d be walking
down the street, and then suddenly it would hit you.
“Wait a second! Why do we like fun?”

Marvin was a no-nonsense person. He didn’t care
about money, power, or status. Many times, we
would visit some university where he’d be fawned
over by the tenured professors. He’d walk right past
them, find a grad student in front of a computer and
cold coffee and cold pizza. He'd tap the student on
the shoulder and say, “What are you thinking
about?”

He didn’t even really care about computers. He
cared about understanding how the mind works. If
you wanted to think about it with him, he always
had time for you. The human mind is the most com-
plicated thing in existence. What could be more fun
than trying to figure out how it works?

But what's the right level to describe it? I think the
answer to that question was Marvin’s greatest contri-
bution to computer science — and to psychology.

We're just bags of chemicals. Can intelligence be
explained at the chemical level? We're just strings of
neurons. We can map the 302 neurons of C. elegans,
but does that tell us how the worm thinks? The mind

98 Al MAGAZINE

must work by electrical impulses flowing around the
brain. Will looking at the signals tell us how it
works? Different parts of the brain do different
things. Does the geography of the brain explain
thinking? Other people will tell you the mind is all
math, is all biology, is all social interaction. And
they’d be right each time.

The brain is hardware. The mind is the software it
runs. Marvin explained the workings of the mind as
components of software in a high-level program-
ming language. What we think of as concepts can be
reified as knowledge representations, as Marvin
taught us in the Frame paper. The activity of think-
ing can be represented as heuristic procedures—
trans-frames, micronemes, ways to think, K-lines, A-
brains, and B-brains.

Marvin wasn'’t afraid to push people’s hot buttons,
especially concerning those aspects of human
thought that people cherished, but obstinately
refused to try to explain: consciouness, emotion, reli-
gion.

Marvin worked in every aspect of Al, from neural
nets to cognitive science. The controversies that rav-
age the field are often just silly arguments between
top-down and bottom-up approaches. Marvin advo-
cated coexistence among reactive, reflective, and
deliberate layers. What Marvin thought was impor-
tant was the architecture for managing what he
called the Society of Mind, showing how compo-
nents of the mind both cooperate and compete. His
Causal-Diversity Matrix classified the diversity of
methods according to what they were good for.

I was once at a graduate seminar with Marvin, and
everybody went around the room introducing them-
selves. “Hi, I'm Robert, I'm a first-year grad student,”
“Hi, I'm Rebecca, I'm a second year grad student,”
and so on. Then Marvin’s turn: “Hi, I'm Marvin. I'm
a 60th year grad student”!

I can only claim to be a 40th year grad student
myself. Right now, I'm trying to help launch the
Minsky Center for Artifical Intelligence at MIT’s
CSAIL, the modern incarnation of the Lab he found-
ed. My fondest hope, and the best way to honor his
memory, is to try to help create more 60-year gradu-
ate students.

Note

1. www.sentient.ai/minsky.

Kenneth D. Forbus is the Walter P. Murphy professor of
computer science and a professor of education at North-
western University.

Benjamin Kuipers is a professor of computer science and
engineering at the University of Michigan.

Henry Lieberman is a research scientist at the Massachu-
setts Institute of Technology’s Computer Science and Arti-
ficial Intelligence Lab (CSAIL).

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=98&exitLink=http%3A%2F%2Fwww.sentient.ai%2Fminsky

Reports of the 2016 AAAI
Workshop Program

Stefano V. Albrecht, Bruno Bouchard, John S. Brownstein, David L. Buckeridge,
Cornelia Caragea, Kevin M. Carter, Adnan Darwiche, Blaz Fortuna,
Yannick Francillette, Sébastien Gaboury, C. Lee Giles, Marko Grobelnik,
Estevam Hruschka, Jeffrey O. Kephart, Parisa Kordjamshidi, Viliam Lisy,
Daniele Magazzeni, Joao Marques-Silva, Pierre Marquis, David Martinez,
Martin Michalowski, Zeinab Noorian, Enrico Pontelli, Alex Rogers,
Stephanie Rosenthal, Dan Roth, Scott Sanner, Arash Shaban-Nejad,
Arunesh Sinha, Tran Cao Son, William Streilein, Sylvie Thiebaux,
Byron C. Wallace, Toby Walsh, Michael Witbroc, Jie Zhang

B The Workshop Program of the Association for the
Advancement of Artificial Intelligence’s Thirtieth
AAAI Conference on Artificial Intelligence (AAAI-
16) was held at the beginning of the conference, Feb-
ruary 12-13, 2016. Workshop participants met and
discussed issues with a selected focus, and the work-
shop provided an informal setting for active
exchange among researchers, developers, and users
on topics of current interest. The AAAI-16 workshops
were an excellent forum for exploring emerging
approaches and task areas, for bridging the gaps
between Al and other fields or between subfields of
Al for elucidating the results of exploratory research,
or for critiquing existing approaches. The 15 work-
shops held at AAAI-16 were Artificial Intelligence
Applied to Assistive Technologies and Smart Envi-
ronments (WS-16-01), Al, Ethics, and Society (WS-
16-02), Artificial Intelligence for Cyber Security
(WS-16-03), Artificial Intelligence for Smart Grids
and Smart Buildings (WS-16-04), Beyond NP (WS-
16-05), Computer Poker and Imperfect Information
Games (WS-16-06), Declarative Learning Based
Programming (WS-16-07), Expanding the Bound-
aries of Health Informatics Using Al (WS-16-08),
Incentives and Trust in Electronic Communities
(WS-16-09), Knowledge Extraction from Text (WS-
16-10), Multiagent Interaction Without Prior Coor-
dination (WS-16-11), Planning for Hybrid Systems
(WS-16-12), Scholarly Big Data: Al Perspectives,
Challenges, and Ideas (WS-16-13), Symbiotic Cog-
nitive Systems (WS-16-14), and World Wide Web
and Population Health Intelligence (WS-16-15).

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Artificial Intelligence Applied to
Assistive Technologies and
Smart Environments

Smart environments have the potential to enhance the
quality of life of people by giving assistance in the activi-
ties of daily life. These systems are particularly interesting
for impaired and frail people because they can improve
their autonomy and reduce the need for caregivers. The
development of technologies to improve the building of
assistive systems has increased this last decade. However,
despite this growing interest toward these technologies,
no real adoption tendency has been observed yet. Indeed,
impairments and particularities of users are so diverse that
implementing solutions that are mandatory for users’
well-being represent one of the major challengees in terms
of universal design. The goal of this workshop was to
investigate new solutions to scientific problems occurring
in various topics related to artificial intelligence applied in
the domain of impaired people assistance.

The 2016 AAAI workshop brought together academic
and industrial researchers from several subfields of AL. One
main theme of papers presented at the workshop was
activity recognition. In fact, this theme is one major chal-
lenge in providing good assistance. Indeed, assistive sys-
tems need to get accurate information about monitored
people. This can be considered as the first step. Several
papers provided models and analysis about performing an
efficiency detection from different kinds of data.

Reports

FALL 2016 99

Reports

Another major theme was actions
performed by assistive devices. We can
divide the papers on this theme into
three categories. Some papers present-
ed methods to improve the efficiency
of the decision process. Others focused
on adaptation of actions to address the
needs of users. Finally, some papers
studied the ethical issues in autono-
mous systems.

The workshop participants discussed
how assistive technologies can benefit
from innovation in domains such as
the internet of things. However, partic-
ipants shared the objective of develop-
ing methods to reduce the costs and
increase the efficiency of assistive tech-
nology and agreed that they would like
to attend a future edition of the work-
shop.

Bruno Bouchard and Sébastien
Gaboury served as cochairs of this
workshop. The papers of the workshop
were published as technical report WS-
16-01 in The Workshops of the Thirtieth
AAAI Conference on Attificial Intelligence.

Al, Ethics, and Society

This workshop focused on the ethical
and societal implications of building Al
systems. It is a response to the increas-
ing appetite from both within and out-
side the Al research community for
such discussions.

The topics addressed within the
workshop included the future of AI; Al
as a threat to or savior for humanity;
mechanisms to ensure moral behaviors
in Al systems; safeguards necessary
within Al research; and the impact of
Al on work and other aspects of our
lives. The workshop was divided into
two parts. In the morning, there were
seven contributed talks and six posters.
The titles of the talks give a good idea
of the range of topics covered: Human-
like Morality and Ethics for Robots;
Patience Is Not a Virtue: Al and the
Design of Ethical Systems; Quantilizers:
A Safer Alternative to Maximizers for
Limited Optimization; Why the Tech-
nological Singularity May Never Hap-
pen; Modeling Progress in Al; Taxono-
my of Pathways to Dangerous Artificial
Intelligence; and Reinforcement Learn-
ing as a Framework for Ethical Decision
Making.

In the afternoon, there were a dozen

100 AI MAGAZINE

or so short talks from recipients of the
Future of Life grants on Al safety. These
grants are funded by a $10 million
donation from Elon Musk to promote
safe and beneficial AI research. The
workshop finished with a panel discus-
sion on the most promising research
directions for keeping Al beneficial.
The panelists were Stuart Russell, Vin-
cent Conitzer, David Parkes, Percy
Liang, Stefano Ermon, and Benjamin
Rubinstein.

Special thanks go to Richard Mallah
who, in his capacity as part of the
organizing committee, put together the
program for the afternoon. Toby Walsh
served as chair of the workshop. The
papers of the workshop were published
as technical report WS-16-02 in The
Workshops of the Thirtieth AAAI Confer-
ence on Artificial Intelligence (Palo Alto,
CA: AAAI Press).

Artificial Intelligence
for Cyber Security

This workshop focused on research and
applications of artificial intelligence to
cyber security, including machine
learning, game theory, natural lan-
guage processing, knowledge represen-
tation, and automated and assistive
reasoning. Talks throughout the day
emphasized cyber systems and research
on techniques to enable resilience in
cyber security systems augmented by
human-machine interactions. The
workshop began with a keynote speech
by George Cybenko (Dartmouth Col-
lege) on Cyber Security Challenges
Amenable to Al. Cybenko suggested a
need to address the Al challenges across
the full spectrum, including deterrence,
protection, intrusion detection, adap-
tation, and recovery. Al can help, since
the growth in cyber vulnerabilities is,
in many cases, exploiting user behavior
(for example, phishing as an entry
point). The role of Al is in predicting
patterns of behavior to address poten-
tial vulnerabilities.

On the topic of malware, papers pre-
sented included techniques employing
semantic meaning to identify clusters
of malware families, showing good true
positives versus low false positives in
identifying clusters by using integer
linear programming. Additionally, an
approach was presented using Bayesian

networks to determine malware lineage
present in a directed acyclic graph.

Two papers followed focusing on
human-machine interaction (HMI).
One paper integrated prior knowledge
of actor behavior and leveraged
machine-learning techniques to work
on a reduced space. This enabled the
application of rules to represent the
actor behavior and better accuracy in
final cyber attribution. The second
paper leveraged the Levenshtein dis-
tance to measure cognitive burden dur-
ing password creation, usage, and rec-
ollection, in order to develop strong
password recommendation tools.

There were three position papers
within the workshop that were shorter
presentations on a topic of interest,
including the need to augment cyber
security tools by incorporating learning
from human behavior; recommenda-
tions for a multiarmed bandit approach
to quickly structure and configure hon-
eypots; and using game theory for
incentivizing participants in sharing
information while incorporating time-
ly updates to improve the incentives.

The afternoon keynote from Robert
Laddaga (Vanderbilt University) was
titled “Al and the Future of Cyber Secu-
rity.” Laddaga argued that the use of Al
technologies in cyber security will
inevitably improve both defenders and
attackers. He stressed the need for
active methods to detect adversary
activity, protect cyber systems, and that
sensors should be deployed on systems
themselves in addition to the network.
He remarked that more needs to be
done and called for terrain shaping, in
which the cyber landscape is altered
strategically to disadvantage attackers,
not just to confuse them. Laddaga
closed with a reminder that the need
for Al to protect systems will increase as
the cost of damage will move from data
and machine damage to loss of human
life.

The afternoon session of the work-
shop featured two interesting talks
related to Al and its impact on cyber
security. The first presented a call for a
unified cyber ontology to help with
information sharing. Such a mecha-
nism represents concepts to share
information automatically and could
support deeper analytical investigation.
The second talk presented a new mod-

el for effective cyber defense based
upon active perception — deploying
new sensors to understand the envi-
ronment in the wake of a cyber event
— to test hypotheses and reduce uncer-
tainty prior to alerting an analyst.

The workshop concluded with a
panel discussion on the subject Al and
Cyber Operations: Challenges of Com-
munity Acceptance, including pan-
elists Richard Lippmann (MIT Lincoln
Laboratory), Vern Paxson (University
of California at Berkeley), Benjamin
Rubinstein (University of Melbourne),
and Milind Tambe (University of
Southern California). Panelists dis-
cussed the need to leverage natural lan-
guage processing, game theory, and
other Al capabilities as a toolbox with-
in the specified domain of cyber securi-
ty. The biggest challenge identified was
that cyber is a rapidly changing
domain, and it is extremely difficult to
model the nonstationarity. Paxson
stressed that his views on the limita-
tions of machine learning in cyber
security were specific to intrusion
detection, which suffers from these
challenges. Final conclusions from the
panel focused on the need to leverage
Al as a force multiplier and decision
support tool for cyber defenders, focus-
ing on human-in-the-loop rather than
full automation.

This was the first Al for Cyber Securi-
ty workshop. It was cochaired by David
Martinez, William Streilein, Kevin M.
Carter, and Arunesh Sinha, who also
wrote this report. The papers of the
workshop were published as technical
report WS-16-03 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

Artificial Intelligence for
Smart Grids and Smart
Buildings

The proliferation of intelligent devices
and the availability of electric monitor-
ing facilities, broadband communica-
tion networks, computational intelli-
gence, and customer-driven electricity
storage and generation capabilities
have posed the foundations for the
next generation of power grids and
buildings: smart grids and smart build-
ings. Three key aspects distinguish the

smart grid from the more traditional
electric grid: (1) producers and con-
sumers have access to information (for
example, production costs, customers’
electricity needs, time distribution of
demands); (2) continuous access to
information and communication is
possible (for example, producers and
consumers can negotiate prices); and
(3) energy can be produced not only by
power plants, but also by customers
(for example, through renewable
sources, which can be intermittent)
and stored for later use (or redistributed
through the electric grid). In general
terms, a smart grid enables the distrib-
uted generation and two-directional
flow of electricity, within an integrated
system.

Smart buildings form an important
component of the smart grid, where
technology enables buildings to pro-
vide common services (for example,
illumination, thermal comfort, air
quality, sanitation) in a sustainable
fashion and at low environmental
impact. Al plays a key role in the smart
grid and in smart buildings; the infra-
structure provides information to sup-
port automated decision making on
how to autonomously adapt produc-
tion and consumption of energy, opti-
mize costs, waste, and environmental
impact, and ensure safe, secure, and
efficient operation.

The goal of this workshop was to
bring together researchers and practi-
tioners from different areas of Al, to
explore both established and novel
applications of Al techniques to solve
problems related to the design, imple-
mentation, and deployment of smart
grids and smart buildings.

The workshop was well attended and
conducive of extensive discussions and
interactions between speakers and the
audience. The workshop was opened
by a team-delivered invited presenta-
tion by Mario Berges (Carnegie Mellon
University) and Henning Lange (Aalto
University), exploring the role of Al in
solving problems related to electricity
disaggregation — that is, the problem
of providing estimates of the consump-
tion of individual electrical appliances
in a building from measurements of
voltage and/or current at select loca-
tions in the facility. This initial presen-
tation was followed by a related con-

Reports

tributed presentation, by the team
from the University of Minnesota
(Mark Valovage and Maria Gini), that
focused on the use of label-correction
techniques and prioritization methods
in enhancing classification of individ-
ual appliances in a household during
electricity disaggregation.

After a short break, the workshop
continued with three contributed talks
focused on the use of planning and
optimization techniques in energy
management, ranging from the use of
planning with uncertainty to handle
electric vehicles, to the use of MDP
techniques in building agents for the
Power TAC competition, to the explo-
ration of how distributed constraint
optimization can be adapted to handle
the dynamicity of energy delivery
models.

The afternoon session placed em-
phasis on the role of machine learning
and classification in handling smart
grids and smart buildings, with partic-
ular emphasis on reduced consump-
tion prediction (in the presence of
demand response events), prediction of
adverse events and modeling of energy
consumption in wireless sensor net-
works. The final session of the work-
shop explored personal preferences and
individual comfort, with applications
to support smart house buying
(accounting for energy costs) and pre-
diction of thermal comfort in smart
buildings.

The workshop was cochaired by
Enrico Pontelli and Tran Cao Son (New
Mexico State University), Alex Rogers
(University of Oxford), and Sylvie
Thiebaux (NICTA and Australian
National University), who also coau-
thored this report. The papers of the
workshop were published as technical
report WS-16-04 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

Beyond NP

A new computational paradigm has
emerged in computer science over the
past few decades, which is exemplified
by the use of SAT solvers to tackle prob-
lems in the complexity class NP.
According to this paradigm, a signifi-
cant research and engineering invest-

FALL 2016 101

Reports

ment is made toward developing high-
ly efficient solvers for a prototypical
problem (for example, SAT), that is rep-
resentative of a broader class of prob-
lems (for example, NP). The cost of this
investment is then amortized as these
solvers are applied to a broader class of
problems through reductions (in con-
trast to developing dedicated algo-
rithms for each encountered problem).
SAT solvers, for example, are now rou-
tinely used to solve problems in many
domains, including diagnosis, plan-
ning, and software and hardware verifi-
cation.

Motivated by the success of this
computational paradigm, both in theo-
ry and practice, the goal of this work-
shop was to consolidate and promote
research that advances this paradigm
more broadly, while focusing on solvers
that reach beyond NP. The workshop
brought together researchers that work
on a variety of problems in beyond NP
complexity classes and corresponding
solvers, including propositional and
first-order probabilistic reasoning,
planning, quantified Boolean formulas,
function and optimization problems
such as Max-SAT, knowledge compila-
tion, and model counting. The work-
shop included six invited talks that
provided a perspective on a wide spec-
trum of beyond NP solvers and prob-
lems. It also included 15 papers on
these subjects, ranging from ones that
included new technical contributions
to ones that provided surveys and per-
spectives on the state of the art.

A number of themes emerged
throughout the workshop and its talks.
One theme concerned the status of
competitions and evaluations for
beyond NP solvers, the existence of
standard formats and benchmarks for
beyond NP problems, and the impact
this may have on future progress.
Another theme was the extent to
which solvers for a particular problem
have converged on a standard ap-
proach just like SAT solvers have con-
verged on a standard approach for solv-
ing satisfiability. A major theme of the
workshop related to the two facets of
the PSPACE complexity class, which are
exemplified by the two prototypical
problems corresponding to quantified
Boolean formulas and planning.

The workshop participants discussed

102 Al MAGAZINE

some next steps for advancing the
reduce-then-solve computational para-
digm targeted by the workshop. This
included a categorization and explana-
tion of prototypical problems that are
complete for various beyond NP com-
plexity classes, including the PP, NP,
and PPPP complexity classes, which
include key problems that arise in
probabilistic reasoning. There was
recognition that more community
awareness is needed about beyond NP
complexity classes and that existing
and well-researched problems fall into
these classes. It was also noted that the
practice of reducing problems, which is
now prevalent for problems in NP, can
benefit from some tutorials and illus-
trative examples relating to beyond NP
problems, especially ones that are
PSPACE-complete. A third discussion
point related to establishing standard
formats and benchmarks for the more
recent beyond NP solvers, including
those for first-order model counting
and knowledge compilation. The sug-
gestion was to implement these next
steps by augmenting the BeyondNP.org
community website with additional
material to serve these objectives.

Adnan Darwiche, Joao Marques-Sil-
va, and Pierre Marquis served as
cochairs of this workshop and wrote
this report. The papers of the workshop
were published as technical report WS-
16-05 in The Workshops of the Thirtieth
AAAI Conference on Artificial Intelligence
(Palo Alto, CA: AAAI Press). The slides
for invited talks are posted at the work-
shop website (beyondnp.org/work-
shop16).

Computer Poker and
Imperfect Information
Games

Recent years have brought substantial
progress in research on imperfect
information games. There is an active
community of researchers focusing on
computer poker, which recently com-
puted near-optimal strategy for the
smallest poker variant commonly
played by people and achieved
human-level performance even in
more complex variants of this game.
Game-theoretic models with all sorts
of uncertainty and imperfect informa-
tion have been applied in security

domains ranging from protecting crit-
ical infrastructure and wildlife to cyber
security. Computer agents able to play
previously unknown imperfect infor-
mation games based only on a formal
description of a game’s dynamics have
been developed.

In this workshop, we aimed to create
a forum where researchers studying
theoretical and practical aspects of
imperfect information games can meet,
present their recent results, and discuss
their new ideas. Moreover, we tried to
facilitate interaction between distinct
communities studying various aspect
and focusing on various domains in
imperfect information games.

The workshop program was com-
posed of 12 technical paper presenta-
tions, announcement of the results of
the Annual Computer Poker Competi-
tion (ACPC), and two discussion ses-
sions. The presentations covered topics
from computing Nash and Stackelberg
equilibria in large extensive form
games and automated creation of game
abstractions through opponent model-
ing and exploitation, heuristic search
methods for imperfect information
games, and taxonomy of different sub-
classes of imperfect information games,
to applications of game theory in urban
crime prevention and wildlife protec-
tion.

The winner of the total bankroll part
of the 2016 computer poker competi-
tion was a program by Noam Brown
and Tuomas Sandholm from Carnegie
Mellon University. The winner of the
bankroll instant run-off was imple-
mented by an independent researcher,
Eric Jackson.

The first discussion was on the future
of the workshop. The attendees agreed
that they are most interested in run-
ning a full-scale, six player No-Limit
Texas Hold’em competition and that
the total bankroll track of the competi-
tion should be modified to better moti-
vate creating adaptive agents. Further-
more, the present competitors agreed
that they do not mind using compli-
cated variance reduction techniques in
the evaluation of the algorithms and
that it is important to attract more
competitors to the competition. Inter-
esting options to do that would be to
include a track with a very small limit
for the size of the agent, or a track that

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=102&exitLink=http%3A%2F%2FBeyondNP.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fbeyondnp.org%2Fworkshop16
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fbeyondnp.org%2Fworkshop16

cannot by entered by anyone who has
already participated in multiple past
competitions.

The topic of the second discussion
was how to make the communities of
researchers in poker, search in games,
general game playing, and security
games collaborate more efficiently.
Everybody agreed that the problems
the communities try to solve have
many similar aspects and that they
would benefit from closer interaction.
The main drawback is that all the com-
munities are quite productive and use
slightly different terminology; there-
fore, it is difficult to follow the latest
developments in the related fields. A
proposed solution is to repeat events
similar to this workshop that bring the
communities together, and to present
intensive advanced tutorials on the
individual subfields. Unlike traditional
tutorials, these could assume basic
knowledge of key concepts of game
theory and focus on the most impor-
tant recent results and key challenges
that the subfields face.

Viliam Lisy, Michael Thielscher, and
Thanh Nguyen served as cochairs of
this workshop. This report was written
by Viliam Lisy. The papers of the work-
shop were published as technical
report WS-16-06 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

Declarative Learning
Based Programming

Declarative Learning Based Program-
ming (DeLBP) aims at facilitating and
simplifying the design and develop-
ment of intelligent real-world applica-
tions that use machine learning and
reasoning by addressing the following
commonly observed challenges: inter-
acting with messy, naturally occurring
data; specifying the requirements of
the application at a high abstraction
level; dealing with uncertainty in data
and knowledge in various layers of the
application program; using representa-
tions that support flexible relational
feature engineering; using representa-
tions that support flexible reasoning
and structure learning; integrating a
range of learning and inference algo-
rithms; and finally addressing these

issues in one unified programming
environment.

Conventional programming lan-
guages offer no help to application pro-
grammers that attempt to design and
develop applications that make use of
real-world data and reason about it in a
way that involves learning interde-
pendent concepts from data, incorpo-
rating existing models, and reasoning
about existing and trained models and
their parametrization. Over the last few
years the research community has tried
to address these problems from multi-
ple perspectives, most notably various
approaches based on probabilistic pro-
gramming, logical programming, and
the integrated paradigms. The goal of
this workshop was to present and dis-
cuss the current lines or research in
these directions and the ways various
challenges have been addressed. We
attempted to motivate the need for fur-
ther research toward a unified frame-
work in this area, building on some of
the key existing paradigms, including
those of probabilistic programing (PP),
probabilistic logical programming
(PLP), database management systems
(DBMS), and statistical relational learn-
ing (SRL), and place these ideas in the
context of learning based program-
ming.

This workshop brought together
researchers from the areas of proba-
bilistic logical programming, statistical
relational learning, lifted inference,
constraint programming, probabilistic
programming, and data mining. The
workshop started with an introductory
talk given by Dan Roth that highlight-
ed different perspectives and avenues
for this research that lead to learning
based programming and included two
invited talks on these topics. Kristian
Kersting talked on the democratization
of optimization, focusing on declara-
tive programing for lifted inference and
efficient optimization in relational
domains, exploiting the rich logical
structure underlying many Al and data
mining problems. Lise Getoor’s talk
introduced probabilistic soft logic
(PSL), a declarative probabilistic pro-
gramming language that can capture
rich structure and scales well, and
emphasized the PSL’s mathematical
framework, hinge-loss Markov random
fields (HL-MRFs).

Reports

We ended the workshop with a pan-
el and discussed the difficulties of
developing and popularizing the use of
these kinds of languages, the type of
audience that the we may want to tar-
get, interesting applications that can be
addressed, and the ways different
research communities can collaborate
to make progress in this research direc-
tion.

Parisa Kordjamshidi served as the
chair of this workshop. This report was
written by Parisa Kordjamshidi and
Dan Roth. The papers of the workshop
were published as technical report WS-
16-06 in The Workshops of the Thirtieth
AAAI Conference on Artificial Intelligence
(Palo Alto, CA: AAAI Press).

Expanding the Boundaries
of Health Informatics
Using Al

The 20th century laid a foundation of
evidence-based medicine that relied on
populations and large groups of
patients to derive generalized results
and observations that were applied to
(mostly passive) patients. Yet, the 21st
century is shaping up as a time where
the patient and personalized health
data drive health care innovation and
delivery. The availability of this vast
amount of personalized data allows for
care tailored to a specific patient, an
approach coined personalized medicine.
Moreover, the availability of this data
allows for the constant monitoring and
discovery of deviations from patient-
specific averages (possibly different
from population-based averages). These
deviations may signal developing prob-
lems, and their early detection allows
for more effective treatment leading to
proactive medicine. Finally, patients
are no longer passive recipients of (per-
sonalized) treatments and therapies,
but they actively participate as a deci-
sion maker in their development, cus-
tomization, and application. This shift
has led to the emergence of participa-
tory medicine.

To tackle issues that arise in proac-
tive, personalized, and participatory
medicine information technology will
need to evolve to improve communica-
tion, collaboration, and teamwork
among patients, their families, health-

FALL 2016 103

Reports

care communities, and care teams
involving practitioners from different
fields and specialties. All of these
changes require novel solutions and
the Al community is well positioned to
provide both theoretical- and applica-
tion-based methods and frameworks.
The goal of this workshop is to focus on
creating and refining Al-based
approaches that (1) process personal-
ized data, (2) help patients (and fami-
lies) participate in the care process, (3)
improve patient participation, (4) help
physicians utilize this participation in
order to provide high quality and effi-
cient personalized care, and (5) con-
nect patients with information beyond
those available within their care set-
ting. The extraction, representation,
and sharing of health data, patient
preference elicitation, personalization
of “generic” therapy plans, adaptation
to care environments and available
health expertise, and making medical
information accessible to patients are
some of the relevant problems in need
of Al-based solutions.

This year’s workshop built on the
very successful AAAI-13 workshop and
AAAI 2014 fall symposium on the same
topic. The workshop received a large
number of submissions that were divid-
ed into two main themes. Learning and
prediction focused on novel methods
for mining semantics from patterns
over electrocardiogram data, an adap-
tive ensemble learning approach for
personalized diagnosis, predictive ana-
lytics using smartphone sensors for
depressive episodes, and a learning-
based approach to predicting the 30-
day risk and cost of hospital readmis-
sions. The information integration
theme saw papers describing how to
combine multiple concurrent physio-
logical streams to assess a patient’s con-
dition, and an approach to simultane-
ous influencing and mapping social
networks to improve interventions for
the homeless community in Los Ange-
les.

In addition to these themes, two
invited speakers provided crucial
insights into and directions for health
informatics research. The first invited
talk by Niels Peek (University of Man-
chester) was titled “Analytical Chal-
lenges for Smarter Health Systems.”
Peek described the current opportunity

104 AI MAGAZINE

to create smarter, “learning” health sys-
tems by utilizing the information infra-
structure provided by electronic health
record (EHR) systems. Examples includ-
ed using the data that is collected
through this infrastructure to develop
predictive models for risk stratification
and to compare the effectiveness of dif-
ferent treatments in real-world popula-
tions. He also positioned EHR systems
to be used as a delivery platform to give
feedback and advice to clinicians at the
point of care. Peek also challenged the
audience to develop new tools to make
sense of these data that reach beyond
traditional analytical concepts and to
improve clinical computerized decision
support systems that have mostly led to
alert fatigue rather than improving
care.

The second talk, given by John H.
Holmes (University of Pennsylvania),
was titled “Data Driven Clinical
Research: If Only It Were So Simple.”
Holmes presented both the opportuni-
ties and challenges posed by the avail-
ability of ever-increasing amounts of
highly heterogeneous clinical data for
the data scientist and clinical re-
searcher. The opportunity for
enhanced clinical research is manifest-
ed in the expanding data and informa-
tion ecosystem. The challenges are
more subtly detected, but present
nonetheless. Merging heterogeneous
data into an analyzable whole, under-
standing the clinical context of an
image or waveform without their
semantic integration with clinical
observation data, ecologic fallacy, and
data quality were some of the chal-
lenges discussed.

Martin Michalowski served as the
workshop chair and authored this
report. Szymon Wilk and Jay M. Tenen-
baum and served as cochairs. The
papers of the workshop were published
as technical report WS-16-08 in The
Workshops of the Thirtieth AAAI Confer-
ence on Artificial Intelligence (Palo Alto,
CA: AAAI Press).

Incentives and Trust in
Electronic Communities

The area of trust and reputation mod-
eling has experienced rapid growth in
the past decade. With the growing
prevalence of social interaction

through electronic means, trust, repu-
tation, and privacy, become consider-
ably important. Many computational
and theoretical models of trust and rep-
utation mechanisms have been recent-
ly developed well-suited for variety of
domains such as e-commerce, social
network, blogs, ad hoc networks, and
others. They present trust as a multi-
faceted concept that operates at many
levels and plays important roles in
ensuring reliable interactions. Al-
though trust-enabled systems allow
people to act under uncertainty and
mitigate the risk of negative conse-
quences, still socio-technical attacks
often succeed by exploiting loopholes
in the design of trust and security poli-
cies. Besides, the diversity of partici-
pants in the continuously growing
electronic communities encourages
cheating and opportunistic behaviors
as it is more difficult in such environ-
ments to detect and punish fraudulent
users. Many techniques have been
developed to discourage deception and
fraud in e-communities and stabilize
trust between participants. These tech-
niques are designed to promote trust-
ing relationships, honesty behaviors,
and create incentive for participants to
contribute truthful opinions.

Trust and incentive have bidirection-
al relationships. As trustworthiness
measures are used as part of incentive
mechanisms to promote honesty in
electronic communities, incentive
mechanisms motivate participants to
contribute their truthful opinions,
which are useful for trust modeling.
Hence, trust and reputation systems
should not only provide a means to
detect and prevent malicious activities
but also design a mechanism to dis-
courage dishonesty attitudes among
participants.

The primary objective of this work-
shop is to bring together researchers in
both the area of game theory for
designing incentive mechanisms and
the area of trust and reputation model-
ing, toward the design of more effective
trust, reputation, and incentive mecha-
nisms for creating safe electronic com-
munities.

This year, our workshop accepted
seven papers. There were also two invit-
ed talks, one given by Jiliang Tang
(Yahoo Labs, USA) and another by Yan

Wang (Macquarie University, Aus-
tralia). The workshop participants dis-
cussed the importance of designing an
incentive-enabled system in electronic
communities to foster honest partici-
pation among community members
and how the workshop was useful in
bringing together researchers from dif-
ferent fields such as game theory, user
modeling, and trust modeling and
encouraging their contributions in cre-
ating safe electronic communities.

Jie Zhang, Zeinab Noorian, and
Stephen Marsh served as cochairs of
this workshop. This report was written
by Jie Zhang and Zeinab Noorian. The
papers of the workshop were published
as technical report WS-16-09 in The
Workshops of the Thirtieth AAAI Confer-
ence on Artificial Intelligence (Palo Alto,
CA: AAAI Press).

Knowledge Extraction
from Text

Text understanding is an old, yet-
unsolved, Al problem consisting of a
number of nontrivial steps. The critical
step in solving the understanding prob-
lem is knowledge acquisition from text,
that is, a transition from a nonformal-
ized text, explicitly or implicitly, into a
formalized actionable language (that is,
capable of supporting automated rea-
soning). Other steps in the text-under-
standing pipeline include linguistic
processing, reasoning, text generation,
search, question answering, and others.
These are more or less solved to a
degree that would support composition
of a text understanding service. How-
ever, we know that knowledge acquisi-
tion, the key bottleneck, can be done
by humans, even though automation
of the process is still out of reach in its
full breadth.

After failed attempts in the past (due
to a lack of both theoretical and tech-
nological prerequisites), in recent years
the interest in text understanding and
knowledge acquisition form text has
been growing. There are numerous Al
research groups studying various
aspects of the problem in the areas of
computational linguistics, machine
learning, probabilistic and logical rea-
soning, and semantic web. The com-
monality among all the newer
approaches is the wuse of recent

advances in machine learning to deal
with representational change on the
level of words, sentences, concepts, and
SO on.

The workshop brought together
researchers from a variety of different
approaches for extracting knowledge
from text, in addition to researchers in
fields that provide empirical or theoret-
ical foundations to the main topic of
the workshop. The oral presentations
(including the keynote given by Peter
Clark, from AlI2) revealed a set of inter-
esting and innovative ideas, as well as
topics that should help to guide the
future of the research community. The
workshop participants discussed how
knowledge extraction approaches
should go beyond named entity recog-
nition (NER) and relation-extraction
tasks. The scientific debates focused on
new types of knowledge that can be
extracted from text, such as relations
among events instead of relations
among entities, as well as what the
community has learned about extract-
ing knowledge from specific target
domain texts, such as mars literature.
The challenge of extracting knowledge
from texts written in different lan-
guages (other than English), such as
Chinese and Portuguese, was also
addressed, focusing on different
domains such as never-ending learning
to read the web, commonsense rela-
tions extraction, as well as automatic
email answering agents. The workshop
also presented discussions on how par-
allel computing can help in the scaling-
up of topic model algorithms.

Blaz Fortuna, Marko Grobelnik, Este-
vam Hruschka, and Michael Witbrock
served as cochairs of this workshop and
wrote this report. The papers of the
workshop were published as technical
report WS-16-10 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

Multiagent Interaction
Without Prior
Coordination

Interaction between agents is the defin-
ing attribute of multiagent systems,

encompassing problems such as plan-
ning in a decentralized setting, learn-

Reports

ing other agent models, composing
teams with high task performance, and
selected resource-bounded communi-
cation and coordination. While there
is significant variety in methodologies
used to solve such problems, many of
these methods depend on some form
of prior coordination. For example,
learning algorithms may assume that
all agents share a common learning
method and prior beliefs, distributed
optimization methods may assume
specific structural constraints regard-
ing the partition of state space and
cost/rewards, and symbolic methods
often make strong assumptions regard-
ing norms and protocols. However,
such assumptions are easily violated in
realistic problems. Thus, there is a need
for new models and algorithms that
specifically address the case of ad hoc
interactions.

The purpose of this workshop was
to discuss the role of such predefined
knowledge and coordination in multi-
agent systems, and to provide a venue
for research on novel models and algo-
rithms that specifically address multi-
agent interaction without prior coor-
dination (MIPC). There were a total of
six accepted papers, addressing diverse
topics such as ad hoc coalitions in
human-robot societies, identifying
and tracking nonstationary oppo-
nents, and policy communication for
coordination with unknown team-
mates. A continuing trend in several of
the workshop papers was the use of
beliefs over a set of hypothesized poli-
cy types. In addition to the paper pre-
sentations, there were invited talks by
Michael Bowling from the University
of Alberta on “Adventures in Implicit
Agent Modeling,” and Gal Kaminka
from Bar-Ilan University on “Teams,
Swarms, Crowds, and Collectives: Spe-
cial Cases?”

This was the third meeting in this
workshop series. The community has
grown steadily since the first workshop
took place in 2014, reflecting a grow-
ing awareness of issues relating to pri-
or coordination in multiagent systems.
The workshop organizers intend to
continue the workshop series. The
workshop was chaired by Stefano
Albrecht, Katie Genter, and Somchaya
Liemhetcharat. The chairs would like
to thank the workshop participants,

FALL 2016 105

Reports

the invited speakers, the program and
advisory committee, and the AAAI staff
for making the workshop a success.

This report was written by Stefano
Albrecht. The papers of the workshop
were published as The papers of the
workshop were published as technical
report WS-16-12 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

Planning for
Hybrid Systems

The purpose of this workshop was to
explore and promote new approaches
to planning with hybrid models.
Hybrid systems are systems with both
continuous control variables and dis-
crete logical modes. Many interesting
real problems are indeed hybrid sys-
tems, including oil refinery manage-
ment, mission planning for auton-
omous vehicles, supply management
and disaster recovery, and applications
in control of smart cities. Planning in
these domains requires rich models to
capture the interaction between dis-
crete and continuous change and
methods for reasoning with temporal,
spatial, and continuous constraints.
This workshop follows on two previ-
ous highly successful hybrid planning
events held at the International Con-
ference on Automated Planning and
Scheduling (ICAPS). ICAPS 2012 ran a
special track on continuous planning,
attracting a range of excellent talks on
the topic of integrated planning and
control. This track brought together
planning experts, roboticists, experts in
model-based reasoning, experts in run-
time verification, and control engi-
neers. This continued as a well-attend-
ed workshop at ICAPS 2013. The
workshop was opened up to the wider
Al community (and applications of
interest to this broader community) by
the workshop at AAAI-16, which was
attended by researchers from planning,
robotics, machine learning, hybrid sys-
tem control and verification, and mod-
el-based reasoning and led to a fasci-
nating range of papers and talks. Key
topical areas for paper submission
included architectures for hybrid sys-
tems, planning with SMT (satisfiability
modulo theories), temporal logic in

106 Al MAGAZINE

hybrid systems, PDDL+ planning, and
a fascinating range of applications
spanning quantum computing for
Mars Lander activity scheduling, urban
traffic signal control, autonomous
marine vehicles, airport surface opera-
tions, and robotics. In short, the excep-
tional attendance and energetic discus-
sion of this workshop demonstrate the
growing influence and applications rel-
evance of hybrid systems planning in
Al along with its appeal to a diverse
range of researchers and research fields.

This workshop was organized and
cochaired by Daniele Magazzeni (King's
College London, UK), Scott Sanner
(Oregon State University), and Sylvie
Thiebaux (Australian National Univer-
sity and NICTA/Data61) and held on
February 13, 2016, in Phoenix. Daniele
Magazzeni, Scott Sanner, and Sylvie
Thiebaux also wrote this report. The
papers of the workshop were published
as technical report WS-16-12 in The
Workshops of the Thirtieth AAAI Confer-
ence on Artificial Intelligence (Palo Alto,
CA: AAAI Press).

Scholarly Big Data:
AT Perspectives,
Challenges, and Ideas

Academics and researchers worldwide
continue to produce large numbers of
scholarly documents including papers,
books, technical reports, and associat-
ed data such as tutorials, proposals, and
course materials. For example, PubMed
has over 20 million documents, 10 mil-
lion unique names, and 70 million
name mentions. Google Scholar has
many millions more, it is believed.
Understanding how at scale research
topics emerge, evolve, or disappear,
what is a good measure of quality of
published works, what are the most
promising areas of research, how
authors connect and influence each
other, who are the experts in a field,
and who funds a particular research
topic are some of the major foci of the
rapidly emerging field of scholarly big
data.

The primary goals and objectives of
the workshop were to promote both
theoretical results and practical appli-
cations for scholarly big data, and
address challenges faced by today’s
researchers, decision makers, and fund-

ing agencies as well as well-known
technological companies such as
Microsoft and Google, repositories, and
publishers such as Elsevier.

Papers presented at the workshop
covered a variety of topics including
the presentation of a test collection for
citation recommendation; the design
of evaluation data sets for document
similarity models in large scholarly
retrieval systems; an analysis of NIH
funding patterns over time; data extrac-
tion from scientific charts and summa-
ry generation; an approach to extend
research footprints using disparate
sources; improving public access to
nonopen biomedical literature; topic-
level academic influence of scientific
literature; lineage encoding in scholar-
ly articles; and improving discoverabil-
ity of research papers by augmenting
their titles with more terms.

The workshop also included two
invited talks and an introduction to the
CiteSeerX digital library. The first talk,
given by Douglas Downey (Northwest-
ern University), focused on mining top-
ics and key phrases from scientific doc-
uments and the application of
keyphrase extraction within the seman-
tic scholar scientific search engine. The
second talk, given by Alex Wade
(Microsoft Research Redmond), focused
on academic knowledge: new research
opportunities with the Microsoft Aca-
demic Graph (MAG), which is a freely
available data set that includes infor-
mation about academic publications
and citations, researchers, venues, and
topics. MAG is a heterogeneous graph
that can be used to study the influential
nodes of various types, including
authors, affiliations, and venues.

Cornelia Caragea, C. Lee Giles, Alex
Wade, and Irwin King served as
cochairs of this workshop. This report
was written by Cornelia Caragea and C.
Lee Giles. The papers of the workshop
were published as technical report WS-
16-13 in The Workshops of the Thirtieth
AAAI Conference on Attificial Intelligence
(Palo Alto, CA: AAAI Press).

Symbiotic
Cognitive Systems

In his 1960 article “Man-Machine Sym-
biosis,” J. C. R. Licklider predicted a
time when “the main intellectual

advances will be made by men and
computers working together in inti-
mate association.” While much of the
emphasis within the Al community
over the ensuing half century was
placed upon tools for automation such
as speech recognition or surpassing
humans at challenging intellectual
tasks such as chess or Jeopardy! the last
few years have witnessed a resurgent
interest in symbiotic cognitive sys-
tems: collectives of humans and intel-
ligent agents that collaborate to
accomplish cognitive tasks better than
either can alone.

The objective of this workshop was
to synthesize a new vision and research
agenda for symbiotic cognitive systems
and to try to establish a community
that might have a continued existence
at future Al workshops and confer-
ences. For that purpose, the workshop
brought together researchers working
on technologies, architectures, applica-
tions, and visions of symbiotic cogni-
tive computing in application domains
that spanned robotics, cognitive envi-
ronments, and cognitive objects. Pre-
sentations at the workshop fell into
three main categories, with one session
devoted to each, with ample time
devoted at the end of each session to
discussing, summarizing and abstract-
ing the presented material.

In the session on patterns of symbi-
otic systems, presenters discussed gen-
eral issues that apply broadly across
many different instantiations of sym-
biotic cognitive systems. Several dis-
cussed aspects of knowledge represen-
tation, including its role in enabling
distributed cognition, in semantically
mapping elements of the physical
world to that representation, and in
teaching agents about relationships
that need to be included in that repre-
sentation. One insight that emerged
during the discussion was the idea of
confusion or uncertainty. The ability
of a system to sense its own uncertain-
ty is necessary in order to generate
behaviors that are likely to improve
the system’s representation of the
world or the humans and agents in the
environment. The role that attention
can play in reorienting the priorities of
a cognitive system was discussed, as
was the relationship of attention to
representation.

The session on symbiotic interac-
tions focused on aspects of interactions
between machines and humans or the
world that they inhabit. One thread of
discussion concerned verbal commu-
nication of needs, intents and plans.
Methods of collecting verbal commu-
nication methods included crowd-
sourcing to collect a variety of lan-
guage, profiling human users using
social norms and elicitation dialogs,
and virtual reality. A second thread of
discussion concerned nonverbal com-
munication of information pertaining
to the physiological, mental, or emo-
tional state of humans, possibly using
cognitive objects (such as chairs) as
sensors, while a third concerned sys-
tems that could be taught to interpret
and execute commands that involved
recognizing and manipulating objects
in the physical world.

The third session was on learning
about and from humans. On the topic
of learning about humans, work was
presented and discussed about infer-
ring fatigue or other physiological
attributes from eye tracking, and learn-
ing models of human reaction to
advertising by observing behavior and
analyzing facial expressions. The use of
human demonstrations, situated dia-
log, text understanding, virtual words,
and storytelling were all discussed as
methods to learn from humans. The
third session was concluded by an
interactive poster session where
authors could present and discuss their
work in further detail.

The workshop concluded with a
lively discussion among all partici-
pants that focused on questions such
as “What are the essential common
characteristics and themes of symbiot-
ic cognitive systems?” “What distin-
guishes them from other interactive
systems?” and “Is it worthwhile to cre-
ate a symbiotic community, and if so
how should we go about it?” It is fair to
say that, while an absolute consensus
was not reached regarding the first two
questions, there was great enthusiasm
for continuing the discussion at anoth-
er venue in the near future, perhaps at
AAMAS, IJCAI, or another Al confer-
ence.

This report was written by Jeffrey O.
Kephart and Stephanie Rosenthal. Jef-
frey O. Kephart, Stephanie Rosenthal,

Reports

and Manuela Veloso served as cochairs
of the workshop. The papers of the
workshop were published as technical
report WS-16-14 in The Workshops of
the Thirtieth AAAI Conference on Artifi-
cial Intelligence (Palo Alto, CA: AAAI
Press).

World Wide Web
and Population Health
Intelligence

Population health intelligence in-
cludes a set of activities to extract, cap-
ture, and analyze multidimensional
socioeconomic, behavioral, environ-
mental, and health data to support
decision making to improve the health
of different populations. Advances in
artificial intelligence tools and tech-
niques and Internet technologies are
dramatically changing the ways that
scientists collect data and how people
interact with each other and with their
environment. Moreover, the Internet is
increasingly used to collect, analyze,
and monitor health-related reports and
activities and to facilitate health-pro-
motion programs and preventive inter-
ventions.

This workshop follows the success of
previous AAAI workshops on the same
topic held in 2014 in Quebec, Canada,
and in 2015 in Austin, Texas, USA. This
workshop brought together computer
scientists, biomedical and health infor-
maticians, researchers, students, indus-
try professionals, and representatives
of national and international public
health agencies. Participants were
interested in the theory and practice of
computational models of web-based
public health intelligence. The papers
and demonstrations presented at the
workshop covered a broad range of dis-
ciplines within artificial intelligence
including knowledge representation,
machine learning, natural language
processing, and online social media
analytics. From an application perspec-
tive, presentations addressed topics in
epidemiology, environmental and
public health informatics, disease sur-
veillance, health behavior monitoring,
and disaster management.

One of the main themes of this
workshop was the exploration and
monitoring of online social media (for

FALL 2016 107

Reports

example, twitter) to analyze behavioral
patterns. Models of behavior were used
to enhance forecasting, guide decision
making, enable situational awareness,
and inform response strategies. The
workshop also included three invited
talks. Sudha Ram (professor and direc-
tor of INSITE Center for Business Intel-
ligence and Analytics, University of
Arizona) gave a presentation on using
big data for predictive analytics in pop-
ulation and personalized health care.
She demonstrated examples from
developing predictive models using
streaming sensor and social media data
sets combined with health-care
records. Soon Ae Chun (professor and
director of the Information Systems
Informatics program at the City Uni-
versity of New York, College of Staten
Island) described values and risks of
using patient-generated social health
data in health care. Damon Centola
(associate professor of communication
at the Annenberg School for Commu-
nication at the University of Pennsyl-
vania) presented his findings from a
series of novel experiments designed to
study the dynamics of behavioral dif-
fusion in large social networks. His
results showed a striking effect of net-
work topology on the diffusion of
health behavior, contrary to the expec-
tations of classical network theory.

To promote open debate and
exchange of opinion among partici-
pants, the workshop was concluded
with a panel discussion moderated by
Arash Shaban-Nejad and including
Sudha Ram, Soon Ae Chun, and
Damon Centola. The major theme of
the panel was to discuss the future of
online surveillance and interventions
for changing individual health behav-
iors.

Arash Shaban-Nejad, David L. Buck-
eridge, Byron C. Wallace, and John S.
Brownstein served as cochairs of this
workshop and wrote this report. The
papers of the workshop were published
as technical report WS-16-15 in The
Workshops of the Thirtieth AAAI Confer-
ence on Artificial Intelligence (Palo Alto,
CA: AAAI Press).

Stefano Albrecht is a postdoctoral fellow at
the University of Texas at Austin.

Bruno Bouchard is assistant professor at

108 Al MAGAZINE

Université du Québec a Chicoutimi .

John S. Brownstein is a researcher for
Boston Children’s Hospital and a professor
at Harvard University.

David L. Buckeridge, MD, is an associate
professor at McGill University.

Cornelia Caragea is an assistant professor at
University of North Texas.

Kevin M. Carter is an associate group leader
at MIT Lincoln Laboratory.

Adnan Darwiche is a professor at the Uni-
versity of California, Los Angeles.

Blaz Fortuna is a researcher consultant for
Bloomberg L.P. and Jozef Stefan Institute.

Yannick Francillette is from Université du
Québec a Chicoutimi

Sébastien Gaboury is assistant professor at
Université du Québec a Chicoutimi.

C. Lee Giles is a professor at the Pennsylva-
nia State University.

Marko Grobelnik is a research team leader
at Jozef Stefan Institute.

Estevam R. Hruschka Jr. is an associate pro-
fessor at the Federal University of Sao Car-
los.

Jeffrey O. Kephart is a member of the
research staff at IBM Thomas J. Watson
Research Center.

Parisa Kordjamshidi is a postdoctoral
researcher at the University of Illinois at
Urbana-Champaign.

Viliam Lisy is a postdoctoral fellow at the
Department of Computing Science, Univer-
sity of Alberta.

Daniele Magazzeni is a lecturer in comput-
er science at King’s College London.

Joao Marques-Silva is a professor at the
University of Lisbon.

Pierre Marquis is a professor at Université
d’Artois.

David Martinez is an associate division
head at MIT Lincoln Laboratory.

Martin MichalowskKi is a senior principal
research scientist at Adventium Labs.

Zeinab Noorian is a postdoctoral research
fellow at Ryerson University.

Enrico Pontelli is a professor at New Mexi-
co State University.

Alex Rogers is a professor at the University
of Oxford.

Stephanie Rosenthal is a research scientist
at Carnegie Mellon University.

Dan Roth is a professor at the University of
linois at Urbana-Champaign.

Scott Sanner is an assistant professor at the
University of Toronto.

Arash Shaban-Nejad is affiliated with the
School of Public Health, University of Cali-
fornia, Berkeley.

Arunesh Sinha is a postdoctoral researcher
at the University of Southern California.

Tran Cao Son is a professor at New Mexico
State University.

William Streilein is a Group Leader at MIT
Lincoln Laboratory.

Sylvie Thiebaux is a professor at the Aus-
tralian National University and a research
leader at the National ICT Australia.

Byron C. Wallace is an assistant professor at
the University of Texas at Austin.

Toby Walsh is a professor at the University
of New South Wales and a group leader at
Data61.

Michael Witbrock is a consulting comput-
er scientist at Lucid AL

Jie Zhang is an associate professor at
Nanyang Technological University.

Competition Reports

The International Competition
of Distributed and
Multiagent Planners

(CODMAP)

Antonin Komenda, Michal Stolba, Daniel L. Kovacs

B This article reports on the first inter-
national Competition of Distributed
and Multiagent Planners (CoODMAP).
The competition focused on cooperative
domain-independent planners compati-
ble with a minimal multiagent exten-
sion of the classical planning model.
The motivations for the competition
were manifold: to standardize the prob-
lem description language with a com-
mon set of benchmarks, to promote
development of multiagent planners
both inside and outside of the multia-
gent research community, and to serve
as a prototype for future multiagent
planning competitions. The article pro-
vides an overview of cooperative multi-
agent planning, describes a novel vari-
ant of standardized input language for
encoding mutliagent planning prob-
lems, and summarizes the key points of
organization, competing planners, and
results of the competition.

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

gence, proposes possibly tractable, heuristic, and algo-

rithmic solutions to computationally hard combinato-
rial problems of sequential decision making. In the case of
domain-independent planning, the input of a planner does
not contain only the planning problem instance but also its
domain, compactly describing the mechanics of the envi-
ronment.

The history of competitions of domain-independent auto-
mated planning began in 1998, with the first International
Planning Competition (IPC)! organized by Drew McDermott
(chair), Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. IPC
flourished, and during the next 17 years IPC grew into vari-
ous tracks comparing a variety of extensions of the classical
planning model based on STRIPS (Fikes and Nilsson 1971)
and Action Description Language (ADL) (Pednault 1989),
using the Planning Domain Description Language (PDDL)
(McDermott et al. 1998) as the de facto standard problem-
description (input) language. Although IPC focused only on
single-agent planning, the competition did add new tracks
over the years, beyond the initial deterministic track. For
example the probabilistic track, organized by Blai Bonet and
Bob Givan, was begun in 2006. Currently this track focuses
on planning problems defined as Markov decision processes
(MDPs) and partially observable MDPs (POMDPs) suitable for
modeling uncertainty in case of single-agent planning, and
to some limited extent in case of multiagent planning. For
the planning community, IPC became not only a standard
way to compare the performance of planners, but also a
source of a wide variety of benchmarks motivated by both
real-world problems and challenging fundamental features of
the planners.

3 utomated planning, as a subfield of artificial intelli-

FALL 2016 109

Competition Reports

In contrast to multiagent uncertainty planning
modeled as POMDPs, Ronen Brafman and Carmel
Domshlak (2008) proposed a model for (cooperative)
domain-independent multiagent planning for dis-
crete and deterministic environments. A special form
of partial observability was defined in terms of priva-
cy, where agents should not know, observe, or use
private knowledge of other agents. The motivation
was to create a minimal extension of the classical
planning model towards multiagent planning. The
result was MA-STRIPS — extended STRIPS by parti-
tioning of possible actions according to the particu-
lar agents and by defining what facts about the state
of the world should be treated as public or private
knowledge.

MA-STRIPS planning agents solve one common
planning problem, which is partitioned to several
subproblems. Partitioning according to agents is
related to splitting one large planning problem into
smaller parts by factoring, which can radically lower
complexity in some cases. MA-STRIPS by its privacy
requirements also implies that the private parts of the
problem have to be solved by their respective owner
planning agents.

The real-world motivation for MA-STRIPS spans
over a wide variety of problems (Nissim and Brafman
2014), similarly to classical planning. Be it a consor-
tium of cooperating logistic companies with common
transportation tasks, but private know-how about
local transport possibilities; or a team of spatially sep-
arated gas station inspectors with a common goal to
analyze quality of gasoline in the whole country, but
with private knowledge about the particular gas sta-
tions; or a heterogeneous fleet of satellites and rovers
surveying a distant planet, for which keeping local
information private is the only feasible way not to
overload the communication network. In these moti-
vational cases, MA-STRIPS problem partitioning
would be defined over trucks, inspectors, rovers, and
satellites. The know-how of mentioned corporations,
knowledge of inspectors, and local information of
robots would define MA-STRIPS private knowledge
and obviate sharing all of the information freely
among the agents.

After the MA-STRIPS model was introduced, a sub-
stantial number of multiagent planners were pro-
posed. However, the differences in the used input
languages and absence of a common set of bench-
marks rendered their comparison impractical. In this
article, we report on the first competition of distrib-
uted and multiagent planners compatible with the
MA-STRIPS model. Our goal is to improve the situa-
tion by preparing a common language and bench-
marks and providing a common ground for compar-
ison. The competing planners were either centralized
or distributed, competing in two separate tracks.
Each of them performed planning in advance
(offline) for cooperative agents with common and
publicly known goal(s). The agents acted in a shared

110 AI MAGAZINE

deterministic environment, and in the distributed track,
they were required to keep parts of their planning prob-
lems private, that is, not share it with other agents. All
actions were discrete time and nondurative. We have
organized the competition as part of the workshop on
Distributed and Multiagent Planning at the Internation-
al Conference on Automated Planning and Scheduling
during winter and spring 2015.

Input Language

Following the minimalistic extension of STRIPS to MA-
STRIPS by Brafman and Domshlak in 2008, we wanted a
simple extension of PDDL toward multiagent planning,
also compatible with MA-STRIPS. We chose MA-PDDL
(Kovacs 2012) and extended it with a partitioning defi-
nition and a definition of privacy of objects and predi-
cates (and thus implicitly of the privacy of actions). The
extension allowed defining agents in various ways: as
objects, constants, or not explicitly at all. This variabili-
ty allowed us to reuse many interesting classical plan-
ning benchmarks.

The definition of privacy in MA-STRIPS is implicit and
follows a simple rule, which says that a fact is public if it
is required or modified by two or more actions of differ-
ent agents. An action is public if it requires or modifies
at least one public fact. Based on a review of literature,
and a conducted precompetition poll,> we found that
such a definition could be too rigid, especially for future
versions of the competition. We slightly relaxed the MA-
STRIPS notion of privacy and declared it explicitly in the
MA-PDDL description. Our privacy definition follows
MA-STRIPS in the sense that facts and actions can be pri-
vate to particular agents or public among all agents,
however what facts and actions are private and public is
determined by a process coined maximally concealing
grounding (MCG), which is based on three rules:

(1) A public predicate definition grounded with public

objects / constants is a public fact.

(2) A public predicate definition grounded with at least
one object / constant private to agent «a is a private fact of
agent o (grounding a single predicate definition with
objects private to different agents is not allowed).

(3) A private predicate grounds to a private fact regardless
of privacy of the objects used for grounding.

By convention, a PDDL object representing an agent
was private to that given agent. If it was not, other agents
of the same PDDL type would be able to ground and use
the other agent’s actions.

We have defined two ways how to encode® multiagent
planning problems: either as unfactored MA-PDDL or as
factored MA-PDDL. With regard to information, the two
representations are equivalent. The difference is in the
information separation. As for distributed multiagent
planning, it is important to provide the respective agents
only with information allowed to them by the privacy
requirements. Description of the MA-PDDL variants fol-
lows.

Unfactored MA-PDDL

Unfactored MA-PDDL stems naturally from classical
PDDL. It uses a pair of files for all agents. One file con-
tains the domain information and the other the spec-
ification of a problem instance within that domain.

Unfactored MA-PDDL is defined in terms of two
extensions of classical PDDL. The first informs the
planner that action definitions are annotated with an
additional specification of the agent owning the
grounding of the action. Using this extension over all
actions unambiguously defines action partitioning.
The other extension, with a help of the previously
defined MCG rules, unambiguously defines what
facts are private and public to given agents and, using
the MA-STRIPS definition, what actions are private
and public.

Factored MA-PDDL

Factored MA-PDDL results straightforwardly from the
distributed nature of multiagent systems. Each sepa-
rate planning agent uses its own pair of domain and
problem description files (denoted as a MA-PDDL fac-
tor). Each pair defines information relevant only to
that particular agent.

Action partitioning ensues directly from factoriza-
tion of the input. As each planning agent’s factor
contains only relevant objects, constants, and
actions, there is an unambiguous grounding of them.
Objects and constants that were common for more
than one agent were by convention bound over the
same names. The grounding semantics of privacy
using the MCG rules is the same as in the unfactored
variant with respect to the partitioning by the MA-
PDDL factors.

Competition Tracks

The success of a planning competition is determined
to a large extent by the number of contestants.
Because there was no historical experience from pre-
vious multiagent competitions, we wanted to open
the competition to the widest possible audience. A
survey of literature on multiagent planners together
with the precompetition poll provided enough infor-
mation to set the rules for the competition so that an
ample amount of already existing multiagent plan-
ners could compete and still the key motivations of
the competition remained satisfied.

Technically, the fundamental discriminator of cur-
rent multiagent planners is whether they can work
distributively on multiple interconnected physical
machines or not. Running planners in such a distrib-
uted setup is incomparable to running planners cen-
trally on one machine with a shared memory space.
To accommodate planners running in either mode,
the competition was split into two tracks: centralized
and distributed (see figure 1). The following para-
graphs describe the requirements and emphasize the
differences between them.

Competition Reports

Centralized Track

The centralized track aimed at running multiagent
planners on one physical multicore machine with
one shared memory space that allowed use of any
means of communication among its agents (see fig-
ure 1, top). This included a setup with only one
agent, which is typical for classical planners. It was
up to the planner whether it ran on one or more
machine cores and which type of communication it
used, if any. In contrast to IPC, in the centralized
CoDMAP track the planners had to read the input in
MA-PDDIL, either factored or unfactored. The MA-
STRIPS partitioning and privacy definitions were
indicated in the input MA-PDDL files, but the plan-
ners were allowed to ignore them. The required out-
put was a sound (valid) sequential plan solving the
provided planning problem. As a result of the above-
described openness, the centralized track allowed
comparison of a wide spectrum of multiagent plan-
ners. The track was therefore annotated as transi-
tional and highly compatible.

Distributed Track

The distributed track removed the compatibility
compromises of the centralized track. All competing
multiagent planners had to run in a distributed fash-
ion (as several planning agents) on a cluster of inter-
connected multicore machines, where each machine
was dedicated only for one planning agent (see figure
1, bottom).

The input was limited to factored MA-PDDL and
the partitioning matched the physical machines. Pri-
vacy followed the factored MA-PDDL definition and
the MCG rules. Planning agents could communicate
only public information over the TCP/IP network.
Competition rules forbid explicitly exchanging any
private information among the planning agents. The
output was a set of plans: one plan per planning
agent using only actions defined by its respective
MA-PDDL factor. The soundness of plans was tested
after their linearization. Concurrent actions of differ-
ent agents at any given time did not have to be
mutually exclusive. The distributed track was unique
and novel in comparison to the IPC tracks.

Competition Domains

The planners were evaluated over a set of 12 bench-
mark domains. The domains were motivated by
important and interesting real-world problems or by
problems exposing and testing theoretical features of
the planners. We used domains from literature on
multiagent planning that are in most cases multia-
gent variants of the classical IPC domains:
BLOCKSWORLD, DEPOT, DRIVERLOG, ELEVA-
TORS08, LOGISTICS00, ROVERS, SATELLITES,
SOKOBAN, WOODWORKING, and ZENOTRAVEL.
Each domain had 20 problem instances, with varying
size, number of objects, constants, agents, and thus

FALL 2016 111

Competition Reports

. h
centralized CoDMAP: C M)
mem
. 71 Py
input (unfactored MA-PDDL) output (plan)
Sicomnn >
N (a1l ay ..., ak)
Pn
—
or oM D
N M
input (MA-PDDL factor) N e
> P
t 1
agent . output (plan)
: 1comnn >
input (MA-PDDL factor) (&, ay, +-., @Y
agent o, "l P
" =
distributed CoDMAP: _
~—o V1 A
input (MA-PDDL factor) o b ak output (agent’s plan) R
agent o, | @, dy oy d)
N~ — T —
comm
— [M >
mem
input (MA-PDDL factor) . output (agent’s plan)
; n o o [;
agent o, (@, az .., @Y

Figure 1. Comparison of IPC and CoDMAP Tracks.

complexity. The biggest problems had 10 agents and
about 100 objects/constants. Additionally, we added
two novel domains inspired by well-known multia-
gent problems, not modeled in MA-STRIPS or MA-
PDDL previously: TAXI and WIRELESS. The taxi
domain can be considered a multiagent variation on
the logistic domain, in which monotonous (relaxed)
heuristic planning benefits. On the contrary, the wire-
less domain is modeled such that monotonous plan-
ning is deceived by a concept of circulating messages
among the sensors causing the relaxation planners to
think the communication is free of charge. Descrip-
tion of the novel domains follows.

TAXI

TAXI problems model on-demand transport in a city
(see figure 2, left). Two types of agents represent taxis

112 AI MAGAZINE

and passengers. Each taxi and passenger is at a par-
ticular location. A location can be free of taxis and
two locations can be directly connected. Connected
locations form a topology of the city. Each taxi can
transport only one passenger from the location it
stays at and only to a free drop-off location (a loca-
tion containing no other taxis). A taxi can move only
between connected locations.

WIRELESS

WIRELESS problems model distributed gathering of
data by a group of smart sensors to a base station (see
figure 2, right). The base and sensors are represented
by agents, where some of them are neighbors (they
are in range of their radios). The neighbor relation
defines the topology of an ad hoc radio network
among the sensors and the base. Sensor agents have

Competition Reports

Figure 2. Example Problem Instances of the Two Novel CODMAP Domains.

TAXI (left). WIRELESS (right). The figures represent initial states of the easiest instances of the domains. Dashed arrows show
the goals of individual agents. In the TAXI problem, both passengers want to be transported to the central location and the taxi
drivers want to end at the same locations they started from (the garage). In the WIRELESS problem, all five sensor nodes are ini-
tially at normal battery level, and there is only one allowed message in the system represented by an envelope initially at sen-

sor 1. Data from all sensors has to be gathered by the base station represented by a computer.

four possible private energy levels. A sensor with
more than zero energy can do its measurement and
generate measurement data, which decreases its ener-
gy by one level. A sensor can add measurement data
(possibly of other sensors) to a message if it has the
data and the message is in its memory. A sensor with
more then zero energy can send a message to a neigh-
boring sensor or base, which decreases its energy by
one level. Receiving a message as well as extracting
measurement data from a message does not change
the energy level. The number of messages usable in
parallel is limited; however, they can be reused
sequentially. The goal is to gather the measurement
data of selected sensors at the base station.

Validation and Evaluation

Each run of a planner in the competition was restrict-
ed to 30 minutes and 8 gigabytes of RAM per physi-
cal machine (in the centralized track per problem,
while in the distributed track per one agent, that is,
a factor of a problem) on quad-core machines at 3.9
GHz. The machines were for the distributed track
interconnected into an IP subnet with one 10 Gbps
switch and 1 Gbps Ethernet cards.

The metrics used to compare the planners were
coverage (number) of solved problems, IPC score
over the plan quality (ratio to the optimal solution),
and IPC score over the planning time (ratio to the

fastest solution). In the distributed track, the plan
quality was evaluated both in terms of total cost (sum
of costs of all used actions) and makespan (the max-
imum time step of the plan if executed in parallel).
The validity and quality of plans was evaluated using
the VAL tool,* which can handle parallel plans and
also performs checks of mutually exclusive actions.

The intentionally weak rules of the centralized
track attracted a number of (classical) planners adapt-
ed to process multiagent input in MA-PDDL. This
resulted in a wide spectrum of planners in terms of
the way of partitioning and privacy preservation. To
fairly compare the efficiency of these planners, com-
petition rules required submission of a short paper for
each submitted planner with a list of required items,
which can be used by the community to select only
those results that are relevant for their research. The
tighter rules of the distributed track allowed a much
easier comparison of competing planners.

Competing Planners
and Selected Results

Some of the competing planners were submitted in
several configurations. For the centralized track, we
received 12 planners in 17 configurations prepared
by 8 teams. For the distributed track 6 configurations
of 3 planners by 3 teams were received. All teams

FALL 2016 113

Competition Reports

Centralized track Distributed track

1.-2. ADP 222 1. PSM 180
3. MAP-LAPKT 216 2. MAPlan 174
4. CMAP 210 3. MH-FMAP 107

Table 1. Best Performing Planners in the Metrics of Solved
Problems (Coverage) Out of Overall 240 Benchmarks.

were from the research community of automated plan-
ning and multiagent systems. A selection of the results is
listed in table 1. Complete, detailed, and interactive
results can be found on the official CODMAP webpage.>
In the following paragraphs we summarize the key prin-
ciples of the best performing planners.

The winner of the centralized track, ADP, by Crosby,
Rovatsos, and Petrick (2013), was based on the idea of
automatic decomposition of a planning problem to
agents (however, it ignored the partitioning and the pri-
vacy predefined in MA-PDDL) using a graph of causal
dependencies among actions. The planning process itself
interleaved the subgoal calculation phase and the search
phase by the FastDownward planner (Helmert 2006). A
similar principle was used in the CMAP planner by Bor-
rajo (2013), where the planner did not plan for subgoals
but adapted and merged partial plans of different agents.
Additionally, the subproblems were obfuscated such that
privacy was preserved. The MAP-LAPKT planner by
Muise, Lipovetzky, and Ramirez (2015) compiled the
multiagent planning problems to classical problems
respecting the predefined partitioning and emulating the
partial observability resulting from the privacy.

The winner of the distributed track represented sets of
possible local plans of the agents as finite state machines.
The structures, coined planning state machines, giving the
planner name PSM (Tozicka, Jakubuv, and Komenda
2014), were projected to a public part of the problem and
merged. Provided that a merger of all public projections
of agents’ PSMs was nonempty, a coordination plan was
found and was extended to the global solution. The PSM
planner preserved privacy as the PSMs were kept local
and the merging process communicated only the public
projections. MAPlan by FiSer, Stolba, and Komenda
(2015) and MH-FMAP by Torrefio, Onaindia, and Sapena
(2014) were distributed multiheuristic forward-chaining
search planners, in the former case, in the space of states
and in the latter, in the space of partial-ordered plans by
a distributed variant of the best first search algorithm.
MAPIlan and MAP-LAPKT were the only optionally opti-
mal planners in the competition.

Conclusions and
Future Directions
The first international Competition of Distributed and

Multiagent Planners became a thorough and nearly com-
plete comparison of existing multiagent planning sys-

114 Al MAGAZINE

tems compatible with the MA-STRIPS model. It
served as a successful proof-of-concept prototype of a
multiagent competition showing good direction and
viability similarly to first IPC 17 years ago. We are
highly confident that a new track on multiagent
planning can become a valuable addition to the next
International Planning Competition.

Future directions for the competition can take
advantage of the extensibility of the MA-PDDL lan-
guage. An obvious direction is to use the looser pri-
vacy definition allowed by MA-PDDL and MCG and
propose planning problems with complex privacy
requirements like private goals. A partitioning relat-
ed extension is to allow joint actions, which have to
be performed by two or more agents at the same
time.

Acknowledgments

This work was partially supported by the Czech Sci-
ence Foundation (grant no. 15-20433Y), Israel Sci-
ence Foundation, and the International Conference
on Automated Planning & Scheduling 2015. We
thank the ICAPS 2015 conference chairs Ronen Braf-
man and Carmel Domshlak for valuable initial input
about the competition and Peter Benda from Czech
Technical University in Prague for IT support. We
would like to thank all participants in the competi-
tion; without their interest and hard work, the com-
petition would be impossible.

Notes

1. See ipc98.icaps-conference.org/.

2. See the precompetition poll, bit.ly/1IsNoqY.

3. The extended BNF of MA-PDDL can be found at
agents.fel.cvut.cz/ codmap/MA-PDDL-BNEpdf.

4. See www.inf.kcl.ac.uk/research/groups/ planning.
5. See agents.fel.cvut.cz/codmap.

References

Borrajo, D. 2013. Plan Sharing for Multi-Agent Planning.
Presented at the 1st ICAPS Workshop on Distributed and
Multi-Agent Planning (DMAP’13). (icaps13.icaps-confer-
ence.org/wp-content/uploads/2013/05/ dmap13-proceed-
ings.pdf)

Brafman, R. I., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS-08), 28-35 Menlo Park, CA:
AAAI Press.

Crosby, M.; Rovatsos, M.; and Petrick, R. 2013. Automated
Agent Decomposition for Classical Planning. In Proceedings
of the 23rd International Conference on Automated Planning
and Scheduling (ICAPS-13), 46-54 Menlo Park, CA: AAAI
Press.

Fikes, R., and Nilsson, N. 1971. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. In
Proceedings of the 2nd International Joint Conference on Artifi-
cial Intelligence (IJCAI-71), 608-620 San Francisco: William
Kaufmann.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fipc98.icaps-conference.org%2F
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fbit.ly%2F1IsNoqY
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap%2FMA-PDDL-BNF.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.inf.kcl.ac.uk%2Fresearch%2Fgroups%2Fplanning
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Ficaps13.icaps-conference.org%2Fwp-content%2Fuploads%2F2013%2F05%2Fdmap13-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Ficaps13.icaps-conference.org%2Fwp-content%2Fuploads%2F2013%2F05%2Fdmap13-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Ficaps13.icaps-conference.org%2Fwp-content%2Fuploads%2F2013%2F05%2Fdmap13-proceedings.pdf

Fiser, D.; Stolba, M.; and Komenda, A. 2015. MAPlan. Paper
presented at the Competition of Distributed and Multi-Agent
Planners (CoDMAP-15). (agents.fel.cvut.cz/codmap/
results/CoDMAP15-proceedings.pdf.)

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191-246.
Kovacs, D. L. 2012. A Multi-Agent Extension of PDDL3.1.
Paper presented at the 3rd Workshop on the International
Planning Competition (IPC. (icaps12.icaps-
conference.org/workshops/ipc2012-proceedings.pdf)
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL — The
Planning Domain Definition Language. Technical Report
TR-98-003, Yale Center for Computational Vision and Con-
trol. New Haven, CT, Yale University.

Muise, C.; Lipovetzky, N.; and Ramirez, M. 2015. MAP-LAP-
KT: Omnipotent Multi-Agent Planning via Compilation to
Classical Planning. Paper presented at the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15).
(agents.fel.cvut.cz/ codmap/results/CoDMAP15-proceed-
ings. pdf.)

Nissim, R., and Brafman, R. 2014. Distributed Heuristic For-
ward Search for Multi-Agent Planning. Journal of Artificial
Intelligence Research 51: 293-332.

Pednault, E. P. D. 1989. ADL: Exploring the Middle Ground
Between STRIPS and the Situation Calculus. In Proceedings of
the 1st International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-89), 324-332 San Francisco,
CA: Morgan Kaufmann.

Torrefio, A.; Onaindia, E.; and Sapena, O. 2014. FMAP: Dis-
tributed Cooperative Multi-Agent Planning. Applied Intelli-
gence 41(2): 606-626.

Tozicka, J.; Jakubuy, J.; and Komenda, A. 2014. Generating
Multi-Agent Plans by Distributed Intersection of Finite State
Machines. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI-14), 1111-1112 Setabal, Portugal:
SciTePress.

Antonin Komenda is a research fellow at the Agent Tech-
nology Center (ATG) at the Faculty of Electrical Engineering
(FEE), Czech Technical University in Prague. His research
and project work focuses on domain-independent plan-
ning, both classical and multiagent in deterministic and
uncertain planning models. Komenda earned his Ph.D.
from Czech Technical University in Prague and was a post-
doctoral fellow at Technion - Israel Institute of Technology
from 2013 to 2014.

Michal Stolba is a Ph.D. student at the Agent Technology
Center (ATG) at the Faculty of Electrical Engineering (FEE),
Czech Technical University in Prague (CTU). His research
focuses mainly on heuristic search for domain-independent
multiagent planning and distributed heuristic computation.
He holds a master’s degree in automated planning from the
Strathclyde University in Glasgow, UK.

Daniel L. Kovacs is an external lecturer in the Department
of Measurement and Information Systems at the Budapest
University of Technology and Economics, where he
received his B.Sc. and M.Sc. in computer science in 2003
and completed his Ph.D studies in 2006. His current
research is focused on multiagent planning, bounded
rationality, and game theory. He was an organizer of the first
three ICAPS-DMAP workshops, 2013-15.

Competition Reports

VANDERBILT UNIVERSITY

THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COM-
PUTER SCIENCE (EECS) AT VANDERBILT UNIVERSITY is seeking
candidates for two tenured/tenure-track (T/TK) faculty positions. Appoint-
ments at all ranks will be considered; we prefer to fill at least one position
at the assistant professor of computer science rank. Successful candidates
are expected to teach at the undergraduate and graduate levels and to devel-
op and grow vigorous programs of externally funded research. Areas of
focus for this search are: (1) Computer Assisted Surgery and Interventions.
We seek world-class expertise in medical image and signal analysis, com-
puter vision, and medical robotics. The successful candidate will expand the
CS curriculum in these areas and have a strong interest in translational
research, collaboration with the Vanderbilt University Medical Center, and
will be expected to engage with the Vanderbilt Institute in Surgery and Engi-
neering (VISE: http://www.vanderbilt.edu/vise). VISE’s mission is the cre-
ation, development, implementation, clinical evaluation and translation of
methods, devices, algorithms, and systems designed to facilitate surgical and
interventional processes and their outcome. (2) Big Data/Data Science/Al.
We seek world-class expertise in broadly defined areas of data science,
machine learning, data mining, visualization, computer vision, and/or arti-
ficial intelligence. The Vanderbilt CS program provides a unique, collabo-
rative, and interdisciplinary research environment. New trans-institutional
programs are creating opportunities for research on issues of broad signifi-
cance that create and extend collaborations across multiple fields.

Vanderbilt University is a private, internationally renowned research uni-
versity located in vibrant Nashville, Tennessee. Its 10 schools share a single
cohesive campus that nurtures interdisciplinary activities. The School of
Engineering is on a strong upward trajectory in national and international
stature and prominence, and has built infrastructure to support a significant
expansion in faculty size. In the 2015 rankings of graduate engineering pro-
grams by U.S. News & World Report, the School ranks third among pro-
grams with fewer than 100 faculty members. 5-year average T/TK faculty
funding in the EECS Department is nearly $1M per year. All junior faculty
members hired during the past 15 years have received prestigious young
investigator awards, such as NSF CAREER and DARPA CSSG.

With a metro population of approximately 1.5 million people, Nashville
has been named one of the 15 best U.S. cities for work and family by For-
tune magazine, was ranked as the #1 most popular U.S. city for corporate
relocations by Expansion Management magazine, and was named by Forbes
magazine as one of the 25 cities most likely to have the country's highest job
growth over the coming five years. Major industries include tourism, print-
ing and publishing, manufacturing technology, music production, higher
education, finance, insurance, automobile production and health care man-
agement.

Vanderbilt University is an equal-opportunity, affirmative-action
employer that aspires to become a leader among peer institutions in making
meaningful and lasting progress in responding to the needs and concerns of
women and members of under-represented minority groups. Applications
should be submitted on-line at:
https://academicjobsonline.org/ajo/jobs/7736.

For more information, please visit our web site: http://engineering.van-
derbilt.edu/eecs. Applications will be reviewed on a rolling basis beginning
November 1, 2016 with telephone interviews beginning December 1, 2016.
The final application deadline is January 15, 2017.

FALL 2016 115

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap%2Fresults%2FCoDMAP15-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Ficaps12.icaps-conference.org%2Fworkshops%2Fipc2012-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap%2Fresults%2FCoDMAP15-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fwww.vanderbilt.edu%2Fvise
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fengineering.vanderbilt.edu%2Feecs
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fengineering.vanderbilt.edu%2Feecs
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap%2Fresults%2FCoDMAP15-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Ficaps12.icaps-conference.org%2Fworkshops%2Fipc2012-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fagents.fel.cvut.cz%2Fcodmap%2Fresults%2FCoDMAP15-proceedings.pdf
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=115&exitLink=https%3A%2F%2Facademicjobsonline.org%2Fajo%2Fjobs%2F7736

116 Al MAGAZINE

Al in Industry

Automated Process
Planning for CNC Machining

B This article describes an application
of Al planning to the problem of auto-
mated process planning for machining
parts, given raw stock and a CAD file
describing the desired part geometry.
Researchers at PARC have found that
existing planners from the Al commu-
nity fall short on several requirements,
most importantly regarding the expres-
sivity of state and action representa-
tions and the ability to exploit domain-
specific knowledge to prune the search
space. In this article 1 describe the
requirements for this application and
what kind of results from the planning
community helped most. Overall, in
this project as well as others, I found
that even significant results from
domain-independent planning may not
be relevant in practice.

Christian Fritz

“Unsurprisingly, Al planning

in industry is domain-specific.”
A large portion of today’s industrial manufacturing relies on
subtractive machining, a process in which a fast-spinning
tool successively removes material from raw stock, for exam-
ple, a block of aluminum, in order to arrive at a part geome-
try as specified by a design engineer in a computer-aided
design (CAD) file. Planning for this process typically involves
identifying the sequence of orientations in which the work
piece needs to be fixed, identifying the sequence of tools to
be used in each orientation, identifying the part of the vol-
ume to be removed in each step of each orientation, and
identifying the machine to use for each step of each orienta-
tion. Until now, this planning process was not automated but
done by humans.

The Defense Advanced Research Projects Agency (DARPA)
recognized that this lack of automation was a source of delays
in the design and production of new vehicles and requested
proposals to address this issue and to provide automated
manufacturing feedback back to designers. At Palo Alto
Research Center (PARC), researchers recognized the potential
business value to designers as well as manufacturers, and this
value proposition was validated during project execution by
presenting early prototypes of the software to potential users.
The objective of PARC'’s uFab project hence was to create a
software tool that, given just a CAD file and a representation
of available machines and tools, generates a process plan in
real time. While work in this area had been done in the 1980s
under the name computer-aided process planning (CAPP)
(Alting and Zhang 1989), none of the approaches that were
pursued then resulted in a fully automated solution. A major
shortcoming of these systems was their reliance on features,
recognizable configurations of faces on a part such as pock-
ets, slots, and holes, in order to represent states and actions.
In these approaches, planning amounted merely to selecting

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

from a set of predefined operations to
make each of the recognized features.
This reliance on feature-based repre-
sentations hindered their broad appli-
cability to parts that could not be easi-
ly described as a combination of
features or where feature recognition
was difficult, ambiguous, or error
prone.

Feature-Free
Process Planning

My group therefore went with an
entirely different representation.
Enabled by much more computational
power and larger memory than in the
1980s, the approach uses a hybrid rep-
resentation of faces and voxels —
three-dimensional pixels. The CAD
geometry to be analyzed is discretized
into a large number of voxels (on the
order of 200 per coordinate axis). Giv-
en this representation, actions are
characterized by a tool and an orienta-
tion, and their effect is described by
the removal volumes, that is, the sets
of voxels that can be reached by the
tool in the given orientation, given its
length and diameter, without colliding
with the desired geometry. Computing
these removal volumes requires geo-
metric reasoning, and is much slower
than one would want in an inner loop
of a planner (ca. 200 ms). For this rea-
son we precompute all maximal
removal volumes ahead of planning,
and then only intersect and union
these volumes during planning.

Taken together, these properties of
the representation rendered Planning
Domain Definition Language (PDDL)-
based planners unusable for purposes
or this research. These planners do not
have the representational expressivity
to capture geometric operations, nor
are they well suited to computing large
intersections (millions of logical con-
junctions) and unions (millions of log-
ical disjunctions). Nor did they need
to. Given that my colleagues and I
worked on this problem for multiple
years, which is not uncommon in
industry, it was entirely acceptable to
design and implement a domain-spe-
cific planner that uses fast C-imple-
mentations for required set operations,
the z-buffer algorithm (Rossignac and
Requicha 1986) for geometric reason-

ing, and intelligent precomputation of
action effects where possible. Relative
to these domain-specific needs, imple-
menting the actual search used for
planning was the easy part. My col-
leagues and I used a combination of
beam and weighted A* search, and
exploited some insights from solutions
for the set-cover problem. Since the
value-proposition was based on an
interactive experience, the challenge
was to balance optimality with
response time for the user, but in addi-
tion to the usual search parameters like
beam width and heuristic weight, my
colleagues and I had broad domain-
specific knowledge at our disposal,
which proved most powerful.

As a result, PARC is now able to offer
a web-based service for automated
process planning that can save
machine shop owners several hours of
manual work each day, resulting in
clear monetary value. This benefit is
most pronounced for machine shops
that specialize on “high-mix, low-vol-
ume” business, that is, where only a
relatively low quantity of each newly
quoted part is cut.

Lessons Learned

Catalyzed by the international plan-
ning competition, the AI planning
community has accomplished great
speedups in domain-independent
planning for a number of planning cat-
egories. However, in my experience
with this industrial application as well
as others, domain-independence rarely
matters in practical applications. In
industry, almost by definition, people
have industry-specific, that is, domain-
specific, planning needs. If the plan-
ning community would like to help
industry with these needs, then a shift
in focus may be advisable. The type of
research that I believe industry would
most benefit from involves more
expressive representations, including
metalanguages for creating domain-
specific languages to use for state and
action space representation, hybrid
approaches between declarative plan-
ning and procedural programming,
such as TLPlan (Bacchus and Kabanza
1998), Golog (Levesque et al. 1997), or
even procedural attachments, as well
as fundamental insights about combi-

Al in Industry

natorial search that are independent of
the representation. Any advances that
are specific to domain-independent
planning in PDDL, such as the power-
ful deletion heuristic, are unlikely to
move the scale in practice, at least for
me. The competition is simply too
high: dealing with the NP or PSPACE
hardness of planning depends on the
ability to exploit structure, and know-
ing the domain simply puts domain-
specific planners in an (exponentially)
unfair advantage over domain-inde-
pendent approaches. As a result, the
business model for domain-indepen-
dent planners is questionable, and I
believe aspiring graduate students are
ill advised to focus too much on them
if they care about the practical long-
term impact of their work.

Acknowledgements

The work on this article was performed
while the author was at Palo Alto
Research Center, Palo Alto, CA, USA.

References

Alting, L., and Zhang, H.-C. 1989. Comput-
er Aided Process Planning: The State-of-the-
Art Survey. International Journal of Production
Research. 04/1989; 27(4): 553-585. dx.doi.
0rg/10.1080/00207548908942569

Bacchus, F, and Kabanza, F. 1998. Planning
for Temporally Extended Goals. Annals of
Mathematics and Artificial Intelligence 22(1-
2):5-27, 1998. dx.doi.org/10.1023/A:
1018985923441

Levesque, H. J.; Reiter, R.; Lesperance, Y.;
Lin, E; and Scherl, R. B. 1997. GOLOG: A
Logic Programming Language for Dynamic
Domains. Journal of Logic Programming 31(1-
3): 59-83. dx.doi.org/10.1016/S0743-
1066(96)00121-5

Rossignac, J. R., and Requicha, A. A. G.
1986. Depth-Buffering Display Techniques
for Constructive Solid Geometry. [EEE Com-
puter Graphics and Applications 6(9) (Septem-
ber): 29-39. dx.doi.org/10.1109/MCG.1986.
276544

Christian Fritz until recently led the Repre-
sentation and Planning area at PARC. Prior
to assuming that role he was a research sci-
entist, working on various applied planning
projects. Prior to PARC he was a postdoctor-
al researcher at USC ISI. Fritz earned his
Ph.D. in computer science from the Knowl-
edge Representation group at the Universi-
ty of Toronto, Canada, and his MS and BS
degrees in computer science from RWTH
Aachen, Germany.

FALL 2016 117

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1080%2F00207548908942569
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018985923441
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0743-1066%2896%2900121-5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FMCG.1986.276544
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1080%2F00207548908942569
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1023%2FA%3A1018985923441
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1016%2FS0743-1066%2896%2900121-5
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FMCG.1986.276544

Worldwide Al

Worldwide Al g,

winy

B This column provides an encounter with the
artificial intelligence research community in the
state of Israel. The first section introduces this
community and its special attributes. The sec-
ond section provides an overview of some recent
research projects done in Israel. The author
serves as the chair of the Israeli Association for
Artificial Intelligence.

Ariel Felner

The Israeli Al Community

Israel is a young and a small country consisting of only
approximately 20,000 square kilometers in area and a pop-
ulation of approximately 8 million. Since its establishment
in 1948, The Israeli government has placed great impor-
tance on establishing excellent research institutions and
universities.

As a consequence, there are eight universities in Israel, as
well as a handful of research institutions and numerous col-
leges, and Israel has excelled in numerous fields of research.
A clear sign of this is that Israel has produced eight Nobel
laureates in the past 15 years, out of 154 worldwide. Com-
puter science research in Israel dates back to the country’s
founding, and five Turing Award winners (out of 62) are
Israelis. Al research in Israel has been firmly established
since the 1980s, and there are currently quite a few Al
research groups and labs in Israeli universities.

This column introduces the Israeli AI community and
many of its unique attributes. It also covers a number of
recent research projects in the field of Al that are done in
different institutions within the country.

The Israeli Association for Al

The Israeli Association for Artificial Intelligence (IAAI),! a
member of the European Association for Artifical Intelli-
gence (EURAI), is an umbrella organization for Al
researchers in Israel. The primary goals of the organization
are to promote the study and research of Al in Israel, to
encourage cooperation between Israeli Al researchers, and
to promote collaboration with Al researchers worldwide.
Israelis are known to be very friendly and they like to
socialize. In addition, Israel’s small size means that its two
most distant universities — Technion in Haifa (the north)
and Ben-Gurion University of the Negev (the south) — are
only 187 kilometers apart. As a result, many members of
IAAI have strong personal and research relations through-
out the country. Very often, Israeli Al researchers from
throughout the country will organize mutual visits during
which they hold research meetings, give talks at seminars,
or participate in M.Sc. and Ph.D thesis defenses. Because of

118 AI MAGAZINE Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

the country’s small size, these visits can often be
done in a day, without requiring an overnight stay or
taking a flight.

Israeli Al conferences and workshops have a very
important role in creating the unique atmosphere of
the Israeli AI community. They are organized by IAAI
in an attempt to strengthen the interaction and col-
laboration between the various research groups. IAAI
symposia are held once or twice a year in various
research institutions in the country, where the differ-
ent Al groups present their recent achievements to the
entire Israeli Al community and have valuable time to
meet and collaborate. Special attention is given to stu-
dents and to young faculty members, thus affording
them an opportunity to introduce themselves to the
entire community. A special slot is reserved for young
students who had papers accepted to one of the top
tier international Al conferences. Such students then
have the opportunity to present their talk to the small-
er domestic audience. Roughly 100 researchers partic-
ipate in these events, enabling them to familiarize
themselves with the latest achievements of their peers
from around the country, and enjoy the very warm
atmosphere the IAAI events afford. Figure 1 was taken
during the last IAAI symposium at Ben-Gurion Uni-
versity, on January 25, 2016. The focus of the sympo-
sium was Israeli Al and cyber security.

Ever since 1989, IAAI has also held the biannual
Bar-Ilan Symposium on the Foundation of Artificial
intelligence (BISFAI), which is traditionally hosted
and organized by the devoted Al group of Bar-Ilan
University. BISFAI usually lasts for a couple of days in
June. As a mini Al conference, BISFAI holds sessions
on all areas of Al, including poster sessions, panels,
tutorials, and invited speakers both from inside and
outside of Israel. The program committees for all
these events select high-quality papers for presenta-
tion, but the papers are not archived. As a result,
most of them later appear in top tier Al venues.

Relations with the
International AI Community

Many Israeli Al researchers have strong collaborative
relationships with other research groups and col-
leagues abroad; they coauthor many papers and
jointly work on many research projects. Many Israelis
spend the summer or at least a few weeks per year
with their collaborators abroad. Naturally, the inter-
national colleagues always receive a warm invitation
to visit the respective Israeli group; many of them
indeed do come for a visit, often also taking a side
visit to one or more of the other universities and
enjoying a day of sightseeing.

As any other healthy Al community, Israeli Al
researchers exercise important responsibilities in
International Al organizations, in reviewing papers
and in organizing and participating in all levels of
program committees of conferences.

The Latest International
Conferences in Israel

In summer 2015, the Israeli Al community had the
honor of hosting two international conferences:
ICAPS-2015, which took place on June 7-11, 2015, in
downtown Jerusalem, and SoCS-2015, which was
held on June 11-13 in Ein-Gedi, an oasis on the shore
of the Dead Sea. The two conferences had a joint ses-
sion in Jerusalem on June 11, which included select-
ed papers from both conferences and a great keynote
talk by Stuart Russell on effective decision making.
Aside from the great technical programs, attendees of
these conferences were also able to also enjoy a num-
ber of social events. The 163 ICAPS participants were
treated to a reception at the Tower of David in the old
city followed by a spectacular sound and lights show,
a walking tour of the old city of Jerusalem, and a ban-
quet in a unique restaurant overlooking the old city
of Jerusalem. The 62 SoCS participants were taken on
a guided tour of Masada—an ancient fortification sit-
uated on top of an isolated mesa—which dates back
to the first century BCE. Some of the attendees even
climbed up by foot instead of taking the cable car
(figure 2).

Thirty-three individuals attended both SoCS and
ICAPS and had a full week of activities. This is great
evidence for the strong connection between the
search and planning communities.

Based on the strong success of these two confer-
ences, IAAl is considering placing a bid to host larger
Al conferences.

The Latest Israeli AI Achievements

There are many Al groups in Israel. This section
overviews a few representative Al projects that took
place in Israel recently, primarily focusing on the
projects of young Israeli scientists.

Voting Systems for
Bounded Rational Agents

Reshef Meir (Technion) and Yaakov (Kobi) Gal (Ben-
Gurion University) are designing and analyzing vot-
ing systems for bounded rational agents. They com-
bine tools from computational social choice with
human-computer decision making to understand the
voting behavior of human participants interacting
with these systems.

Together with Maor Tal, a graduate student, they
have implemented voting games that replicate two
common real-world scenarios of group decision mak-
ing (Tal, Meir, and Gal 2015). In the first, a single vot-
er votes once after seeing a large preelection poll. In
the second game, several voters play simultaneously
and change their votes as the game progresses, as in
small committees. The payment for participants is
determined based on the candidate who has the most

Worldwide Al

FALL 2016 119

Worldwide Al

Figure 1. The IAAI Smposium at Ben-Gurion University, January 25, 2016.

Moshe Vardi from Rice University in his invited talk on SAT solvers. Inset: Coffee break.

votes in the end. Thus far the voting behavior of hun-
dreds of participants was recorded, both in the lab
and through Amazon Mechanical Turk.

Analysis of the data reveals that people can be clas-
sified into at least three groups, two of which are not
engaged in any strategic behavior. The third and
largest group tends to select the natural default
action when there is no clear strategic alternative.
When an active strategic decision can be made that
improves their immediate payoff, people usually
choose that strategic alternative. The study provides
insight for multiagent system designers in uncover-
ing patterns that provide reasonable predictions of
voters behaviors, which may facilitate the design of
agents that support people or act autonomously in
voting systems.

A chief contribution in this work is the release of
VoteLib,? a database that contains all the collected
data that is freely available to the research commu-
nity. VoteLib allows researchers to test their own the-
ories and train their models without incurring the
overhead of collecting the data and will advance
research in Al and computational social choice. The
database is currently being extended to support large-
scale experiments including potentially thousands of
voters.

Bitcoin Research at the Hebrew University

Aviv Zohar and Jeffrey S. Rosenschein from the
Hebrew University in Jerusalem have recently
explored several issues related to the Bitcoin network.
Bitcoin is supported by a P2P network of nodes that
are spread around the globe. Each node is an eco-
nomically driven agent that works with its peers

120 AI MAGAZINE

together to authorize transactions in the currency
and to maintain the infrastructure required for the
system’s operation. The Bitcoin protocol awards
these participants (which are often called miners)
with rewards in exchange for investing computa-
tional effort in securing the system and processing
transactions.

Work in the group on this topic has focused on the
incentives of miners to act according to the rules of
the system (Lewenberg et al. 2015), on mechanisms
that utilize incentives to increase the transaction
throughput of Bitcoin (Sapirshtein, Sompolinsky,
and Zohar 2015), and on the use of cooperative
game-theoretic models to analyze which coalitions of
miners will form and how they will distribute
rewards (Lewenberg, Sompolinsky, and Zohar 2015).

The underlying consensus mechanisms of Bitcoins
can in many ways be explained as a voting process
through which miners coordinate their actions and
agree on the same set of accepted transactions. The
group is currently exploring connections between
computational social choice and cryptocurrencies.
This research direction has interesting implications:
it yields alternative mechanisms to the ones used by
Bitcoin that can allow the system to scale to reach
higher transaction volumes and faster processing
times.

Additional work is focused on the creation of the
P2P overlay network itself. Bitcoin’s network must
allow its nodes to broadcast messages to their peers,
but the lack of strong identities in the system implies
that it is difficult for nodes to tell if they are indeed
connected to other honest participants or if they are
only connected to attackers that have created multi-

Figure 2. SoCS-2015 Participants on a Guided Tour of Masada.
The intrepid participants climbed up to the top of Masada. Inset: Those who took the cable car waited for them.

ple fake identities. Indeed, Bitcoin is vulnerable to
attacks on its overlay infrastructure (Heilman et al.
2015), and the team is exploring ways to model net-
work formation as a game that is played between
nodes and their attacker.

Teams of Robots at Bar-Ilan University

A primary strength of the AI group at Bar Ilan Uni-
versity (BIU) is intelligent robotics, in particular the
study of teamwork in multirobot and multiagent sys-
tems (Gal Kaminka), adversarial robotics (Noa
Agmon), and human interaction with multiple
agents and robots (David Sarne, Sarit Kraus). Kamin-
ka and Agmon'’s research on multirobot patrolling,
exploration, and formations was highly publicized;
some of it resulted in patents and technology trans-
fer projects, as well as two spin-off startups.

Over the last six years the BIU team have com-
bined their expertise into a project that allows a sin-
gle human operator to interact effectively with a
team of robots to conduct an urban search-and-res-
cue operation. Specifically, the goal is to combine the
best technology in robotics, teamwork, agent-based,
and intelligent interfaces to alleviate the cognitive
load on the operator in this important task. Unlike

competing projects outside of Israel, the assumption
is of a quick setup, with only a single operator work-
ing from a laptop.

Initially, the project focused on intelligent user
interfaces and multirobot collaboration in the map-
ping process. One specific challenge in the user inter-
face rose because the initial requirement was for the
human operator to do the visual search — the robots
were there just to provide videos. This meant that an
operator was still required to watch all imagery taken
by all the robots. Kosti, Kaminka, and Sarne (2014)
developed a novel user interface that allowed the user
to view images in context of their location on the
map, automatically selecting the best image showing
a given location.

The focus shifted, however, to how a mediating
agent can assist in the visual search process, drawing
the operator’s attention to robots requiring assis-
tance, and to locations suspect of containing poten-
tial victims. Here, the agent uses learning to optimize
what advice to provide to the operator, and when
(Rosenfeld et al. 2015).

Automated Negotiation at Ariel University
One of the recent research efforts in the newly found-

FALL 2016 121

Worldwide Al

ed Ariel University was on the problem
of automated negotiation with the
development of DoNA, a domain-
based automated negotiator that won
second place out of 21 teams in the
2015 Automated Negotiation Agent
Competition (ANAC) (Erez and Zuck-
erman 2016). ANAC is a yearly compe-
tition that pits automated negotiation
agents against one another in a series
of negotiation sessions with various
parameters and rules.

DoNA is extremely simple: while
most agents in the competition today
are using complex strategies, learning
algorithms, and opponent modeling
techniques, DoNA looks only at two
domain parameters: the reservation
value and the time discount factor
(hence, the name of DoNA is domain-
based agent). DONA uses these two val-
ues in order to decide between four
heuristics that are based on cognitive
behavior in negotiations. DoNA does
not do any optimization or learning
nor any form of opponent modeling,
yet it managed to beat all the oppo-
nents in the 2013 and 2014 competi-
tion. DoNA was also enrolled in the
2015 competition (which also had
nonlinear domains for the first time),
and it managed to attain the second
place in the individual utility category,
with statistically insignificant differ-
ence from the first place.

A joint team from Ariel, Bar-Ilan,
and the Jerusalem College of Technol-
ogy (JCT) led by Inon Zuckerman, Noa
Agmon, and Avi Rosenfed developed
NegoChat, the first chat-based auto-
mated negotiation agent (Rosenfeld et
al. 2014). The project started with an
effort to adopt the state-of-the-art
human-agent automated negotiator
from a menu-based interface to a chat-
based interface. This required a new
negotiation strategy as humans who
are using a chat interface tend to nego-
tiate in a step-by-step manner and not
deal on the complete set of issues
(Zuckerman et al. 2015). With that in
mind, the group developed NegoChat
(Rosenfeld et al. 2014), and later an
extension by the name of NegoChat-A
(Rosenfeld et al. 2016), which deviates
from the rational Pareto-optimal, and
offers strategy to a new cluster-based
strategy that constructs the offers in a
stepwise manner inside its current

122 Al MAGAZINE

cluster of possible offers. This leads to
offers that are more successful when
negotiating with humans who are
using chat-based interfaces.

Summary

This column gave a brief encounter
with the Israeli Al community and
some of the research that was conduct-
ed recently. The Israeli AI community
hopes to continue with its traditions
and events and hopes to continue to
be a solid member in the international
Al community. On top of all, the Israeli
Al community hopes to continue and
conduct high-quality research in the
field of AL

Notes

1. www.ise.bgu.ac.il/iaai/.
2. www.votelib.org.

References

Erez, E. S., and Zuckerman, 1. 2016. Dona —
A Domain-Based Negotiation Agent. In Next
Frontier in Agent-Based Complex Automated
Negotiation, Studies in Computational Intel-
ligence, volume 638, ed. N. Fukuta, T. Ito,
M. Zhang, K. Fujita, and V. Robu. Berlin:
Springer.

Heilman, E.; Kendler, A.; Zohar, A.; and
Goldberg, S. 2015. Eclipse Attacks on Bit-
coin’s Peer-to-Peer Network. Paper present-
ed at the 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C.,
USA, August 12-14.

Kosti, S.; Kaminka, G. A.; and Sarne, D.
2014. A Novel User-Guided Interface for
Robot Search. In 2014 IEEE/RS] International
Conference on Intelligent Robots and Systems.
Piscataway, NJ: Institute for Electrical and
Electronics Engineers. dx.doi.org/10.1109/
IROS.2014.6943022

Lewenberg, Y.; Bachrach, Y.; Sompolinsky,
Y.; Zohar, A.; and Rosenschein, J. S. 2015.
Bitcoin Mining Pools: A Cooperative Game
Theoretic Analysis. In Proceedings of the
2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015,
919-927. New York: Association for Com-
puting Machinery.

Lewenberg, Y.; Sompolinsky, Y.; and Zohar,
A. 2015. Inclusive Block Chain Protocols. In
Financial Cryptography and Data Security —
19th International Conference, FC 2015,
Revised Selected Papers, 528-547. Berlin:
Springer. dx.doi.org/10.1007/978-3-662-
47854-7_33

Rosenfeld, A.; Agmon, N.; Maksimov, O.;
Azaria, A.; and Kraus, S. 2015. Intelligent
Agent Supporting Human-Multirobot Team

Collaboration. In Proceedings of the Twenty-
Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, 1902-1908. Palo
Alto, CA: AAAI Press.

Rosenfeld, A.; Zuckerman, I.; Segal-Halevi,
E.; Drein, O.; and Kraus, S. 2014. Negochat:
A Chat-Based Negotiation Agent. In Interna-
tional Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS-14, ed. A. Baz-
zan, M. Huhns, A. Lomuscio, and P. Scerri,
525-532. New York: Association for Com-
puting Machinery.

Rosenfeld, A.; Zuckerman, I.; Segal-Halevi,
E.; Drein, O.; and Kraus, S. 2016. Negochat-
A: A Chat-Based Negotiation Agent with
Bounded Rationality. Autonomous Agents
and Multi-Agent Systems 30(1): 60-81.
dx.doi.org/10.1007/s10458-015-9281-9
Sapirshtein, A.; Sompolinsky, Y.; and Zohar,
A. 201S. Optimal Selfish Mining Strategies
in Bitcoin. In Financial Cryptography and
Data Security — 20th International Confer-
ence, FC 2016, Revised Selected Papers. Berlin:
Springer.

Tal, M.; Meir, R.; and Gal, Y. K. 2015. A
Study of Human Behavior in Online Voting.
In Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, 665-673. New York:
Association for Computing Machinery.

Zuckerman, I.; Segal-Halevi, E.; Rosenfeld,
A.; and Kraus, S. 2015. First Steps in Chat-
Based Negotiating Agents. In Next Frontier in
Agent-Based Complex Automated Negotiation,
Studies in Computational Intelligence Vol-
ume 596. 89-109. Berlin: Springer. dx.doi.
0rg/10.1007/978-4-431-55525-4_6

Ariel Felner received his Ph.D. in 2002
from Bar-Ilan University, Israel, and is now
an associate professor at the Information
Systems Engineering Department, Ben-
Gurion University, Israel. He is the chair of
the Israeli Association for Artificial Intelli-
gence (IAAI) and a council member of the
Symposium of Combinatorial Search
(SoCS). He is interested in all aspects of
heuristic search in Al

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10458-015-9281-9
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-4-431-55525-4_6
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fwww.ise.bgu.ac.il%2Fiaai%2F
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fwww.votelib.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FIROS.2014.6943022
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-662-47854-7_33
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1109%2FIROS.2014.6943022
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-662-47854-7_33
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=122&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-4-431-55525-4_6

AAAL News _ <

SN

AAAI Returns to

the City by the Bay
in 2017!

The Thirty-First AAAI Conference on
Artificial Intelligence (AAAI-17) and
the Twenty-Ninth Conference on
Innovative Applications of Artificial
Intelligence (IAAI-17) will be held Feb-
ruary 4-9 at the Hilton San Francisco
Union Square in San Francisco, Cali-
fornia, USA. San Francisco is a world-
class city full of delights for every visi-
tor. From the iconic Golden Gate
bridge to its renowned art galleries, sci-
ence museums, and picturesque neigh-
borhoods, the City takes pride in its
unrivaled attractions and treasures.
The Hilton Hotel is located near Union
Square and very close to shops, restau-
rants, and entertainment venues, as
well as public transportation. The con-
ference location is a great starting
point to explore the City’s tremendous
ethnic and cultural diversity and its
wide variety of offerings. San Francisco
is also perfectly positioned to explore
the entire Bay Area, whether for recre-
ation or business. The Napa Valley,
Pacific Coast, Silicon Valley, and East
Bay are all a short distance away. As an
unrivaled center for Al and tech pro-
fessionals, San Francisco promises to
be a vibrant home for AAAI-17. For
local information, please visit the San
Francisco travel site at www.sftravel.
com.

Please note these upcoming dead-
lines for AAAI-17:

Doctoral Consortium
September 21: Applications due
The Doctoral Consortium (DC) pro-

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Fall News from the
Association for the Advancement
of Artificial Intelligence

vides an opportunity for a group of
Ph.D. students to discuss and explore
their research interests and career
objectives with a panel of established
researchers in artificial intelligence.
The consortium’s objectives are to pro-
vide a setting for mutual feedback on
participants’ current research and
guidance on future research directions;
to develop a supportive community of
scholars and a spirit of collaborative
research; to support a new generation
of researchers by offering advice about
academic, research, industrial, and
non-traditional career paths; and,
finally, to contribute to the overall
conference goals through interaction
with other researchers and participa-
tion in conference events.

Student Abstract and Poster Program
September 30: Abstracts due

The goal of the AAAI-17 Student
Abstract and Poster program is to pro-
vide a forum in which students can
present and discuss their work during
its early stages, meet some of their
peers who have related interests, and
introduce themselves to more senior
members of the field. The program is
open to all students at the undergrad-
uate, masters, and doctoral levels.

Workshop Program

October 21: Submissions due

The AAAI-17 workshop program
includes approximately 20 workshops
covering a wide range of topics in arti-
ficial intelligence. The AAAI-17 Work-
shop Call for Participation is now
available at www.aaai.org/Work-
shops/ws17.php. Workshop submis-
sions are due October 21, unless other-

AAAI News

wise noted at the individual workshop
website. Submission requirements vary
for each workshop. Please consult the
individual workshop description for
complete information about where to
submit your paper and a link to the
workshop supplementary website,
where more detailed information will
be available.

Demonstrations Program
October 21: Short papers and video due

The AAAI-17 Demonstrations Program
is intended to foster discussion and
exchange of ideas among researchers
and practitioners from academe and
industry by presenting software and
hardware systems and research proto-
types of such systems, including their
capabilities and workings. Accepted
demonstrations will be allocated one
time slot during one of the main con-
ference evening poster programs, and
will have a short paper included in the
proceedings. Submissions from every-
one, including authors of paper sub-
missions to AAAI, TAAI, and AAAI-17
workshops, are encouraged. Work sub-
mitted to other tracks (such as the
Robotics Exhibition and the Videos
Competition) can also be submitted to
the Demonstrations Program, accord-
ing to the guidelines in the Call for
Videos.

Al Video Competition

November 15: Submissions Due

The goal of the AAAI-17 Video Compe-
tition is to show the world how much
fun Al is by documenting exciting arti-
ficial intelligence advances in research,

education, and application. View pre-
vious entries and award winners at the

FALL 2016 123

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=123&exitLink=http%3A%2F%2Fwww.aaai.org%2FWorkshops%2Fws17.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=123&exitLink=http%3A%2F%2Fwww.aaai.org%2FWorkshops%2Fws17.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=123&exitLink=http%3A%2F%2Fwww.sftravel.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=123&exitLink=http%3A%2F%2Fwww.sftravel.com

AAAI News

Al Videos Past Competitions page
(www.aaai videos.org/past_competi-
tions).

For More AAAI-17 Information

Website: www.aaai.org/aaail7

For complete information about AAAI-
17, please visit the AAAI-17 website at
or write to us at aaail7@aaai.org. The
AAAI-17 Program Cochairs are Shaul
Markovitch (Technion, Israel) and
Satinder Singh (University of Michi-
gan, USA).

The IAAI-17 Conference Chair and
Cochair are James Crawford (Orbital
Insight, USA) and G. Michael Young-
blood (PARC, a Xerox Company, USA).

We hope to see you in San Francisco
in February!

AAAI-17 Student Scholar
and Volunteer Program

AAAI is pleased to announce the con-
tinuation of its Student Scholarship
Program for 2017, which is sponsored
by the AI Journal. The Student Scholar
Program provides partial travel support
for students who are full-time under-
graduate or graduate students at col-
leges and universities; are members of
AAAI; submit papers to the conference
program or letters of recommendation
from their faculty advisor; and submit
scholarship applications to AAAI by
November 18, 2016. In addition,
repeat scholarship applicants must
have fulfilled the volunteer and report-
ing requirements for previous awards.
In the event that scholarship applica-
tions exceed available funds, prefer-
ence will be given to students who
have an accepted technical paper, and
then to students who are actively par-
ticipating in the conference in some
way. However, all eligible students are
encouraged to apply.

The Student Volunteer Program is an
essential part of the conference and
student participation is a valuable con-
tribution. Volunteers will support
AAAI organizers in San Francisco, Cal-
ifornia. In 2017, a limited number of
complimentary technical program reg-
istrations will be available for students
who volunteer during the conference.
Preference will be given to participat-
ing students for the volunteer posi-
tions. Local students or students not

124 Al MAGAZINE

requiring travel assistance can apply
for the Volunteer Program if openings
are available. AAAI membership is
required for eligibility. The deadline for
volunteer applications is November
18, 2016.

For further information about the
Scholarship Program or the Volunteer
Program, or to obtain an application,

please contact AAAI at scholar-
ships17@aaai.org.
Join Us for AIIDE

in October!

The Twelfth AAAI Conference on Arti-
ficial Intelligence and Interactive Digi-
tal Entertainment (AIIDE-16) will be
held at the Embassy Suites by Hilton
San Francisco Airport — Burlingame, in
the San Francisco Bay Area, October 8-
12, 2016. AIIDE is the definitive point
of interaction between entertainment
software developers interested in Al
and academic and industrial Al
researchers. Sponsored by AAAI, the
conference is targeted at both the
research and commercial communi-
ties, promoting Al research and prac-
tice in the context of interactive digital
entertainment systems with an
emphasis on commercial computer
and video games.

The tentative line-up of invited
speakers for AIIDE-16 includes Katja
Hofmann (Microsoft Research), Jona-
than Blow (Number ONone), Kevin
Dill (Lockheed Martin), and the AIIDE-
16/MIG-16 Joint Invited Talk will fea-
ture Simon Clavet (UbiSoft Montreal).
The program will also include techni-
cal paper presentations, a poster and
demo session, and the annual Starcraft
Al Competition. The Playable Experi-
ences track will continue this year with
four systems with articulable innova-
tion in the use of Al directly affecting
the user’s experience, including Rogue
Process, Elsinore, Conceptually Blended
Levels in a Unity Engine, and Bad News.
Finally, the workshop program, to be
held October 8 and 9, will include the
following three workshops: Artificial
Intelligence in Adversarial Real-Time
Games (W1); Experimental Al in
Games (W2); and Player Analytics
(W3).

The full conference program and
registration information is available at

aiide.org. The late registration deadline
is September 9. Onsite rates will be in
effect after that date. Preregistration is
strongly encouraged. The online regis-
tration form is available at www.
regonline.com/aiide16, and will be
open through the conference period.
Onsite registration will be held in the
foyer of the Embassy Ballroom on the
Main Level of the hotel. For more
information about registration or
hotels in the area, please consult
www.aiide.org, or write to aiidel6@
aaai.org.

HCOMP 2016
Registration Open

Please join us for the Fourth AAAI Con-
ference on Human Computation and
Crowdsourcing (HCOMP 2016), to be
held October 30 — November 3 at the
AT&T Executive Conference Center on
the campus at the University of Texas
at Austin, Austin, Texas, USA. HCOMP
is the premier venue for disseminating
the latest research findings on crowd-
sourcing and human computation.
While artificial intelligence (AI) and
human-computer interaction (HCI)
represent traditional mainstays of the
conference, HCOMP believes strongly
in inviting, fostering, and promoting
broad, interdisciplinary research. This
field is particularly unique in the diver-
sity of disciplines it draws upon, and
contributes to, ranging from human-
centered qualitative studies and HCI
design, to computer science and artifi-
cial intelligence, economics and the
social sciences, all the way to cultural
heritage, digital humanities, ethics,
and policy. The HCOMP conference is
aimed at promoting the exchange of
advances in human computation and
crowdsourcing among not only
researchers, but also engineers and
practitioners, to encourage dialogue
across a spectrum of disciplines and
communities of practice.

The theme for HCOMP 2016 is inter-
action — interaction between people
and technology that is foundational to
human computation; interaction
between theoretical foundations,
experimental work, and engineering;
interaction between the computation-
al, scientific, and social applications of
crowdsourcing; and interaction be-

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=mailto%3Ascholarships17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.aaaivideos.org%2Fpast_competitions
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.aaai.org%2Faaai17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=mailto%3Aaaai17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Faiide.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.regonline.com%2Faiide16
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.aiide.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=mailto%3Aaiide16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.aaaivideos.org%2Fpast_competitions
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=mailto%3Ascholarships17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=http%3A%2F%2Fwww.regonline.com%2Faiide16
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=124&exitLink=mailto%3Aaiide16%40aaai.org

tween diverse disciplines and perspec-
tives, within our community and
beyond.

The program will include keynote
addresses by Iyad Rahwan (MIT),
Nathan Schneider (University of Col-
orado Boulder), and Ashish Goel (Stan-
ford University). In addition, on the
first day of the conference, HCOMP-16
will feature a Doctoral Consortium and
a tutorial on Crowdsourced Data Pro-
cessing: Industry and Academic Per-
spectives, as well as three workshops:
CrowdCamp; Human Computation
for Image and Video Analysis (Group-
Sight); and Mathematical Foundations
of Human Computation.

The main technical program has
been expanded to include two new
tracks on Industry and Practice and
Encore Papers. Past tracks on works-in-
progress and demos will also continue.

Complete registration and hotel
information is available at www.
humancomputation.com/2016. The
late registration deadline is October 7,
2016. The deadline for hotel reserva-
tions at the AT&T Conference Center
is October 3, 2016. The discounted
room rate of $185 per night (single/
double) may not be available after this
date.

ICWSM 2017
Comes to Canada

Please join us for the Eleventh Interna-
tional AAAI Conference on Weblogs
and Social Media, to be held in Mon-
tréal, Québec Canada, May 15-18.
2017. This interdisciplinary conference
is a forum for researchers in computer
science and social science to come
together to share knowledge, discuss
ideas, exchange information, and learn
about cutting-edge research in diverse
fields with the common theme of
online social media. This overall theme
includes research in new perspectives
in social theories, as well as computa-
tional algorithms for analyzing social
media. ICWSM is a singularly fitting
venue for research that blends social
science and computational approaches
to answer important and challenging
questions about human social behav-
ior through social media while advanc-
ing computational tools for vast and
unstructured data. Full conference

details will be posted at www.icwsm.
org/2017 as they become available.

AAAI 2016 Fall
Symposium Registration

The Association for the Advancement
of Artificial Intelligence’s 2016 Fall
Symposium Series will be held Thurs-
day through Saturday, November 17-
19 at the Westin Arlington Gateway,
Arlington Virginia, adjacent to Wash-
ington, DC. The six symposia are (1)
Accelerating Science: A Grand Chal-
lenge for Al; (2) Artificial Intelligence
for Human-Robot Interaction; (3) Cog-
nitive Assistance in Government and
Public Sector Applications;(4) Cross-
Disciplinary Challenges for Autono-
mous Systems; (5) Privacy and Lan-
guage Technologies; and (6) Shared
Autonomy in Research and Practice

An informal reception will be held
on Thursday, November 17. A general
plenary session, in which the high-
lights of each symposium will be pre-
sented, will be held on Friday, Novem-
ber 18. Symposia generally range from
40-75 participants each. Participation
will be open to active participants as
well as other interested individuals on
a first-come, first-served basis. Each
participant will be expected to attend
a single symposium. AAAI technical
reports will be distributed to partici-
pants in electronic format and posted
in the AAAI digital library

The final deadline for registration is
October 21, 2016. For registration infor-
mation, please contact AAAI at fss16@
aaai.org or visit AAAI's web site at
www.aaai.org/Symposia/Fall/fss16.php.
A hotel room block has been reserved
at the Westin. The cut-off date for
reservations is October 17, 2016 at 5:00
pm ET. Please call +1-888-627-7076
(reference AAAI) for reservations, or
reserve a room online via the URL liste
earlier.

AAAI 2017 Spring
Symposium Series

AAAI is pleased to present the 2017
Spring Symposium Series, to be held
Monday - Wednesday, March 27-29,
2017, at Stanford University. The eight
symposia are as follows:

AAAI News

Al for the Social Good

Eric Horvitz (Microsoft Research), Bar-
bara Grosz (Harvard University), Amy
Greenwald (Brown University), David
Parkes (Harvard University), Carla
Gomes (Cornell University), Stephen
Smith (Carnegie Mellon University),
Gregory Hager (Johns Hopkins Uni-
versity), Ann W. Drobnis (Computing
Research Association), Nicole Sintov
(Ohio State University), Milind Tambe
(University of Southern California),
Amulya Yadav (University of Southern
California), Fei Fang (Harvard Univer-
sit), Bryan Wilder (University of
Southern California)

Computational Construction Gram-
mar and Natural Language Under-
standing

Luc Steels (Universitat Pompeu Fabra,

Spain), Jerome Feldman (International
Computer Science Institute)

Computational Context: Why It's
Important, What It Means, and Can It
Be Computed?
Ranjeev Mittu (Naval Research Labo-
ratory); W.E. Lawless (Paine College);
Don Sofge (Naval Research Institute);
David Aha (Naval Research Institute)

Designing the User Experience of
Machine Learning Systems
Mike Kuniavsky (PARC), Elizabeth
Churchill (Google), Molly Wright
Steenson (Carnegie Mellon Universi-
ty)

Interactive Multisensory Object Per-

ception for Embodied Agents
Vivian Chu (Georgia Institute of Tech-
nology), Jivko Sinapov (University of
Texas at Austin), Jeannette Bohg (MPI
for Intelligent Systems), Sonia Cher-
nova (Georgia Institute of Technolo-
gy), Andrea L. Thomaz (University of
Texas at Austin)

Learning from Observation of Humans
Santiago Ontafion (Drexel Universi-
ty), Avelino J. Gonzélez (University of
Central Florida), José L. Montana
(University of Cantabria, Spain)

Science of Intelligence: Computation-
al Principles of Natural and Artificial
Intelligence
Gemma Roig (Massachusetts Institute
of Technology), Xavier Boix (National
University of Singapore)

Well-Being Al: From Machine Learning
to Subjective Oriented Computing

FALL 2016 125

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=http%3A%2F%2Fwww.humancomputation.com%2F2016
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=mailto%3Afss16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FFall%2Ffss16.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=mailto%3Afss16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=http%3A%2F%2Fwww.humancomputation.com%2F2016
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=125&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017

AAAI News

Takashi Kido (Rikengenesis, Japan),
Keiki Takadama, (The University of
Electro-Communications, Japan)

For additional information, and
links to the supplementary websites for
each symposium, please see www.aaai.
org/Symposia/Spring/ sss16.php. Sub-
missions for the symposia are due on
October 28, 2016. Notification of
acceptance will be given by November
29, 2016. Material to be included in
the technical reports of the symposium
must be received by January 25, 2017.
Registration information will be avail-
able by December 15, 2016. Please con-
tact AAAI at sss17@aaai.org with any
questions.

AAAI Fellows
Nominations Solicited

The 2017 Fellows Selection Committee
is currently accepting nominations for
AAAI Fellow. The AAAI Fellows pro-
gram is designed to recognize people
who have made significant, sustained
contributions to the field of artificial
intelligence over at least a ten-year
period. All regular members in good
standing are encouraged to consider
nominating a candidate. At least two
references must accompany nomina-
tions. The nominator or one of the ref-
erences must be a AAAI Fellow who is
a current member of AAAI For further
information about the Fellows Pro-
gram or to receive nomination and ref-
erence forms, please contact AAAI at
650-328-3123; by fax at 650-321-4457;
or by email at fellowsl7@aaai.org.
Nomination materials are also avail-
able on the AAAI web site at www.aaai.
org/Awards/fellows.php. The deadline
for nominations is September 30,
2016.

The AAAI
Feigenbaum Prize

The Feigenbaum Prize Selection Com-
mittee is currently accepting nomina-
tions for the 2017 Feigenbaum Prize.
The AAAI Feigenbaum Prize is awarded
biennially to recognize and encourage
outstanding Artificial Intelligence
research advances that are made by
using experimental methods of com-
puter science. The “laboratories” for

126 Al MAGAZINE

the experimental work are real-world
domains, and the power of the
research results are demonstrated in
those domains. The Feigenbaum Prize
may be given for a sustained record of
high-impact seminal contributions to
experimental Al research; or it may be
given to reward singular remarkable
innovation and achievement in exper-
imental AI research. The prize is
$10,000 and is provided by the Feigen-
baum Nii Foundation and adminis-
tered by AAAIL All nominations must
be accompanied by at least one letter
of support. For further information
about the AAAI Feigenbaum Prize and
to access the electronic nomination
form, please visit www.aaai.org/
Awards/feigenbaum.php The deadline
for nominations is September 30,
2016.

2017 AAAI Special
Award Nominations

AAAI is pleased to announce the con-
tinuation of its two special awards in
2017, and is currently seeking nomina-
tions for the 2017 AAAI Classic Paper
Award, and the AAAI Distinguished
Service Award. The 2017 AAAI Classic
Paper Award will be given to the
author of the most influential paper(s)
from the Sixteenth National Confer-
ence on Artificial Intelligence, held in
1999 in Orlando, Florida. The 2017
AAAI Distinguished Service Award will
recognize one individual for extraordi-
nary service to the Al community.
Awards will be presented at AAAI-17 in
San Francisco, California, USA. Com-
plete nomination information, includ-
ing nomination forms, is available at
www.aaai.org/Awards/fellows.php.
The deadline for nominations is Sep-
tember 30, 2016. For additional
inquiries, please contact Carol Hamil-
ton at hamilton@aaai.org.

2017 AAAI/EAAI
Outstanding
Educator Award
The AAAI/EAAI Outstanding Educator
award was created in 2016 to honor a
person (or group of people) who has

made major contributions to Al educa-
tion that provide long-lasting benefits

to the AI community. Examples
include innovating teaching methods,
providing service to the Al education
community, generating pedagogical
resources, designing curricula, and
educating students outside of higher
education venues (or the general pub-
lic) about AI. The award includes a
$1,000 honorarium, complimentary
one-year AAAI membership (new or
renewal), and a complimentary confer-
ence registration to the 2017 EAAI/
AAAI conferences, where the award
will be conferred.

Complete nomination information
is available at www.aaai.org/Awards/
eaai-call.php. The deadline for nomi-
nations is October 17, 2016. For addi-
tional inquiries, please contact avid
Poole (eaaiaward@aaai.org).

AAAI Senior Member
Grade of Membership

AAALI is now taking applications from
regular members for the AAAI Senior
Member grade of membership. This
status is designed to recognize mem-
bers who have achieved significant
accomplishments within the field of
Artificial Intelligence. To be eligible for
nomination for Senior Member, candi-
dates must be consecutive members of
AAALI for at least five years and have
been active in the professional arena
for at least ten years. Applications
should include information that
details the candidate’s scholarship,
leadership, and professional service. At
least two references, one of which
must be written by a AAAI Fellow or a
current AAAI Senior Member must
accompany the senior member appli-
cation. References should be submitted
by colleagues who know the candidate,
and are familiar with their work and
accomplishments.

Each year a maximum of 25 mem-
bers will be elected to the Senior status.
All applications and references must
conform to the requirements listed on
the form, and must be received by Sep-
tember 30, 2016.

For complete details and an applica-
tion form, please see www.aaai.
org/Awards/senior.php, or contact Car-
ol Hamilton at seniormember16@aaai.
org.

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FSpring%2Fsss16.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Asss17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Afellows17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Ffeigenbaum.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Ffeigenbaum.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Ffellows.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Ahamilton%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Feaai-call.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Feaai-call.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Aeaaiaward%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FSpring%2Fsss16.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Ffellows.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Ffellows.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Fsenior.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=http%3A%2F%2Fwww.aaai.org%2FAwards%2Fsenior.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Aseniormember16%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=126&exitLink=mailto%3Aseniormember16%40aaai.org

AAAI News

AAAI Elects New President-Elect and Councilors

AAALI is pleased to announce and congratulate the continu-
ing slate of officers and new councilors for the AAAI Execu-
tive Council.

President: Subbarao Kambhampati

(Arizona State University, USA)
Past President: Thomas G. Dietterich

(Oregon State University, USA)
President-Elect: Yolanda Gil

(USC Information Sciences Institute, USA)
Secretary-Treasurer: Ted Senator

Incoming Councilors (through 2019)
Blai Bonet (Universidad Simoén Bolivar, Venezuela)
Mausam (Indian Institute of Technology Delhi, India)
Michela Milano (Universita di Bologna, Italy)
Qiang Yang (Hong Kong University of Science and
Technology, Hong Kong)

Incoming AAAI President Subbarao Kambhampati (left) Eight existing Executive Council members, elected in 2015
is presented with his new gavel by outgoing AAAI presi- and ?016, will continue their terms.of service during the
dent Thomas G. Dietterich (right) at the July 2017 coming year. For a complete list, please refer to

AAAI Executive C. il Meeting in New York Citv. www.aaai.org/Organization/officers.php.
xecuttve Counctl Meeting in New York City AAAI also thanks the four retiring Councilors, and retir-

ing Past President, Manuela Veloso (Carnegie Mellon Uni-
versity, USA), for their dedicated service and generous dona-
tions of time. The four retiring officers are Sven Koenig
(University of Southern California, USA), Sylvie Thiebaux
(NICTA, Australia), Francesca Rossi (University of Padua,
Italy), and Brian Williams (Massachusetts Institute of Tech-
nology).

First Call for Nominations for Executive Councilors

Every year four new councilors are elected to serve three-year terms on the AAAI Executive Council. All elected coun-
cilors are expected to attend at least two council meetings per year, and actively participate in AAAI activities. Nomi-
nees must be current members of AAAI The Nominating Committee encourages all regular members in good stand-
ing to place an individual’s name before them for consideration. (Student and library members are not eligible to
submit candidates’ names.) The Nominating Committee, in turn, will nominate eight candidates for councilor in the
spring. In addition to members’ recommendations, the committee will actively recruit individuals in order to provide
a balanced slate of candidates. AAAI members will vote in the late spring.
To submit a candidate’s name for consideration, please send the following information to

Carol Hamilton, Executive Director, AAAI, 2275 East Bayshore Road, Suite 160, Palo Alto, CA 94303; by fax to 650/321-
4457; or by email to hamilton@aaai.org:

Name

Affiliation

City, State or Province, Country

Email address

URL

Year of membership in AAAI

Approximate number of AAAI publications

At least two sentences describing the candidate and why he would be a good candidate

Please include any additional information or recommendations that would be helpful to the Nominating Committee.
Nominators should contact candidates prior to submitting their names to verify that they are willing to serve, should
they be elected. The deadline for nominations is December 15, 2016.

FALL 2016 127

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=127&exitLink=mailto%3Ahamilton%40aaai.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=127&exitLink=http%3A%2F%2Fwww.aaai.org%2FOrganization%2Fofficers.php

Calendar

i
FE 4
Ja ey
BRI
~ s
|'.l
e e
o

&
*
L

AAAI Sponsored
Conferences

Twelfth AAAI Conference on Artifi-
cial Intelligence and Interactive Dig-
ital Entertainment. AIIDE-16 will be
held October 8-12 in San Francisco,
California, USA.

URL: aiide.org

Fourth AAAI Conference on Human
Computation and Crowdsourcing.
HCOMP-16 will be held October
30-November 3 in Austin, Texas, USA.

URL: humancomputation.com

AAAI Fall Symposium. The AAAI Fall
Symposium Series will be held Novem-
ber 17-19 in Arlington, Virginia, adja-
cent to Washington DC USA.
URL: www.aaai.org/Symposia/Fall/
fss16.php

Thirty-First AAAI Conference on
Artificial Intelligence. AAAI-17 will be
held February 4-9 in San Francisco,
California USA.

URL: www.aaai.org/aaail7

Twenty-Ninth Innovative Applica-
tions of Artificial Intelligence Con-
ference. IAAI-17 will be held February
4-9 in San Francisco, California USA.

URL: www.aaai.org/iaail7

AAAI Spring Symposium Series. The
AAAI 2017 Spring Symposium Series
will be held March 27-29, 2017, at
Stanford University adjacent to Palo
Alto, CA USA.
URL: www.aaai.org/Symposia/Spring/
sss17.php

Twelfth International AAAI Confer-
ence on Web and Social Media.
ICWSM-17 will be held May15-18 in
Montréal, Québec, Canada.

URL: www.icwsm.org/2017

128 Al MAGAZINE

www.aaai.org/Magazine/calendar.php.

The Thirty-Second AAAI Conference
on Artificial Intelligence. AAAI-18
will be held February 4-10 at the
Hilton New Orleans Riverside Hotel,
New Orleans, Louisiana USA.

URL: www.aaai.org/aaail8

Thirtieth Innovative Applications of
Artificial Intelligence Conference.
The TAAI-18 Conference will be held
February 4-10 at the Hilton New
Orleans Riverside Hotel, New Orleans,
Louisiana USA.

URL: www.aaai.org/iaail8.php

Conferences Held by
AAAT Atfiliates

The 16th International Conference
on Autonomous Agents and Multia-
gent Systems. AAMAS 2017 will be
held May 8-12, 2017 in Sao Paulo,
Brazil.

URL: aamas2017.org

Thirtieth International Florida Al
Research Society Conference.
FLAIRS-2017 will be held May 22-24,
2017 inMarco Island, Florida, USA.

URL: www.flairs-30.info

The 27th International Conference
on Automated Planning and Sched-
uling. ICAPS-17 will be held June 18-
23, 2017 in Pittsburgh, PA USA.

URL: icaps17.icaps-conference.org

Conferences Held in
Cooperation with AAAI

2016 IEEE International Conference
on Systems, Man and Cybernetics.
SMC2016 will be held October 9-12,
2016 in Budapest, Hungary.

URL: smc2016.org

This page includes forthcoming AAAI sponsored conferences,
conferences presented by AAAI Affiliates, and conferences held
in cooperation with AAAI. Al Magazine also maintains a cal-

endar listing that includes nonaffiliated conferences at

8th International Joint Conference
on Knowledge Discovery, Knowl-
edge Engineering and Knowledge
Management. IC3K 2016 will be held
9-11 November 2016 in Porto, Portu-
gal

www.ic3k.org

Eighth International Joint Confer-
ence on Computational Intelli-
gence. [JCCI 2016 will be held 9-11
November, 2016 in Porto, Portugal
URL: www.ijcci.org
Human, Machines, and the Future
of Work. De Lange Conference X will
be held December 5-6, 2016 at Rice
University in Houston, Texas, USA
URL: delange.rice.edu/conference_X

9th International Conference on
Agents and Artificial Intelligence.
ICAART 2017 will be held 24-26 Feb-
ruary, 2017 in Porto, Portugal

URL: www.icaart.org

6th International Conference on
Pattern Recognition Applications
and Methods. ICPRAM 2017 will be
held 24-26 February, 2017 in Porto,
Portugal

URL: www.icpram.org
The 16th International Conference
on Artificial Intelligence and Law.

ICAIL 2017 will be held 12-16 June,
2017 in London, UK

URL: nms.kcl.ac.uk/icail2017

Thirtieth International Conference
on Industrial, Engineering, and Oth-
er Applications of Applied Intelli-
gent Systems. IEA/AIE-2017 will be
held June 17-21, 2017 in Arras,
France.

URL: www.jeaaie2017.org

Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2Faaai18
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2Fiaai18.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Faamas2017.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.flairs-30.info
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Ficaps17.icaps-conference.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fsmc2016.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.ic3k.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.ijcci.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fdelange.rice.edu%2Fconference_X
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.icaart.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.icpram.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fnms.kcl.ac.uk%2Ficail2017
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.ieaaie2017.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Faiide.org
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fhumancomputation.com
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2Faaai17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2Fiaai17
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2FMagazine%2Fcalendar.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FSpring%2Fsss17.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FSpring%2Fsss17.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FFall%2Ffss16.php
http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=128&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FFall%2Ffss16.php

Please Join Us
for the” ..
Fourth AAAI
Conference

on Human
Computation
and Crowdsourcing

October 30-November 3 2016

Austin Texas, USA

www.humancomputation.com/2016/

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=C3&exitLink=http%3A%2F%2Fwww.humancomputation.com%2F2016%2F

Thirty-First
AAAI Conference
on Artificial

Intelligence

4-9 February 2017
San Francisco,

California USA

Shaul Markovitch &
Satinder Singh,
Program Cochairs

http://www.aimagazine-digital.org/aimagazine/fall_2016/TrackLink.action?pageName=C4&exitLink=http%3A%2F%2Fwww.aaai.org%2Faaai17

	CONTENTS
	ANSWER SET PROGRAMMING ARTICLES
	Answer Set Programming: An Introduction to the Special Issue
	Answer Sets and the Language of Answer Set Programming
	The Answer Set Programming Paradigm
	Grounding and Solving in Answer Set Programming
	Modeling and Language Extensions
	Systems, Engineering Environments, and Competitions
	Applications of ASP
	First Order Logic with Inductive Definitions for Model-Based Problem Solving

	ARTICLES
	Symbiotic Cognitive Computing
	Remembering Marvin Minsky

	WORKSHOP REPORT
	Reports on the 2016 AAAI Workshop Series

	COMPETITION REPORT
	The International Competition of Distributed and Multiagent Planners (CoDMAP)

	AI IN INDUSTRY
	Automated Process Planning for CNC Machining

	WORLDWIDE AI
	The Israeli AI Community

	DEPARTMENTS
	Editorial
	AAAI News
	AAAI Conferences Calendar

