
Union-Find

Algorithms for Big Data

Andrei Bulatov

14-2

Previous Lecture

Kruskal’s Algorithm

Soundness of Kraskal’s algorithm

Implementation details

Prim’s algorithm

Clustering

Algorithms for Big Data – Union-Find

14-3

Kruskal’s Algorithm

Input: graph � with weights ��

Output: a minimum spanning tree of �

Method:

� ≔ ∅

while � < � − 1 do

pick an edge � with minimum weight such that

it is not from � and

� ∪ {�} does not contain cycles

set � ≔ � ∪ {�}

Algorithms for Big Data – Union-Find

To work efficiently Kruskal’s algorithm requires a data structure to
store the collection of connected components of a graph and merge
then when necessary

More precisely, the data structure has to support the following
operations:

makeset��� create a singleton set containing just �

find � returns a label to which set � belongs

union��, �� merge the sets containing � and �

14-4

The Union-Find Data Structure

Algorithms for Big Data – Union-Find

To avoid searching for an edge of minimum weight, sort the edges in
the beginning of the algorithm

If � is the current set of selected edges, the data structure
contains the collection of connected components of �, �

To check whether edge �,� forms a cycle just check if
find � � find �

Follow the sorted list of edges. Every time for edge �,� , if it
forms a cycle, remove it from the list. If it does not, merge the sets
containing � and �, and remove the edge from the list

14-5

Kruskal’s Algorithm with Union-Find

Algorithms for Big Data – Union-Find

Running time:

� � log � � � � log � for sorting

Need to consider � edges

Goal: perform find and merge in � log � time

14-6

Kruskal’s Algorithm with Union-Find (Running Time)

Algorithms for Big Data – Union-Find

14-7

Kruskal’s Algorithm

Input: graph � � ��, �� with weights ��

Output: a minimum spanning tree of �

Method:
sort � according to ��

for � ∈ � do

makeset���

� ≔ ∅

while � ≠ ∅ do

pick the first edge � � ��, �� from �

remove � from �

if find � ≠ find��� then

union��, ��

set � ≔ � ∪ {�}

Algorithms for Big Data – Union-Find

Represent every set as a tree: Equip every element of the set with a
pointer to the predecessor. Label the set with its root

Also we define the rank of vertices, which is for now the height of
the subtree rooted at the vertex in the data structure

makeset���

set � � � �

set rank � � 0

find���

while � � ≠ � do � � ����

return �

14-8

Implementation

Algorithms for Big Data – Union-Find

Merge by connecting the root of one set to the root of the other

Have to do it carefully to keep the rank as low as possible

union��, ��

set !" � find���

set !# � find���

if !" � !# then return

if rank � $ rank��� then

set � !# � !"
else

set � !" � !#
if rank !" � rank�!#� then

set rank !# � rank !# % 1

14-9

Implementation (cntd)

Algorithms for Big Data – Union-Find

14-10

Example

a b

c

Algorithms for Big Data – Union-Find

d

e f g

h i j

a

b

c

d

e f g

h i j

a b

c

d

e f g

h i j

Property 1.

For any � (except a root) rank � < rank � �

Property 2.

Any vertex of rank & has at least 2(vertices in the subtree
rooted at that vertex

Property 3.

If there are) vertices overall, there can be at most
*

+,

vertices of rank &

14-11

Properties of Rank

Algorithms for Big Data – Union-Find

Property 2 implies that the maximal length of a sequence

� → � � → � � � → ⋯ → root

can be at most ��log)�

Therefore the running time of find is � log) , and we get the
desired running time for Kruskal’s algorithm

14-12

Running Time

Algorithms for Big Data – Union-Find

In the general case there is no sense to improve the running time of
the Union-Find data structure, because sorting edges in the
beginning of Kruskal’s algorithm takes � � log � time, and
this time dominates the overall running time of the algorithm

However there may be cases when sorting can be done faster, say,
in linear time

Improve the find procedure

find���

if � � ≠ � then

set ���� � find � �

return ����

14-13

Path Compression

Algorithms for Big Data – Union-Find

Although we cannot improve the running time of any single find
operation, these small changes will improve the running time of the
sequence of ALL find operations during the execution of the
algorithm

This is the idea of the amortized running time (or amortized
complexity)

Let log∗) denote the smallest number & such that
log log log … log) 3 1

14-14

Amortized Running Time

Algorithms for Big Data – Union-Find

& times

log∗) � 0 for) � 1

log∗) � 1 for) � 2

log∗) � 2 for) � 3,4

log∗) � 3 for) � 5,… , 16

log∗) � 4 for) � 17,… , 29: � 65536

log∗) � 5 for) � 65537,… , 2:;;<:

Claim.

With path compression a sequence of |�| find operations can
be completed in time � � log∗ �

14-15

Amortized Running Time (cntd)

Algorithms for Big Data – Union-Find

14-16

Amortized Running Time (cntd)

Let) � |�|. Subdivide the set {1,… ,)} into intervals according
to the value of log∗ &:

1 , 2 , 3,4 , 5, … , 16 , 17,… , 29: , {65536,… , 2:;;<:}

Every vertex belonging to the interval {& % 1,… , 2(} receives a
budget of 2(dollars

By Property 3 there are at most
*

+,
vertices of rank &. Therefore

the total budget of vertices from the interval {& % 1,… , 2(} is at
most

2(
)

2(>9
%

)

2(>+
%⋯ 3 2(⋅

)

2(
�)

Therefore the total budget of all vertices is at most) log∗).

Algorithms for Big Data – Union-Find

14-17

Amortized Running Time (cntd)

Consider the execution of find���

It produces a sequence of vertices
� → �9 → �+ → ⋯ → root

where �@>9 � ���@� and rank �@ < rank��@>9�

Vertices �@ can be of two types:

log∗ rank �@ < log∗ rank �@>9

the rest

There are at most log∗) vertices of the first type

For them making step to the predecessor � �@ is free

Vertices of the second type pay $1 for each step

Algorithms for Big Data – Union-Find

14-18

Amortized Running Time (cntd)

Note that since after a vertex �@ whose rank is in the interval
{& % 1,… , 2(} pays its way to the beginning of the interval, � �@
is assigned to be a vertex whose rank is in the higher interval, and
therefore �@ never pays again

Vertex �@ has to pay at most 2(times, and so it stays within its
budget

Therefore, every find operation runs for at most log∗) `free’
steps, plus all find operations together require at most) log∗)
`paid’ steps

The total running time of all find operations is therefore
� � log∗) %) log∗) � �� � log∗)�

Algorithms for Big Data – Union-Find

14-19

Homework and Reading

Exercises from the Book:

page 149-150 5.11, 5.12

Reading

Chapters 5.2

Algorithms for Big Data – Union-Find

