
Union-Find

Algorithms for Big Data

Andrei Bulatov



14-2

Previous Lecture

Kruskal’s Algorithm

Soundness of Kraskal’s algorithm

Implementation details

Prim’s algorithm

Clustering 

Algorithms for Big Data – Union-Find



14-3

Kruskal’s Algorithm

Input:   graph � with weights ��

Output:    a minimum spanning tree of �

Method:

� ≔ ∅

while � < � − 1 do

pick an edge � with minimum weight such that 

it is not from � and

� ∪ {�} does not contain cycles

set � ≔ � ∪ {�}
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To work efficiently Kruskal’s algorithm requires a data structure to 
store the collection of connected components of a graph and merge 
then when necessary 

More precisely, the data structure has to support the following 
operations: 

makeset��� create a singleton set containing just �

find � returns a label to which set  � belongs

union��, �� merge the sets containing  � and �
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The Union-Find Data Structure
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To avoid searching for an edge of minimum weight, sort the edges in 
the beginning of the algorithm 

If  � is the current set of selected edges, the data structure 
contains the collection of connected components of  �, �

To check whether edge  �,� forms a cycle just check if  
find � � find �

Follow the sorted list of edges. Every time for edge  �,� ,  if it 
forms a cycle, remove it from the list. If it does not, merge the sets 
containing  � and  �,  and remove the edge from the list
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Kruskal’s Algorithm with Union-Find 

Algorithms for Big Data – Union-Find



Running time:

� � log � � � � log � for sorting

Need to consider � edges 

Goal: perform  find and  merge in � log � time

14-6

Kruskal’s Algorithm with Union-Find (Running Time)
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Kruskal’s Algorithm

Input:   graph � � ��, �� with weights ��

Output:    a minimum spanning tree of �

Method:
sort � according to ��

for � ∈ � do

makeset���

� ≔ ∅

while � ≠ ∅ do

pick the first edge � � ��, �� from �

remove � from �

if  find � ≠ find��� then 

union��, ��

set � ≔ � ∪ {�}
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Represent every set as a tree: Equip every element of the set with a 
pointer to the predecessor.   Label the set with its root

Also we define the rank of vertices, which is for now the height of 
the subtree rooted at the vertex in the data structure

makeset���

set � � � �

set rank � � 0

find���

while � � ≠ � do � � ����

return �
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Implementation
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Merge by connecting the root of one set to the root of the other

Have to do it carefully to keep the rank as low as possible

union��, ��

set !" � find���

set !# � find���

if !" � !# then return

if rank � $ rank��� then 

set � !# � !"
else

set � !" � !#
if rank !" � rank�!#� then

set rank !# � rank !# % 1
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Implementation (cntd)
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Example
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c
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Property 1.

For any  � (except a root)  rank � < rank � �

Property 2.

Any vertex of rank  & has at least  2( vertices in the subtree 
rooted at that vertex

Property 3.

If there are  ) vertices overall, there can be at most  
*

+,

vertices of rank  &
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Properties of Rank

Algorithms for Big Data – Union-Find



Property 2 implies that the maximal length of a sequence 

� → � � → � � � → ⋯ → root

can be at most  ��log )�

Therefore the running time of  find is  � log ) ,  and we get the 
desired running time for Kruskal’s algorithm
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Running Time
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In the general case there is no sense to improve the running time of 
the Union-Find data structure, because sorting edges in the 
beginning of Kruskal’s algorithm takes  � � log � time, and 
this time dominates the overall running time of the algorithm

However there may be cases when sorting can be done faster, say, 
in linear time 

Improve the  find procedure

find���

if � � ≠ � then

set ���� � find � �

return ����
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Path Compression

Algorithms for Big Data – Union-Find



Although we cannot improve the running time of any single  find
operation, these small changes will improve the running time of the 
sequence of ALL  find operations during the execution of the 
algorithm

This is the idea of the amortized running time (or amortized 
complexity)

Let  log∗ ) denote the smallest number  & such that 
log log log … log ) 3 1

14-14

Amortized Running Time
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log∗ ) � 0 for  ) � 1

log∗ ) � 1 for  ) � 2

log∗ ) � 2 for  ) � 3,4

log∗ ) � 3 for  ) � 5,… , 16

log∗ ) � 4 for  ) � 17,… , 29: � 65536

log∗ ) � 5 for  ) � 65537,… , 2:;;<:

Claim.

With path compression a sequence of  |�| find operations can 
be completed in time  � � log∗ �
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Amortized Running Time (cntd)
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Amortized Running Time (cntd)

Let  ) � |�|.  Subdivide the set  {1,… , )} into intervals according 
to the value of  log∗ &: 

1 , 2 , 3,4 , 5, … , 16 , 17,… , 29: , {65536,… , 2:;;<:}

Every vertex belonging to the interval  {& % 1,… , 2(} receives a 
budget of  2( dollars

By Property 3 there are at most  
*

+,
vertices of rank  &.  Therefore 

the total budget of vertices from the interval  {& % 1,… , 2(} is at 
most

2(
)

2(>9
%

)

2(>+
%⋯ 3 2( ⋅

)

2(
� )

Therefore the total budget of all vertices is at most  ) log∗ ).
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Amortized Running Time (cntd)

Consider the execution of  find���

It produces a sequence of vertices 
� → �9 → �+ → ⋯ → root

where  �@>9 � ���@� and  rank �@ < rank��@>9�

Vertices  �@ can be of two types:

log∗ rank �@ < log∗ rank �@>9

the rest

There are at most  log∗ ) vertices of the first type

For them making step to the predecessor  � �@ is free

Vertices of the second type pay $1 for each step
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Amortized Running Time (cntd)

Note that since  after a vertex  �@ whose rank is in the interval  
{& % 1,… , 2(} pays its way to the beginning of the interval,  � �@
is assigned to be a vertex whose rank is in the higher interval, and 
therefore  �@ never pays again

Vertex  �@ has to pay at most  2( times, and so it stays within its 
budget

Therefore, every  find operation runs for at most  log∗ ) `free’ 
steps,  plus all  find operations together require at most  ) log∗ )
`paid’ steps

The total running time of all  find operations is therefore 
� � log∗ ) % ) log∗ ) � �� � log∗ )�
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Homework and Reading

Exercises from the Book:

page 149-150  5.11,  5.12

Reading

Chapters  5.2
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