
Copyright 1997 by Russ Tront Page 7-1

7. TCP and UDP
In this section, I want to review TCP and UDP, the common
Layer 4 protocols used in the Internet. In particular, many
of the other protocols used in the Internet suite of protocols
use TCP or UDP as their foundation. You MUST take a
look at Figure 31.1 on P. 576 of [Comer00] which clearly
shows that over a dozen other protocols that we will later
discuss specifically sit on top of TCP and/or UDP.

In addition, I want to make very clear the difference
between a Layer 4 port, connection, and socket (which are
three very different things).

Readings: Chapters 13, 12, and 11 of [Comer00], plus Figure
31.1 on P. 576.

Copyright 1997 by Russ Tront Page 7-2

Table of Contents
7. TCP AND UDP ... 1

7.1 TCP .. 3
7.1.1 The TCP Header .. 6
7.1.2 Note Re Framing.. 11
7.1.3 The TCP State Machine ... 11

7.2 UDP - USERDATAGRAM PROTOCOL.. 13
7.2.1 The UDP Frame Format.. 14

7.3 SOCKETS VS. CONNECTIONS VS. PORTS.. 15
7.3.1 UDP Sockets... 17
7.3.2 TCP Client Sockets... 20
7.3.3 TCP Server Sockets.. 22

7.4 REFERENCES... 23

Copyright 1997 by Russ Tront Page 7-3

7.1 TCP

TCP is the one of the oldest and most common transport
layer protocols. Its job is to provide reliable data transfer.

• This requires checksums on the payload, because as we
have seen, IP does not provide this. (Ethernet provides
this, but you can’t assume that you are using Ethernet;
you may be using SLIP or some other unreliable Layer 2
protocol).

• Recall that IP does not provide true sequencing. Packets
could arrive out of order, or in fact packets could go
missing. To provide these features requires a ‘connection-
oriented’ protocol.

• Finally, in order not to put too much flow control
responsibility on the network (which is hard to do in a
connectionless network using IP), TCP provides end-to-
end flow control using credit allocation.

These requirements dictate the use of a connection-oriented
protocol.

TCP is normally associated with the "socket" concept and
Unix operating system. But, more and more we are finding
these mixed with other systems. e.g. Sockets are showing
up as a new MS-Windows API, and TCP/IP is used on
systems other systems than Unix (after all, internetworking
amongst only Unix computers is rather restrictive).

TCP is a stream-oriented protocol. Once a connection is
made, you send bytes, not packets. If you send 1000 bytes,
they may arrive in two groups of 500, or 10 groups of 100,
etc. Or two 1000 byte packets may arrive as one 2000 byte

Copyright 1997 by Russ Tront Page 7-4

group. i.e. There is no transport layer "framing" in the
stream-oriented sub-class of a connection-oriented transport
protocols. It just models a byte pipe stream. Bytes put in
one end are guaranteed to get through, or you will be
notified.

This instructor hates this particular aspect of TCP, as it
means that EVERY application or higher-level protocol that
uses TCP must add its own Layer 5 framing and
transparency mechanism! This is stupid; this mechanism
should have been available at least as an option at Layer 4
so that you each wouldn’t have to do your own framing!
Some RFCs to fix this have been proposed (see the
interesting discussion in Section 24.7 of [Stevens94]).

Since TCP is stream-oriented, its (end-to-end) flow and
error control do not work on the concept of packets, but
instead each byte is given its own sequence number. These
are measured modulo 232. Similarly, ACK numbers are
modulo 232, and are use the ‘next byte expected’ convention.
These acknowledge numbers are of the cumulative type, and
take care of lost or duplicated Transport Protocol Data
Units (TPDUs). For efficiency in noisy environments, an
option has been recently added to selectively NACK a range
of byte numbers, rather than having to otherwise use Go-
Back-N.

TCP also has an optional frame check sequence, which is
usually enabled (but you should check your
implementation).

Though TCP is stream oriented, it still has the concept of
TPDUs. When a reasonable amount of data has been given
to TCP by the application to transmit, TCP will send out a

Copyright 1997 by Russ Tront Page 7-5

packet with the appropriate flow control, error control, and
other information. On the other hand, the telnet
application ‘pushes’ each individual byte out as soon as
possible. In any case, in order to work, TCP has a specific
TPDU format and to define its time semantics, a fairly
complex state machine.

Copyright 1997 by Russ Tront Page 7-6

7.1.1 The TCP Header

To further discuss TCP it is best to show you a TCP header.
One of the unfortunate things about the TCP frame format
is there is not a header field to indicate the type of data that
the TCP frame is carrying. Is it carrying user data, or does
its payload contain yet a higher level protocol? Or does it
carry some network layer packets being tunneled through
this particular net? In Unix and now many systems, this is
sometimes differentiated by well-known machine port
number; for instance if the TCP is carrying File Transfer
Protocol (FTP), it is normally sent to port 21. Note that a
port is an IP address concept. All local processes on a CPU
using a particular IP address (i.e. network interface card -
NIC) share the same port address space.

TCP TPDU FORMAT:

Source Port (16) Destination Port (16)

Sequence Number (32)

Acknowledgment Number (32)

HLen (4) Reserved (6) Code (6) Window (16)

Checksum (16) Urgent Pointer (16)

Options (if any) Padding

Payload (maximum 65535-20-20 bytes)

The first long word of a TCP TPDU header is the source and
destination port numbers (source port numbers are included
so you can know which one to reply to; they also are
essential to uniquely identifying ‘connections’).

Copyright 1997 by Russ Tront Page 7-7

The next long word is the 32 bit send sequence number. It
indicates the byte number of the first byte of payload
measured modulo-4G from the beginning of the connection.
Since TCP has no sense of Layer 4 user packets which need
to be Acknowledged or Negatively Acknowledged,
acknowledgments are by specified to the individual byte!

The third long word is the byte number (also modulo-4G)
the sender is expecting next on that connection (i.e. you are
sending a piggy-backed cumulative ACK).

Next comes a complicated long word, the first field of which
is a 4 bit measure of the header length (measured in units of
long words). This tells the destination how many option
fields there are, and more importantly, where the transport
payload actually begins.

Following 6 unused bits, are the 6 bit flags of the code field:

URG signals that the payload carries urgent data which
should be handled by the receive process with higher
priority than other data. This urgent data begins with the
first byte of the payload and contains as many bytes as
specified by the urgent pointer field. The urgent pointer can
be thought of pointing to the end of the urgent data (normal
data could follow the urgent data in the payload). Note:
when you call the transport layer from a program and tell it
to send urgent data, this causes an immediate push of the
urgent data (‘push’ will discussed in a moment).

ACK signals that the number in the acknowledge field is
valid (i.e. this TPDU is actually acknowledging something).
If this flag is false, the 32 bit acknowledge field is still

Copyright 1997 by Russ Tront Page 7-8

present (as the first part of a TCP header is of fixed format),
but contains junk.

PSH signals that this data was pushed by the source
application (i.e. it was sent immediately rather than
buffered up waiting to see if more source user data could be
accumulated before bothering to send a TPDU). This is
frequently done in Telnet, as you want what the user typed
send within a second (especially if you are using remote
echo), and not have the source wait to see if the user will
type anything more. On reception, the push flag true
indicates that the data should not be buffered upon
reception. Blocked calls to recv() should be unblocked right
away, even if for just a byte or two that has arrived in a
short payload.

RST indicates a reset request. A port that receives a TCP
packet for which it does not have a connection replies with a
RST. It is also used to reject a request for connection.

SYN is used to indicate the TPDU is a connection request or
connection accepted TPDU. ACK distinguishes between
these two cases. If ACK=0, then the send sequence number
is an randomly chosen number to eliminate any problems
with lost or duplicated control packets. If ACK=1, the
TPDU is the second of a 3 way connect handshake. The
acknowledgment sequence number would be one higher
(next number expected) than the random one received. I
believe even the first TPDU of a 3 way connection
handshake can carry data, though such data probably
should not be passed to higher layers until the connection is
fully confirmed.

Copyright 1997 by Russ Tront Page 7-9

FINnish is a connection release, and indicates the sender
has no more data to send.

End-to-end flow control is handled using a credit allocation
technique. The window size indicates how many bytes
starting with the next number expected the sender is
willing to receive. There is a bit of a problem here as the 16
bit credit only allows 64K to be sent max. This is
ridiculously small on high speed, long delay (e.g. satellite)
channels. RFC 1323 specifies a option negotiation
technique whereby this window size can be considered to be
scaled up by up to 16 powers of 2. This allows a credit for 4
GB to be sent!

There is a 16 bit frame check. If all zeroes, it indicates it is
not in use. It should definitely be used on unreliable layer 2
links like SLIP. It is a 1’s compliment checksum calculated
over the payload, the TCP header, and a weird pseudo
header (composed of the source and destination IP
addresses, plus the protocol field from the IP header, plus
the length of the TPDU). The length of the TPDU is not
even an actual field in the IP header (its length field
specifies the entire length of the IP packet including the IP
header). This weird mixing of stuff from layer 3 into layer 4
is really poor. In fact, when transmitting, layer 4 has to
reach down into layer 3 to find this stuff out to calculate the
layer 4 checksum! If IP’s header were not checked I could
understand this; a packet might have got to the wrong
destination. By everything I read says IP’s payloads are not
checked, but their headers are definitely checked, so why
indirectly check them again via this pseudo-header concept?

The options field allows various things like window credit
scaling, and Selective NACKs to be specified. The later

Copyright 1997 by Russ Tront Page 7-10

would specifying the range of bytes (first and last, or first
and length) that have not been received properly.

Copyright 1997 by Russ Tront Page 7-11

7.1.2 Note Re Framing

Receiving half a packet is not possible just because the other
half hasn’t arrived yet. Nor because of IP fragmentation.
The only two reasons you might get half of a send()’s data is:

• You called recv() and asked for too few bytes.

• The TCP send process thought it best to send the first half
in a separate packet. This would be wise on error prone
radio data channels.

Interestingly, there are also only two reasons you might get
more than one TPDU in a call to recv():

• Several TPDUs had completely arrived, and you asked
recv() for a large number of bytes.

• The source TPDU process had gotten a second call to
send() before the data from an earlier send() had been
transmitted. So it packaged both hunks together into one
TPDU to transmit.

7.1.3 The TCP State Machine

The TCP frame format is not all that is required to specify
the protocol. In addition, you need a call interface that can
be used by the client programmer (i.e. sockets). And you
need a finite state machine to carefully specify the
actions/reactions appropriate in each mode. Figure 13.13 of
[Comer95] shows the TCP state machine.

Copyright 1997 by Russ Tront Page 7-12

Figure 13.15 of [Comer00]

Copyright 1997 by Russ Tront Page 7-13

7.2 UDP - User Datagram Protocol

The connectionless transport layer protocol widely used on
the Internet is UDP. UDP is for single send and receive
messages, where the overhead of setting up a connection
would not be efficient.

A good example is that of a remote procedure call (RPC).
This is a simple send of the function designator and
parameters, and the return of the return parameters.
Since this procedure might not be called again for days, why
set up and tear down a connection. UDP is also used for
broadcasting routing tables to other nearby routers by RIP
and OSPF, where a connection is just not required.

Note that UDP is an unreliable protocol because neither it,
nor the IP it depends on, is connection-oriented. This is
hardly serious for RIP or OSPF, as the routers will
broadcast their known routes again in a minute or so
anyway. But in the case of RPC, the calling process must
wait for the return. If no return is forthcoming, it must be
programmed to try the call again. But what if the call
increments some remote variable, and it was the first
return, not first call that was lost. In that case, the second
(repeat) call has the potential to increment that variable,
unfortunately, a second time!!!!

Copyright 1997 by Russ Tront Page 7-14

7.2.1 The UDP Frame Format

The UDP header is simply four 16 bit words: source port,
destination port, TPDU total length (including the header),
and the weird UDP checksum.

Source Port Destination Port

Message Length Checksum

Payload

Notice that UDP has the same limitation that TCP has in
that it has no header field describing the nature/protocol of
the payload. Again, like TCP, the destination port number
sort of by convention implies this.

It seems to me that the length field is not needed. There
isn’t one in TCP; the length from the underlying network
(IP) layer can be passed up. After subtracting the IP header
length and UDP header length, you know how much UDP
payload there will be. This, and the crazy, layer-spanning
checksum mechanism of TCP and UDP, is an example of
how the Internet was thrown together without a lot of
planning, and with free labor (mainly grad students being
supervised by university professors in the U.S. being
supported by U.S. Government research money). Its main
redeeming quality is that it is cheap, and it has been heavily
tested and adapted over the years.

UDP uses the same kind of optional checksum that TCP
uses, checking the UDP header, UDP payload, and weird IP
pseudo-header. If the UDP checksum appears to be zero, it
is not being used, because this is not a valid checksum.

Copyright 1997 by Russ Tront Page 7-15

7.3 Sockets vs. Connections vs. Ports

Students and even professionals get confused between:

• ports - of which there are two of each number per network
interface/IP address (one for UDP and one for TCP).

• sockets - which are what individual processes use to
identify an incoming or outgoing data stream (I won’t call
it a connection so as to be able to cover connectionless
streams as well).

• connections - which represent a 3 tuple on the client end
and a 5 tuple on the server end.

Every TCP/UDP machine uses short integers to identify
particular ports. Note that port 99 for UDP is a different
port than port 99 for TCP. Which one of these a packet is
destined for is differentiated by the protocol field of the IP
packet. Many people do not realize this, and thus often
when certain ports are reserved for certain universal
services, the service reserves both the UDP and TCP
versions of that port number. This also allows for future
offering of the same service with the opposite connectivity
(i.e. connectionless vs. connection-oriented).

The first thousand or so ports are reserved for particular
services. These can be seen either in RFC 1700, or on
FreeBSD Unix, in file /etc/services. A sample from the
latter is shown below. Some ports that are lesser well know
but might cause conflicts if you use them are mentioned in
RFC 1700 ranging up to about port 7000.

Copyright 1997 by Russ Tront Page 7-16

WELL KNOWN PORT NUMBERS
#
rtmp 1/ddp #Routing Table Maintenance Protocol
tcpmux 1/tcp #TCP Port Service Multiplexer
tcpmux 1/udp #TCP Port Service Multiplexer
nbp 2/ddp #Name Binding Protocol
compressnet 2/tcp #Management Utility
compressnet 2/udp #Management Utility
compressnet 3/tcp #Compression Process
compressnet 3/udp #Compression Process
echo 4/ddp #AppleTalk Echo Protocol
rje 5/tcp #Remote Job Entry
rje 5/udp #Remote Job Entry
zip 6/ddp #Zone Information Protocol
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users #Active Users
systat 11/udp users #Active Users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote #Quote of the Day
qotd 17/udp quote #Quote of the Day
msp 18/tcp #Message Send Protocol
msp 18/udp #Message Send Protocol
chargen 19/tcp ttytst source #Character Generator
chargen 19/udp ttytst source #Character Generator
ftp-data 20/tcp #File Transfer [Default Data]
ftp-data 20/udp #File Transfer [Default Data]
ftp 21/tcp #File Transfer [Control]
ftp 21/udp #File Transfer [Control]
ssh 22/tcp #Secure Shell Login
ssh 22/udp #Secure Shell Login
telnet 23/tcp
telnet 23/udp
24/tcp any private mail system
24/udp any private mail system
smtp 25/tcp mail #Simple Mail Transfer
smtp 25/udp mail #Simple Mail Transfer
nsw-fe 27/tcp #NSW User System FE
nsw-fe 27/udp #NSW User System FE
msg-icp 29/tcp #MSG ICP
msg-icp 29/udp #MSG ICP
msg-auth 31/tcp #MSG Authentication
msg-auth 31/udp #MSG Authentication
dsp 33/tcp #Display Support Protocol
dsp 33/udp #Display Support Protocol
35/tcp any private printer server
35/udp any private printer server
time 37/tcp timserver
time 37/udp timserver
rap 38/tcp #Route Access Protocol
rap 38/udp #Route Access Protocol
rlp 39/tcp resource #Resource Location Protocol
rlp 39/udp resource #Resource Location Protocol
graphics 41/tcp
graphics 41/udp
nameserver 42/tcp name #Host Name Server
nameserver 42/udp name #Host Name Server

Copyright 1997 by Russ Tront Page 7-17

7.3.1 UDP Sockets

A given UDP port can accept incoming traffic from several
different source computers (or different source ports or
sockets on the same computer). The following diagram
illustrates this flow of inbound traffic

172.99.9.55 IP

3a:56:ff:2b:7d:9c Ethernet

TCP Protocol Handling S/W UDP Protocol Handling S/W

UDP Port 1 � pid 5 socket 9
UDP Port 2 � pid 39 socket 8

UDP Port 3� pid 39 socket 7

TCP Port 1 connection A ---------------------� pid 55 socket 1
connection C ---------------------� pid 88 socket 2

TCP Port 2 connection Q --------------------� pid 99 socket 1
connection Z ---------------------� pid 99 socket 3

Various source ports on different or same remote CPU

Applications and their sockets.

Copyright 1997 by Russ Tront Page 7-18

Notice in particular how traffic bound for UDP port 1 ends
up at a different socket than traffic bound to TCP port 1.

For UDP communications, a socket is a 5 tuple:

1. An I/O descriptor.

2. A process ID (pid) of the process owning the socket.

3. A local IP address.

4. A protocol designator.

5. And a local port number.

If you have ever done socket programming, you probably
have had to do a bind() call (or one was made by default for
you). This bind is what forms the association between
descriptor/pid and address/protocol/port.

You can think of this association as a database table in
RAM with primary and alternate compound keys.

Descriptor PID IP address Protocol Port

Given the inbound IP address, protocol, and port (i.e. the
primary key), you can determine the pid and I/O descriptor
of the socket which that incoming data should be sent to.

Copyright 1997 by Russ Tront Page 7-19

Similarly, for output, given the program’s PID and socket
I/O descriptor that the write applies to (i.e. the alternate
key), you can determine the source port, (source) protocol,
and source IP address that that outgoing datagram should
leave via, and be labeled with. Therefore, a UDP socket is
thought of as a 5-tuple: port, protocol, IP address, processID
(PID), and I/O descriptor index.

Copyright 1997 by Russ Tront Page 7-20

7.3.2 TCP Client Sockets

For TCP, things are a little more complicated. At the client
end (the end initiating the connection), a socket is a 7 tuple:

1. I/O descriptor of socket

2. local process id of socket

3. local port

4. local IP address

5. protocol

6. remote IP address

7. remote port

Each 7 tuple is associated with a compound key composed of
the local pid and I/O descriptor. Given the I/O descriptor
and pid, you can find out the other 5 things.

I/O

Descr

PID Local

Addr

Local

Port

Protocol Remote

Addr

Remote

Port

In addition, there is an alternate compound key used during
reception. If receiving a reply, given the local port, local IP

Copyright 1997 by Russ Tront Page 7-21

address, and local protocol the packet is addressed to, you
can find out the local pid and socket the data is destined to.

Note that for TCP clients, a particular local TCP port can
NOT be connected to more than one remote site. I.e. the
unshaded columns above are not needed as part of the
alternate key. This is because clients/callers do not have to
be from a particular well-known port; the client can use any
port number, and the server will reply to that particular
client port that requested the connection. That is not to say
that one computer or process cannot have two TCP client
connections to a particular remote site, only that they
cannot go out through the same socket or port. (This is not
true of UDP; UDP can spray packets from one port to
several different destinations on the Internet).

Copyright 1997 by Russ Tront Page 7-22

7.3.3 TCP Server Sockets

On the other hand, a TCP server can have many connections
through one of its ports. This is particularly true when you
handle multiple simultaneous connections. They are
distinguished by the additional attributes: remote IP
address and remote port. Therefore a suitable compound
key which can be used to determine which socket (i.e. pid
and descriptor) an inbound packet should be given to is the
right hand 5 columns in the able above. (Note this is 2 more
additional columns than are needed by UDP or client TCP).

For outgoing packets, I/0 descriptor and pid are still an
adequate look up key for the server to find out the other 5
fields which need to be inserted in the outgoing packet.
.

9.8.7.6 TCP
port 21

TCP
1.2.3.4 port 80

TCP
port 9

Interface
17.34.5.3

UDP

TCP

TCP
Port 1

TCP
Port 2

Table
pid+descr
=socket A

pid+descr
=socket B

pid+descr
=socket C

Server

Remote TCP
Clients

Note: TCP Port 1 is serving
two clients simultaneously, and
must de-multiplex incoming
traffic to two different sockets
by using a lookup table!

Copyright 1997 by Russ Tront Page 7-23

7.4 References

[Comer00] ‘‘Internetworking with TCP/IP, Vol. 1, 4th ed.’’ by
Douglas E. Comer, Prentice-Hall, 2000.

[Stevens94] ‘‘TCP/IP Illustrated, Vol. 1’’ by W. Richard
Stevens, Addison-Wesley, 1994.

