Routing Protocols ---
Exterior Gateway Protocol

Linda Wu
(CMPT 471 • 2003-3)

Content
- Limiting router interaction
- Autonomous system
- BGP protocol
- BGP messages
- Other issues on BGP

Reference: chapter 15

Limiting Router Interaction
- Two issues in router interaction
 - Delay
 - Overhead
- Deciding router numbers
 - A simple general heuristic
 - It is safe to allow up to a dozen routers to participate in a single routing protocol across a wide area network; approximately five times as many can safely participate across a set of local area network
 - Traffic monitor
 - Observe network trend over long period
 - Determine whether too many routers participate in a single routing protocol

Limiting Router Interaction (cont.)
- Consequences of limiting router number
 - Only a small group of routers participate in a routing protocol
 - Some routers will be outside of the group
 - Non-participating router can only make a group member as a default route
 - Routing will be suboptimal \(\rightarrow\) extra hop problem
 - A mechanism is needed that allows non-participating routers to learn routes from participating routers
Limiting Router Interaction (cont.)

- R1 & R2: Participating router
- R3: Non-participating router, with R1 as its default

Extra hop problem occurs when:
- R3 sends datagram destined for net 2

Limiting Router Interaction (cont.)

- Hidden network

- Net 4 was just installed
- R1 does not know about Net 4
- From the viewpoint of backbone network, Net 4 is hidden behind Net 1

Autonomous System

- Autonomous system (AS)
 - Autonomous system is a group of networks and routers controlled by a single administrative authority
 - Interior routing: routing inside an AS
 - Routers within an AS are free to choose their own routing protocol
 - Exterior routing: routing between ASs
 - Only one exterior routing protocol is chosen to handle routing between ASs
Autonomous System (cont.)
- Routing protocols
 - Exterior Gateway Protocol (EGP)
 Protocol used to pass routing information between two autonomous systems
 - BGP (Border Gateway Protocol)
 - Interior Gateway Protocol (IGP)
 Protocol used by interior routers to exchange network reachability and routing information
 - RIP (Routing Information Protocol)
 - OSPF (Open SPF)
 - HELLO

Autonomous System (cont.)
- From a core to independent ASs
 - Each AS must advertise its network to other ASs
 - Each AS is assigned an autonomous system number (AS#) by a central authority
 - When routers exchange information, the messages carry the AS# of the system each router represents

BGP Protocol
- Border Gateway Protocol
 - Currently used in most TCP/IP internets
 - Current version: BGP-4
 - Based on path vector routing method
 - When 2 ASs agree to exchange routing information
 - Each designates a router that will speak BGP on its behalf: BGP speaker
 - The selected router is usually near the "edge" of the AS: border router / gateway
 - The two routers are said to be BGP peer of one another

BGP Protocol (cont.)
- BGP characteristics
 - Inter-autonomous system communication
 - Coordination among multiple BGP speakers
 - Propagation of reachability information
 - Next-hop paradigm
 - Policy support
 - Reliable transport
 - Path information
 - Incremental updates
 - Support for classless addressing
 - Route aggregation
 - Authentication
BGP Protocol (cont.)

- **Path vector routing**
 - Each entry in the routing table contains:
 - Destination network
 - Next hop
 - The path to destination: a list of autonomous systems that a packet should travel through to reach the destination

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net 1</td>
<td>R1</td>
<td>AS14, AS20, AS67</td>
</tr>
<tr>
<td>Net 2</td>
<td>R5</td>
<td>AS22, AS67, AS03, AS80</td>
</tr>
<tr>
<td>Net 3</td>
<td>R6</td>
<td>AS33, AS12, AS19, AS04</td>
</tr>
<tr>
<td>Net 4</td>
<td>R3</td>
<td>AS16, AS02, AS06</td>
</tr>
</tbody>
</table>

- **Path vector message**
 - When a router receives a path vector message: (destination, next hop, path)
 - It verifies that the advertised path is in agreement with its policy
 - If it is, the router updates its routing table and modifies the message:
 - Adding its AS# to the path
 - Replace next-hop field with its own identification
 - Send the message to the next router

- **Loop prevention**
 - When a router receives a path vector message, it checks whether its AS# is in the path list; if it is, looping is involved and the message is ignored

- **Policy routing**
 - When a router receives a message, it checks the path
 - If one of the ASs in the path is against its policy
 - Ignores the path and destination
 - Does not update its routing table
 - Does not send the message to its neighbors
BGP Protocol (cont.)

- Path attributes
 - Well-known attribute: must be recognized by every BGP router
 - Well-known mandatory attribute: must appear in every update message
 - e.g., ORIGIN, AS_PATH, NEXT_HOP
 - Well-known discretionary attribute: not required to be included every update message
 - Optional attribute: need not be recognized by every BGP router
 - Optional transitive attribute: must be passed to the next router if the current router has not implemented this attribute
 - Optional nontransitive attribute: should be discarded if not implemented by current router

BGP Protocol (cont.)

- BGP message types

<table>
<thead>
<tr>
<th>Type Code</th>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPEN</td>
<td>Initialize communication</td>
</tr>
<tr>
<td>2</td>
<td>UPDATE</td>
<td>Advertise or withdraw routes</td>
</tr>
<tr>
<td>3</td>
<td>NOTIFICATION</td>
<td>Response to an incorrect message</td>
</tr>
<tr>
<td>4</td>
<td>KEEPALIVE</td>
<td>Actively test peer connectivity</td>
</tr>
</tbody>
</table>

BGP Protocol (cont.)

- How BGP works
 - BGP connection establishing
 - Routers wait for BGP connection on the well-known TCP port 179
 - One BGP router opens TCP connection toward the port on its peer router
 - Each peer sends an OPEN message to negotiate the parameters for the connection
 - Each peer sends a KEEPALIVE message as response to OPEN message to confirm the connection

BGP Protocol (cont.)

- BGP information exchanging
 - Two peers use UPDATE messages to exchange routing information
 - Routers adjust their routing tables based on routes learned via the connection
 - Initial exchange
 - Full exchange of reachability information between BGP routers (i.e., the whole routing table is exchanged)
 - Incremental update
 - Only changes are reported
 - Advantage: conserve bandwidth and processing power
BGP Protocol (cont.)

- BGP connection maintaining
 - BGP peers periodically exchange KEEPALIVE messages to test peer connectivity

- BGP connection closing
 - One peer router sends NOTIFICATION message to terminate the connection

BGP Messages

- BGP message header
 - All BGP messages share the same common header to identify message type
 - Length
 - Total message length in bytes
 - Type
 - Message type (1 ~ 4)

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>24</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker</td>
<td>(16 bytes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BGP Messages (cont.)

- Marker
 - A value that both sides agree to use to mark the beginning of a message
 - In the initial message, the marker consists of all 1s
 - If the peers agree to use an authentication mechanism, the marker contains authentication information
 - MD5: message digest algorithm version 5
 - The receiver is required to verify that the marker value is intact before processing the message

BGP Messages (cont.)

- OPEN message

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 bytes, Type = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>AS#</td>
<td>Hold Time</td>
<td></td>
</tr>
<tr>
<td>BGP Identifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parm.Len</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Parameters (variable)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BGP Messages (cont.)

- Version
 - The version of BGP; current version: 4
- AS#
 - Autonomous system number of the sender's system
- Hold Time
 - The maximum time that the receiver should wait for a message from the sender
 - The timer is reset each time a message arrives
 - If timer expires, the receiver assumes the sender is no longer available

BGP Messages (cont.)

- BGP Identifier
 - To uniquely identify the sender
 - One of the IP addresses of the router
 - If a router has several peers, it must use the same identifier in all communication
- Parm.Len
 - Length of optional parameters in bytes
 - If no optional parameters, Parm.Len = 0
- Optional Parameters
 - A list of parameters
 - Each parameter has 3 subfields: (type, length, value)
 - Only one parameter type is defined so far: type 1 for authentication

BGP Messages (cont.)

- KEEPALIVE message
 - Two peers periodically exchange KEEPALIVE messages to test network connectivity and to verify both peers continue to function
 - "Hold Time" in OPEN message
 - = 0: no KEEPALIVE message
 - > 0: KEEPALIVE interval = 1/3 * Hold Time

```
0 8 16 24 31
Common header
19 bytes, Type = 4
```

BGP Messages (cont.)

- UPDATE message
 - Withdrawn Len & Withdrawn Destinations
 - To withdraw previous advertisements when a destination becomes unreachable
 - Withdrawn Len: size of Withdrawn Destinations field
 - Path Len & Path Attributes
 - To advertise new destinations that are reachable
 - Path Len: size of Path Attributes field
 - Destination networks
 - Networks actually advertised by this message
BGP Messages (cont.)

- **Path Attributes**
 - Attributes apply to all destination networks advertised in the message
 - If different attributes apply to some destinations, they must be advertised in a separate UPDATE message
 - This field contains a list of items
 - Each item consists of a triple
 - (type, length, value)
 - Type: 2 bytes
 - Length: 1~2 bytes (length of value)

- **Compressed mask-address pairs**
 - BGP sends an address mask with each IP address
 - *Withdrawn Destinations & Destination Networks* fields use a compressed representation to reduce message size
 - LEN: number of 1s in the mask
 - IP address: only the bytes (\[
 \left\lceil \frac{\text{LEN}}{8} \right\rceil
 \right)
 - covered by the mask are included
 - LEN = 0: no address byte follows; for default route

Format of *Type* subfield

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0: well-known attribute; 1: optional</td>
</tr>
<tr>
<td>1</td>
<td>0: transitive attribute; 1: nontransitive</td>
</tr>
<tr>
<td>2</td>
<td>0: optional transitive attribute is complete; 1: partial</td>
</tr>
<tr>
<td>3</td>
<td>0: length field is 1 byte; 1: 2 bytes</td>
</tr>
<tr>
<td>5~7</td>
<td>Unused (must be zero)</td>
</tr>
</tbody>
</table>

1: ORIGIN
2: AS_PATH
3: NEXT_HOP

BGP Messages (cont.)

- NOTIFICATION message
 - Used for control or when error occurs
 - Once a router detects an error
 - Sends a NOTIFICATION message
 - Closes the TCP connection

```
0  8  16  31
   common header
   19 bytes, Type = 3
```

- Error subcode
- Error data (variable)

BGP Messages (cont.)

- Error code
 - Error code description
 - Error subcode
 - 1 Message header error
 - 2 OPEN message error
 - 3 UPDATE message error
 - 4 Hold timer expired
 - 5 Finite state machine error
 - 6 Cease

- Terminate connection; no subcode defined

Other Issues on BGP

- Encapsulation
 - BGP messages are encapsulated in TCP segments using well-known port 179
 - No need for error control and flow control

- Route selection
 - BGP can only specify whether a path to a given destination exists
 - BGP cannot select the shortest path
 - The cost of routes across autonomous systems is unknown to BGP
 - BGP is a reachability protocol rather than a routing protocol
 - A receiver can implement route policy constraints, but cannot choose a least cost route
 - A sender must only advertise paths that traffic should follow
Other Issues on BGP (cont.)

- Consequences
 - At any given instance, all traffic routed from a computer in one AS to a network in another will traverse one path, even if multiple physical connections are present
 - BGP alone is inadequate for optimal routing
 - BGP alone will not guarantee global consistency

Routing Arbiter (RA) system

- Routing arbiter database
 - Database of reachability information
 - Updates to database are authenticated: only AS that owns a given network is allowed to advertise reachability

- Route server (RS)
 - Multiple route servers maintain copies of routing arbiter database and run BGP
 - Each ISP designates a BGP border router, which maintains a connection to the route server