
nnnnnnunnnm
a ~ n M m ~ D U l

F I L T E R I H G

Using

tO w e a v e a n I n f o r m a t i o n

David Goldberg, David Nichols, Brian M. Oki, and Douglas 7~rry

Tapestry is an experimental mail system developed at the Xerox Palo Alto Research
Center. The motivation for Tapestry comes from the increasing use of electronic mail,
which is resulting in users being inundated by a huge stream of incoming documents
[2, 7, 12]. One way to handle large volumes of mail is to provide mailing lists, enabling
users to subscribe only to those lists of interest to them. However, as illustrated in Figure 1,
the set of documents of interest to a particular user rarely map neatly to existing lists.
A better solution is for a user to specify afi'lter that scans all lists, selecting interesting
documents no matter what list they are in. Several mail systems support filtering based
on a document 's contents [3, 5, 6, 8]. A basic tenet of the Tapestry work is that more
effective filtering can be done by involving humans in the filtering process.

In addition to content-based filtering, the Tapestry system was designed and built to
support coUaborativefi'ltering. Collaborative filtering simply means that people collaborate
to help one another perform filtering by recording their reactions to documents they read.
Such reactions may be that a document was particularly interesting (or particularly
uninteresting). These reactions, more generally called annotations, can be accessed by
others' filters. One application of annotations is in support of moderated newsgroups.

¢OMMUHiCA~IOHS OP TIllll ACN / December 1992 / Vo|.35, No.12 6 ~

I I I I I I I I I I I a = a H = : a a a = =
F I L T E R I N G

(a) E lect ronic mail over load (b) Using d is t r ibu t ion lists

J

(c) C o n v e n t i o n a l f i l ter ing

PlllUre 1. (a) electronic mail over-
load; (b) using distribution lists;
(c) conventional filtering; (d) col-
laborative filtering

Currently, modera ted groups have
a single moderator , who selects a sub-
set of messages to be posted to the
moderated group. With annotations, a
group can have many moderators. To
see the newsgroup as it would be
moderated by (say) Smith, simply filter

for those articles that Smith endorsed
with an annotat ion.

Implicit feedback f rom users (e.g.,
some user sent a reply to a docu-
ment) can also be utilized in the fil-
ter ing process. For example, suppose
you would like to receive "interest-
ing" documents from the NetNews
newsgroup comp.unix-wizards in the
mail, but you don ' t know how to
write a search expression that char-

acterizes them, and you don ' t have
time to read them all yourself. How-
ever, you know that Smith, Jones and
O'Brien read all o f comp.unix-
wizards newsgroup material, and
reply to the more interest ing docu-
ments. Tapestry allows you to filter
on "documents repl ied to by Smith,
Jones, or O'Brien."

Collaborative fil tering is novel be-
cause it involves the relat ionship be-

2 December 1992/Vol,35, No,12 /COINMUNICA?IONIOIITHIIIA¢Im

tween two or more documents,
namely a message and its reply, or a
document and its annotations. Un-
like current filtering systems, Tapes-
try filters cannot be computed by
simply examining a document when
it arrives, but ra ther require (potenti-
ally) repeatedly issuing queries over
the entire database of previously re-
ceived documents. This is because
sometime after a document arrives, a
human (say Smith) may read that
document and decide it is interest-
ing. At the time he replies to it (or
annotates it), you want your filter to
tr igger and send you the original
document.

Tapestry is more than a mail sys-
tem, because it is designed to handle
any incoming stream of electronic
documents. Electronic mail is only
one example of such a stream: others
are newswire stories and NetNews
articles [10]. Moreover, Tapestry is
not only a mechanism of filtering
mail, it is also a reposi tory of mail
sent in the past. Tapestry unifies ad

hoc queries over this reposi tory with
the fil tering of incoming data.

A typical scenario of Tapestry sys-
tem usage is as follows. A user de-
cides on 'mail filtering' as an area of
interest. To find documents on this
topic, the user issues an ad hoc query,
perhaps by searching for the key-
word "filtering." This re turns t o o

many documents. The user eventu-
ally discovers that searching, ei ther
for documents containing both 'in-
formation ' and 'filtering, ' o r f o r doc-
uments containing "filtering" that
received at least three endorsements ,
works much better. Having tested
this, this search is installed as a query
filter, and from now on, all new doc-
uments satisfying this filter will be
del ivered to the user's mailbox.

Archi tecture
Figure 2 shows the flow of docu-
ments th rough the major architec-
tural components of Tapestry. These
components are:

• Indexer. Reads documents from
external sources such as electronic
mail, NetNews, or newswires and
adds them to the document store.
The indexer is responsible for pars-
ing documents into a set of indexed
fields that can be referenced in que-
ries.

! ! ! ! ! ! ! ! ! ! ! !
F I L T E R I N G

• Documen t store. Provides long-term
storage for all Tapestry documents.
I t also maintains indexes on the
stored documents so that queries
over the document database can be
efficiently executed. The document
store is append-only.
• Anno ta t ion store. Provides storage of
annotat ions associated with docu-
ments. The annotat ion store is also
append-only.
• Filterer. Repeatedly runs a batch of
user-provided queries over the set
of documents. Those documents
matching a query are placed in the
little box of the query's owner.

• Little box. Queues up documents of
interest to a part icular user. Each
user has a little box, where docu-
ments are deposi ted by the fi l terer
and removed by a user's document
reader .
• Remailer . Periodically sends the
contents of a user's little box to the
user via electronic mail. This is in-
tended for users who wish to access
Tapestry with their cur rent mail
reader .
• Appraiser. Applies personalized
classification to a user's documents
(i.e., to those documents in the user's

little box). This function can auto-
matically priori t ize and categorize
documents.
• Reader~Browser. Provides the user
interface for accessing Tapestry ser-
vices. This includes facilities for such
tasks as adding/delet ing/edi t ing fil-
ters, retr ieving new documents, dis-
playing documents, organizing docu-
ments into folders, supplying
annotations, and runn ing ad hoc que-
ries.

Tapestry uses a client/server
model. Two styles of interaction with
the server are envisioned. The pre-
fe r red mode of interaction is via a
reader /browser which provides users
with easy access to the full range of
filtering and annotat ion functions.
Users that do not want to, or are not
able to, use the Tapestry browser can
access Tapestry services f rom a con-
ventional mail r eader by having a
remailer daemon send documents
that match a user's filters to the user
via electronic mail. Users can also
send mail documents to the Tapestry
server to invoke any of its operations,
such as adding filters, adding anno-
tations, and even runn ing ad hoc que-

Figure 2. The f low of documents th rough Tapestry

Documents

I 'oOo*or I

~ , ~ Filterer I~L~"~J~
I -

Server
m e i l e i l m m m

Client

I Appraiser I Tapestry
Browser

• .~1 Remailer J v I

i m m n m + m i m m n m

I Appraiser
Mail Reader

I

~OMMUI~B~AT|ONI Ol* THe ~U/Deeember 1992/Vol.35, No.12 6 3

ries. The Tapestry architecture is
flexible about the location of the
client/server split. Figure 2 illustrates
one possible division.

Most of the Tapestry architecture
follows naturally from the goal of
providing collaborative filtering. For
example, to suppor t filters involving
relationships between documents,
there must be a document store. In
o rde r for users to communicate their
ratings of documents, annotations
are provided. The following subsec-
tions provide a more detai led ration-
ale for some o f the architectural
components .

Document and Annotation Stores
Ideally, the Tapestry store will save
documents forever. With the de-
creasing price of disk storage, this is
becoming increasingly practical. As
will be explained in the section "Fil-
ter Queries," documents as seen by
the filter query language must be im-
mutable. This means that once a doc-
ument arrives in the document store,
it is never modified. Thus Tapestry
documents can be conveniently
stored in newer technologies such as
write-once, read-many (WORM)
disks.

Annotat ions are s tored separately
from documents, with links connect-
ing each annotat ion to its associated
document. I t might seem more natu-
ral to combine documents and anno-
tations into a single store, with the
annotat ions to a document a p p e n d e d
as addit ional fields. The re are several
reasons why this was not done. First,
since annotations for a document
arrive after the document itself, ap-
pend ing annotat ions as addit ional
fields would violate the immutabili ty
requirement . Second, some annota-
tions are themselves complex objects,
and those annotat ions are more sim-
ply s tored as separate records with
pointers back to the document they
annotate. The issue of complex an-
notations also arises in the Tapestry
query language (see the subsection
enti t led "Annotations").

Appraisers
Tapestry users want more than a bi-
nary sieve that can only accept or re-
ject a document . For example, a user
might want to assign priorities to
messages, giving messages that an-

I I I l l l l l l l l
I] UIM mal m

F l L T E R l H G

nounce meetings a higher priori ty
than messages that announce pro-
motions. And it would be handy to be
able to change priorities. For exam-
ple, the arrival of a message contain-
ing an update about a meet ing (per-
haps announcing a new meet ing
room) might cause the previous an-
nouncement to be given a lower pri-
ority, but probably not deleted, since
it may contain details not repeated in
the updat ing message.

To suppor t classification of docu-
ments, Tapestry provides appraiser
functions. Fitt ing appraisers into the
overall architecture is not completely
s traightforward. At first it would
seem simplest to run each user's ap-
praiser on the server as documents
arrive. However, this has a potenti-
ally serious drawback. Filtering on
incoming documents is a very com-
putationally intensive task. Imagine a
Tapestry system with hundreds o f
users, each with dozens of filter que-
ries, runn ing on a document stream
of tens of documents per minute.
Running appraisers directly on the
incoming document stream would
put them on the critical per formance
path. To avoid this, the Tapestry ar-
chitecture per forms fil tering in two
steps. The first level o f fi l tering is
pe r fo rmed by filter queries, which
are binary: they ei ther accept or re-
ject a document . The accepted docu-
ments for a user are then placed into
that user 's little box. The second level
of fi l tering is done by appra iser func-
tions that run only over the contents
of the little box. Unlike the "big box"
(the global Tapestry database), the
little box will have few enough mes-
sages to allow them to be copied to
the workstation. This allows the
user's mai l - reading p rogram or
browser to provide more complex
appra iser functions than could be
suppor ted in the server.

Browsers
The Tapestry architecture supports
browsers that combine the functions
of a mail r eader and a tradit ional
document browser. Cor responding
to the role of mail reader , such a
browser should supply 'new mail '
functionality. The server supports
this by del ivering the results o f filter
queries (new mail) to the little box,
leaving it up to the client to remove

the results. Browsers periodically run
the appra iser over the documents in
the little box, record their document
identifiers, and then delete them
from the little box. Ad hoc queries are
another way to get documents into
the browser. Ad hoc queries are made
to the server in the same query lan-
guage as filter queries and may re-
turn documents that were not previ-
ously in the browser.

In tradit ional mail systems, each
mail r eader obtains and stores its
own copy of each message. Thus
messages sent to a large mailing list
are s tored many times. Since Tapes-
try provides an immutable document
store, Tapestry browsers need only
keep a document identif ier (i.e.,
pointer). When a user deletes a mes-
sage f rom the browser, the document
still exists and can be recovered using
an ad hoc query.

Users o f a browser would like to be
able to issue queries that involve both
document fields and private fields.
Private fields store informat ion such
as whether a document has been
read yet, and which folders it is in. A
browser can store private fields along
with o ther document fields, making
them easily available for ad hoc que-
ries. However, since documents must
appea r immutable to filter queries,
and private fields are mutable, pri-
vate fields can only be referenced by
ad hoc queries, not filter queries.

Tapestry Query Language (TQL)
A key par t of Tapestry is fi l tering
documents, with the filters specified
as queries. Hence, choosing the lan-
guage in with filter queries are writ-
ten was one of the impor tan t design
decisions. One obvious choice was to
use SQL[1], the widely used s tandard
query language for relational data-
bases. Adop t ing it as the Tapestry
query language would have had the
addit ional advantage of simplifying
the implementat ion, because Tapes-
try is implemented on top of a com-
mercial database which supports
SQL.

We rejected using SQL as our
query language for two reasons.
First, there is a serious mismatch be-
tween the relational model and the
Tapestry model of documents. T h e
set o f fields in a document is extensi-
ble, whereas SQL schemas have a

4 December 1992/Vol.35, No.12 / ¢ : O I ~ M U N I g A I I O H | O F T H i l A C M

fixed set of fields. Also, SQL does not
directly suppor t sets, whereas many
document fields are set-valued. Ex-
amples are the 'To: ' field of mail
messages, and the 'Newsgroups: '
field of netnews articles. Second, we
wanted to make it easy for users to
type in ad hoc filter queries, and we
thought the amount o f boiler plate in
SQL made that difficult.1

Thus Tapestry has its own lan-
guage known as T Q L (for Tapestry
Query Language). The next two sub-
sections describe T Q L informally by
the use of examples. Even though
T Q L is easier to use than SQL, we
expect most users will not use T Q L
directly, but instead will issue queries
from a browser using predef ined
(but possibly parameter ized) queries.

Basic Examples
A T Q L query is a Boolean expres-
sion. It selects those documents that
satisfy the expression. The set of al-
lowable T Q L expressions are similar
to statements in first o rde r pred ica te
calculus. They combine "atomic for-
mulas" with Boolean operators , and
they can have free variables quanti-
fied by EXISTS or FORALL. Unlike
predicate calculus however, T Q L
supports sets.

The simplest Tapestry queries are
atomic formulas, which involve rela-
tional operators like = and < as well
as the wildcard matching operators
LIKE. An example is:

re.subject =
'Next Tapestry Meeting'

which selects exactly those docu-
ments (or messages) m whose subject
field re.subject is "Next Tapestry
Meeting."

T Q L queries reference the fields
of documents using m.field, where
field is the name of a document field.
Each field has a type. Some common
fields and their types are listed in
Table 1. Most cor respond to fields of
mail messages and newsgroup arti-
cles. One exception is 'words', which
is the set of all words occurr ing in the
body of the document.

More complex T Q L queries are
built up by combining atomic formu-

1This is not meant as a criticism of SQL. Tapes-
try filter queries are much more specialized
than general SQL queries, which is why they
can be written with less boiler plate.

i i i i l l l l l l m m ne m OOm
F I L T i : R l H G

las with Boolean operators as in the
following query:

(m.sender = 'Smith' OR
re.date < 'Apri l 15, 1991') AND
m.subject LIKE '%Tapestry%'.

This query selects messages that
were ei ther from 'Smith' or else sent
before Apri l 15, and whose subject
field included the word 'Tapestry' .
As in SQL, the % symbol is a
wildcard symbol that matches any
number of characters.

The major difference between
T Q L and predicate calculus is TQL's
suppor t for sets. A simple example of

Table 1. Common fields and the i r
types

to set of strings
date date
sender string
cc set of strings
subject string
newsgroups set of strings
in-reply-to set of documents
words set of strings

a Tapestry query using set-valued
fields is the atomic formula:

m.to = {Joe', 'Tom'}

which matches documents whose
m.to fields include 'Joe' and 'Tom'
(and possibly others). Sets can in-
volve operat ions other than --, such
as the query:

re.to = {'Joe', LIKE '%Bi11%'}

which asks for an m.to field contain-
ing at least 'Joe' and a name contain-
ing 'Bill'.

Quantif ied variables are needed
for collaborative queries, An exam-
ple is:

EXISTS (ml : m l . s e n d e r = 'Joe'
AND ml . in- reply- to = {m})

which selects all documents m that
Joe has repl ied to.

Finally, a user 's filter queries can
reference the queries of another
user. For example, the T Q L query:

m IN Terry.Baseball
AND re.words = {'Dodgers'}

re turns all the messages selected by
Terry 's 'Baseball ' query that contain
the word 'Dodgers ' .

Annotations
The design of T Q L presented so far
follows ra ther naturally once the de-
cision is made to have the query lan-
guage match the form of electronic
documents such as mail messages
and NetNews articles. I t is not so
s traightforward to decide how to
handle annotations. As explained in
the previous subsection entit led
"Document and Annotat ion Stores,"
annotat ions are not stored as fields of
the document they annotate. How-
ever, this does not preclude T Q L
treat ing them as addit ional docu-
ment fields, and indeed this is the
most natural representat ion for an-
notations such as priority. A notat ion
such as 'm.a.priori ty ' could be used to
access the priori ty of a document , the
'a' serving to map out a separate
name space for annotations. Simi-
larly, the folders to which a docu-
ment belongs could be a set valued
field, 'm.a.folders ' .

Things do not work smoothly for
the more complex annotations used
to suppor t collaborative filtering.
Consider trying to implement voting
using addit ional document fields. I f
vote is to be an annotat ion field, then
'm.a.vote' would have to be a set of
votes, each of which has a structure
of its own, such as who the voter was,
and the value of his vote. So a query
such as "messages voted for by
weiser" would be expressed as some-
thing like ' the set m.a.vote must have
a member v with v.owner = weiser',
and this would require extending the
set notat ion of the previous section.

The way this query is written in
T Q L is:

a. type = 'vote'
AND a.owner = 'weiser'
AND a.msg = m

By introducing an annotat ion ob-
ject, which always has a field msg that
links it to a document , the kind of
queries that suppor t collaborative fil-
ters become simpler. We ment ioned
earl ier that collaborative queries use
EXISTS. T h e preceding query has
an implicit EXISTS, and can also be
written as:

EXISTS (a: a. type = 'vote'
AND a.owner = 'weiser'
AND a.msg = m)

The cost of in t roducing separate

COIIIIIUHICATIOIISOPTHIIIACIJ/Deeenlber |992/Vol.35, No.12 6 ~

annotat ion objects is that simple que-
ries such as "documents of priori ty
10" become slightly more complex:

a. type = 'pr iori ty ' AND a.value = 10
AND a.msg = m

Since one o f the major design
goals o f Tapestry was to suppor t col-
laborative filtering, we felt the design
with separate annotat ion objects was
preferable.

Filter Ouerles
The hear t o f the Tapestry server is
the Filterer, which executes users'
filter queries. A s t ra ightforward
method of implement ing a filter
query is to periodically execute it, say
once every hour. This approach has
the problem of re turn ing all the old
messages that matched the query the
last t ime it ran, so something must be
done to suppress these messages.
Moreover, there is another more se-
rious problem, namely that periodic
execution can exhibit unpredictable
behavior.

Consider the query: "select docu-
ments to which nobody has sent a
reply." When a document is added to
the database, it matches the query.
However, once a reply document
arrives, the document being repl ied
to no longer matches the query. I f a
part icular document were to arrive
in the database at 8:15 and a reply to
it arr ived at 8:45, then the document
would not be r e tu rned by a system
that simply ran the filter query every
hour on the hour (see Figure 3(a)),
but would be re tu rned by a system
that ran it every hour on the half
hour (b), since the document would
match at 8:30. This raises the general
question: "What are reasonable se-
mantics for a filter query that exe-
cutes repeatedly?" In other words:
What guarantees can be provided to
users about the set of documents re-
tu rned by a filter query?

Users should not need to under-
stand the implementa t ion of the sys-
tem in o rde r to know what results to
expect as the result of a filter query.
The semantics should be indepen-
dent of how the system operates in-
ternally and when it chooses to per-
form various operat ions, such as
executing queries. Two users with
the same filter query should see the
same result data. This implies that

l i i
F l L T E R i H G

the semantics of filter queries should
be t ime- independent .

Continuous Semantics
Tapestry gives filter queries continu-
ous semantics, which is def ined as fol-
lows:

The results of a filter query is the set of
data that would be returned if the query
were executed at every instant in time.

Tha t is, the system guarantees to
show the user any document that
would be selected by the query at any
time. The system may implement this
behavior in any number o f ways,
such as collecting results and pre-
senting them to the user periodically,
but the actual set of results eventually
seen by the user is well def ined and
t ime- independent .

Rewrit ing the preceding in sym-
bols, let Q(t) denote the set of docu-
ments that would be re tu rned by the
execution of query Q over the data-
base that existed at t ime t. Tha t is,
Q(t) is the result of runn ing Q at t ime
t. When a query Q is executed with
continuous semantics, it re turns not
Q(t), but rather:

U Q(s)
s~t

Filter queries are qualitatively differ-
ent f rom one-t ime queries. Consider
the user who wants to see all the doc-
uments that do not receive replies.
The obvious formulat ion, "select
documents to which nobody has sent
a reply," when executed as a filter
query, would re turn every document
to the user, since every document has
no replies when it arrives. This is
undoubted ly not what the user in-
tended. The problem does not lie
with continuous semantics, but
ra ther with the user 's imprecise spec-
ification o f his filter query. Finding
the documents that never receive a
reply would require waiting forever,
but in practice a short wait will re turn
a good approximat ion, since most
messages are repl ied to quickly. Thus
a more precise query would be some-
thing like: "select documents that are
more than two weeks old and to
which nobody has sent a reply." This
illustrates the point that some queries
only make sense when executed on a
one-t ime basis, and are not suitable
as filter queries that are repeatedly
executed.

Implementation
How can continuous semantics be
realized in a practical system? Cer-
tainly, runn ing a query at every in-
stant in time is not possible, and if it
were possible, would not be practical.
This r ema inde r of this section gives
an overview of techniques for pro-
viding continuous semantics in an
effective and efficient manner . An
earl ier paper gives full details of how
this is done [13].

The key to providing efficient
continuous semantics is the following
observation: Given a query whose
result set is nondecreas ing over time,
the simple technique of periodically
executing the query and re tu rn ing
the new results yields cont inuous
semantics. Such a query is said to be
monotone. The frequency with which
a monotone query is executed simply
affects the size of each batch of re-
sults, not the collective set o f results.

Tapestry implements filter queries
with continuous semantics in two
stages. First, a query is rewrit ten as a
monotone query that re turns at least
all documents current ly matching
the original query or else matched it
at some time in the past. I f the re-
written query is Q, and Tapestry has
previously evaluated Q at time r, then
at t ime t Tapestry can implement
continuous semantics by re turn ing
Q (t) - Q(r) to the user, where ' - '
stands for set difference.

In general , the sets Q(t) and Q(r)
are almost the same, and contain
mostly documents that have already
been re tu rned to the user. Comput-
ing Q (t) - Q(r) is very inefficient,
since Q(t) and Q(r) both re turn large
sets, but then most of these docu-
ments 'cancel' when Q (t) - Q(r) is
computed. So Tapestry has a second
stage, in which the monotone query
Q is rewrit ten as an incremental query,
Ql(r, t), that can quickly compute an
approximat ion to Q(t) - Q(r)

To summarize the discussion so
far, when a filter query is submit ted
to Tapestry, it is first rewrit ten to a
monotone query Q, and then Q is
fur ther rewrit ten to an incremental
Qt. This incremental query is what is
used by the Tapestry fiherer. The fil-
terer repeatedly runs the incremen-
tal query, queues up the selected
documents for delivery to users, rec-
ords the time at which each query

6 December 1992/VoL35, No.12 / ¢ O M M U N I C A T I O I I | O I I T H I I A C M

was run, waits some per iod of time,
and then repeats this process using
the recorded times as parameters to
the incremental queries. This algo-
r i thm is shown in Figure 4.

We can now explain why Tapestry
does not allow documents to be de-
leted (that is, uses an append-only
document store). Because the fil terer
runs at discrete times, if documents
could be removed, different users
could receive different results from
the same filter, depend ing on when
the filter ran relative to document
deletion. This would be a violation of
continuous semantics.

Examples
A couple of example should give the
flavor of the query transformations.
Consider the query "show messages
sent by Joe," which can be expressed
in T Q L as:

re .sender = 'Joe'

This query is a lready monotone since
the set of messages sent by Joe is
strictly nondecreasing over time.
Therefore , the query simply needs to
be converted into an incremental
form. Recall that the incremental
query Q/(~-, t) should re turn messages
that began matching the original be-
tween times ~" and t. For the preced-
ing example, the incremental query
considers all messages that arr ived in
this time range:

m.sender = 'Joe' AND
(r < m.ts AND m.ts - t)

The "ts" field is a t imestamp added
by Tapestry when the message ar-
rives in the document store.

As a more complicated example,
consider the query "show bug re-
ports that are more than 2 weeks old
and have not been answered." In
TQL, this can be written a s :

m.to = 'BugReports ' AND
m.ts + [2 weeks] < now() AND

N O T EXISTS (mreply:
mreply.in_reply_to = {m})

This query is not monotone since it
may select a message after the mes-
sage becomes two weeks old and stop
selecting the message when a reply
arrives. Tapestry converts it into the
following monotone query:

m.to = 'BugReports ' AND

I I I l l l l l l l l a m a = m : = a a = =
F I L T E R I N G

document
arrives

I reply
I ~l arrives

No ', No

(a) l i I
i Yes No

(b) ' J
8:00 9:00

No Match Filter?
I " -

10:o0

Set • = - o o
FOREVER DO

set t := current t ime
Execute query Ql('c, t)
Return result to user
set • := t
Sleep for some period of t ime

ENDLOOP

F igu re 3. N o n d e t e r m l n i s t i c be-
hav ior of f i l ters

Figure 4. F i l te r q u e r y e x e c u t i o n

m.ts + [2 weeks] < now() AND
N O T EXISTS (mreply:

mreply.in_.reply_to = {m}
AND mreply.ts < m.ts + [2 weeks])

This monotone query has a slightly
di f ferent meaning than the original
query, but one that is consistent with
continuous semantics. Specifically, it
says "show bug reports that are not
answered within 2 weeks."

The incremental version of this
query considers all messages that
became two weeks old in the time
between ~" and t:

m.to = 'BugReports ' AND
m.ts + [2 weeks] < now() AND
(~" < m.ts + [2 weeks] AND
m.ts + [2 weeks] -< t) AND

N O T EXISTS (mreply:
mreply.in__reply_to = {m} AND
mreply.ts < m.ts + [2 weeks])

Because t and now() are the same
time in practice, this query can be
simplified a bit by removing the
"AND m.ts + [2 weeks] < now()"
clause.

The C u r r e n t Sys tem
A system that embodies the architec-
ture presented in the previous sec-
tion, "Architecture," is current ly in
use by a small number of research-
ers. The following subsections de-
scribe the implementat ion of various

components of the current Tapestry
system.

Database Manager
Tapestry stores documents, annota-
tions, and filter queries in a commer-
cial relational database management
system provided by Sybase [11]. In-
format ion about messages is stored
in a set of relational tables. A single
table does not suffice since this infor-
mation does not fit cleanly into the
relational model. In particular, there
is no single collection of attributes
that apply to all messages, and some
of the attributes, such as the set of
recipients or newsgroups for a mes-
sage, are set-valued. Informat ion
that is common to all messages, and is
not set-valued, is s tored in a table
that has one entry per message.
Other informat ion that varies from
message to message is stored in an
auxiliary table. Each message may
occupy one or more rows in this
table. Similarly, set-valued attributes
are stored in a special table in which
each value of a set occupies a single
row. Annotat ions, which, like mes-
sages, have an extensible set of attri-
butes, are s tored in several tables as
well. As stated earlier, one of the
principal motivations behind the de-
sign of T Q L was to hide this complex
database schema from Tapestry
users.

Indexer
The indexing p rogram is responsible
for unders tand ing a given document
format, extracting attributes from
the document , and storing these in
the database. Logically, a separate
indexing p rogram exists for each
type of document that is added to the
Tapestry system. For example, the
format of NetNews articles and mail
messages is very di f ferent than that
of articles appear ing in the New York
Times. Fortunately, the indexer is the

C O H M U H I C A T I O H S O F T H I Acu/December 1992/Vol.35, No.12 6 7

i i i i i i l i l a u
nmDmm mElam

F I L T E R I N G

only par t of the Tapestry system that
is sensitive to the format o f a docu-
ment. New sources of documents can
be added simply by writing new in-
dexing programs.

For NetNews, the indexer takes all
the header fields in the message and
translates them into tapestry message
fields. In addit ion, the words in the
body of the message are added to a
set-valued Tapestry field named
'words'. Words on a stop list of com-
mon English words are not added,
and each word is s temmed to elimi-
nate inflected forms (e.g., ' ran ' is in-
dexed as 'run'). No proximity of fre-
quency informat ion is kept for words
in the body.

As o f this writing, we are indexing
a subset of NetNews (the 'comp' sub-
tree), keeping the last 100MB of data
a round at any given time. This is
about 12 days worth of data, or
43,000 messages. O u r Sybase tables
and indexes occupy an addit ional
300MB of storage.

TQL-to-SQL translator
Before a T Q L query can be executed
over the Tapestry database, it must
be converted to SQL, the query lan-
guage used by the Sybase database
manager . The Tapestry system com-
piles (or translates) each T Q L query
into an equivalent SQL query. For ad
hoc queries, this translation is done
directly on the query provided by the
Tapestry user. For filter queries, the
T Q L statement is first converted into
its bounding monotone query and
incrementalized, as described in the

preceding section, "Filter Queries,"
and then translated into SQL. The
SQL query for a filter is then main-
mined in the Sybase database as a
s tored procedure . A stored proce-
dure is more efficient than an ad hoc
query since the query optimization
overhead is amort ized over the many
executions o f the query.

Because informat ion about mes-
sages and annotat ions is distr ibuted
th roughout several tables in the Tap-
estry database, the SQL equivalent o f
most T Q L queries involves one or
more database jo in operat ions be-
tween one or more tables. Therefore ,
the SQL queries can be quite compli-
cated. Figure 5 shows a sample T Q L
query along with the resulting SQL
query. Studies have shown that a
good query optimizer, provided with
suitable database indexes, can pro-
duce query plans that allow these
complex queries to run efficiently. In
part icular, the execution cost o f an
incremental query p roduced by our
t ranslater is propor t ional to the
number o f messages added to the
database since the query last ran and
is not dependen t on the overall size
o f the database. See our paper on
continuous queries for more details
[]3].

Remailer
Messages that are selected by a user's
filter queries are queued up for de-
livery to that user. These queues,
which constitute the users' 'little
boxes', are also s tored in the Tapes-
try database. Eventually, we plan to

Plgure S. Example o f t rans la t ion f r om TQL to SQL

EXISTS(ml:((x < m.ts AND m.ts < Now()) OR
(x < ml.ts AND ml.ts _< Now())) AND
ml.sender = "Joe" AND
ml. in_reply_to = {m}) TQL

SELECT m.id FROM msgs m WHERE
EXISTS(SELECT * FROM msgs ml WHERE

((@tau < m.ts AND rn.ts <= getdate0) OR
(@tau < m|.ts OR ml.ts <= getdate()) AND
(m|.sender = "joe") AND
EXISTS{

SELECT * FROM reply_to tl, msgs tml
WHERE tl . id = ml.id AND tl .reply_ref = |
AND

t l .msg_id = tml.msg_id AND
tml. id = m.id))

SQL

build Tapestry clients that access
these queues directly, including a
Tapestry browser. Meanwhile, we
have built a remail ing agent that pe-
riodically retrieves all of the mes-
sages that have been selected for a
user and send each message to that
user via electronic mail. Each mes-
sage is modif ied to include an extra
header field that indicates which fil-
ter(s) selected the messages. This is
used as input to the appraiser , per-
mits a user to unders tand why the
message was selected, and provides a
valuable feedback for debugging or
ref ining a filter query.

Mail Readers
Having the Tapestry server send se-
lected messages to users electroni-
cally el iminated the need to build
special clients. An impor tan t advan-
tage is that users can continue to use
their favorite mail readers to manage
both their private mail and Tapestry
documents selected by their filter
queries. While we do not believe this
to be the ideal means of interact ing
with the Tapestry service, it has al-
lowed us to quickly make use of the
fil tering capabilities.

Some Tapestry clients use the
Andrew Messages r eade r developed
at Carnegie Mellon University [9].
Like most modern mail readers, it
provides a nice user interface for
reading messages and moving them
into mail folders. Moreover, it sup-
ports the "FLAMES" language,
which allows users to write a simple
form of 'appraisers ' that automati-
cally move messages matching a
given predicate or rule into a given
folder. In part icular, users can write
FLAMES rules to identify and pro-
cess messages that were sent by the
Tapestry service and selected by a
certain filter query.

To exper iment with a di f ferent
type of appra iser function, we added
priori t izing queries to the Cedar-
based mail r eader developed at
Xerox PARC called Walnut [4]. Users
can supply a set of queries that can be
appl ied to all incoming messages. As
with the FLAMES rule, these queries
can look for the special header field
indicating that a message is f rom the
Tapestry service. Each query assigns
a numerical priori ty to messages that
match the query. I f a message

8 December 1992/Vol.35, No.12 /¢OMMUlIICATIOiI|OFTHII ACM

matches several queries, then it is as-
signed the maximum of the priori-
ties. Walnut will display messages
within a folder in various orders in-
cluding priori ty order . This allows
users to quickly see the high-priori ty
messages (and ignore the low-prior-
ity ones). To date, our experience
with priorit izing queries has been
quite positive. They have convinced
us of the value of having appraisers
that fur ther classify and organize
messages selected by filter queries.

Name Canonlcalizer
I t is very common for queries to in-
volve the names of mail senders and
receivers. T h e r e are two problems
with these names. First, a given per-
son usually has multiple electronic
names. Second, if a name has any
chance of being unique, it must be
highly qualified, and that works
against our goal of making it easy to
type an ad hoc query. This subsection
presents our design (not yet imple-
mented) for deal ing with naming.

The second problem is the easiest
to solve. In the "official" T Q L query
language, names are fully qualified.
However, users will normally enter
queries via a browser. Thus, the
browser can offer an expand com-
mand, which takes a shor thand and
expands it to be fully qualified. This
not only saves typing, but also serves
to verify that the name was expanded
as expected.

The first problem is more diffi-
cult, because there is not a 1 : 1 map-
ping between names and people.
Suppose we simplify the problem by
assuming that each person refer-
enced in a query can be uniquely
named with an In ternet name of the
form name@site, where name and
site each are of the form
pa r t l . pa r t2 . . . There is still a prob-
lem because both names and sites can
have many aliases, and so the map-
ping is many: 1. In other words, al-
though a person can be specified
unambiguously, it is difficult to f ind
all documents involving a given per-
son, because of all the aliases.

Our solution involves creating a
canonical form for each name, which
is a fully qualified In terne t name,
along with a p rogram that converts
names to canonical form. For the
'From' field of mail originating

I I I I I I I I I I I
IBmIwm mDIBWm

F I L T E R I N G

within PARC, the canonicalizer can
do a perfect job. For o ther names, it
must use heuristics.

Once such a canonicalizer exists, it
can be used when executing a query
such as

m.sender = 'weiser'

It would be too expensive to pe r fo rm
the three steps of examining the
Sender field of each document ,
canonicalizing it, and then compar-
ing that with canonical form of
'weiser' each time an incremental
query was executed.

Instead, the raw names in docu-
ments are processed as they arrive in
Tapestry. Al though the names could
simply be replaced with their canoni-
cal forms, that is not done because
the canonicalizer is imperfect , and
we want to make it easy to update its
translations when an e r ror is discov-
ered. 2

Our solution is that as documents
arrive in Tapestry, each raw name in
the document that has not been seen
before is run th rough the canoni-
calizer, and added to a table that con-
tains [raw name, canonical name]
pairs.

Then the query

m.sender = 'Weiser:PARC:Xerox'

is converted to

m.sender = names.canonname AND
names.rawname =
'Weiser:PARC:Xerox'

The advantage of having the level of
indirection is that we can easily com-
pensate for incorrect heuristics in the
canonicalizer by changing entries in
the names table.

Summary anti Future Work
Tapestry is an exper imental system
designed to receive, filter, file and
browse electronic documents that
arrive in a continuous stream. Be-
cause this class of documents in-
cludes email, Tapestry is in tended to
be used as a replacement for cur rent
email systems.

The novelty o f Tapestry lies in its
suppor t for collaborative filtering.
Users are encouraged to annotate
documents, and these annotations

~This has the un fo r tuna t e side effect o f destroy-
ing append-on ly semantics, but there does not
seem to be any way a r o u n d this problem.

can then be used for filtering. We
envision two types of readers for var-
ious classes of documents. Eager
readers will r ead all the documents in
the class in o rde r to get immediate
access. More casual readers will wait
for the eager readers to annotate,
and read documents based on their
reviews. Experience with NetNews
suggests that there will not be a lack
of readers willing to be 'eager ' anno-
tators.

When a Tapestry user installs a fil-
ter that uses annotations, documents
matching that filter are re tu rned as
soon as the document receives the
specified annotations. Thus Tapestry
filters can be thought of as running
continuously. The pr imary technical
innovation in Tapestry is an efficient
algori thm for implement ing filter
queries that have predictable seman-
tics.

Future works falls into two catego-
ries. First, we need to accumulate
more user experience with Tapestry
so we can bet ter analyze how well the
design actually works in practice.
Second, the Tapestry design pre-
sented in this article is missing a few
impor tant pieces. One of these pieces
is security: the integrat ion of private
mail with public information such as
NetNews is unlikely to be widely ac-
cepted without a s trong security
scheme. Ano the r missing piece is the
browser. We have not yet done a de-
tailed design of a browser. The inte-
grat ion of di f ferent informat ion
streams provided by Tapestry may
enable some interesting new browser
techniques.

Acknowledgments
We would like to thank Pavel Curtis,
Doug Cutting, and Maria Okasaki
for carefully reading a draf t of this
article. []

References
1. ANSI Database language SQL. (Apr.

1991), DIS 9075:199x(E).
2. Denning, P.J. Electronic junk. Com-

mun. ACM 25, 3 (Mar. 1982), 163-
165.

3. Gifford, D.K., Baldwin, R.W., Berlin,
S.T. and Lucassen, J.M. An architec-
ture for large scale information sys-
tems. In Proceedings Tenth Symposium
on Operating Systems Principles (Orcas
Island, Wash., Dec. 1985), pp. 161-
170.

4. Kent, J., Terry, D. and Orr, W.S.

COMIlUNiCATIONIOPYmlACM/Deeember 1992/Vol.35, No.12 69

Browsing electronic mail: Experi-
ences interfacing a mail system to a
DBMS. In Proceedings Fourteenth Inter-
national Conference on Very Large Data-
bases (VLDB), (Los Angeles, Calif.,
Aug. 1988), pp. 112-123.

5. Lutz, E., Kleist-Retzow, H.V. and
Hoerning, K. MAFIA--An active
mail-filter agent for an intelligent
document processing support. Multi-
User Interfaces and Applications, S.
Gibbs and A.A. Verrijn-Stuart, Eds.,
North Holland, 1990, pp. 16-32.

6. Malone, T.W., Grant, K.R., Turbak,
F.A., Brobst, S.A. and Cohen, M.D.
Intelligent information sharing sys-
tems. Commun. ACM 30, 5 (May
1987), 390-402.

7. Palme, J. You have 134 unread mail!
Do you want to read them now? In
Proceedings IFIP WG 6.5 Working Con-
ference on Computer-based document Ser-

l l l l l l l l l l l
F I L T E R I H G

vices (Nottingham, England May
1984), pp. 175-184.

8. Pollock, S. A rule-based message fil-
tering system. ACM Trans. Off. Inf.
Syst. 6, 3 (July 1988), 232-254.

9. Rosenberg, J., Everhart, C.F. and
Borenstein, N.S. An overview of the
Andrew Message System. In Proceed-
ings SIGCOMM '87 Workshop on Fron-
tiers in Computer Communications Tech-
nology (Stowe, Vt., Aug. 1987), pp.
99-108.

10. Smith, B. The Unix Connection. Byte
14, 5 (May 1989), 245-251.

11. Sybase. Transact-SQL user's guide.
Sybase, Inc., Oct. 1989.

12. Terry, D.B. 7 steps to a better mail
system. Message Handling Systems and
Application Layer Communication Proto-
cols, P. Schicker and E. Stefferud,
Eds., North Holland, 1991, pp. 23-
33.

13. Terry, D.B., Goldberg, D., Nichols,

CARE plants the most
wonderful seeds on earth.

Seeds of self-sufficiency that help starving people become healthy,
productive people. And we do it village by village by village.
Please help us turn cries for help into the laughter of hope.

I ~ ~i ~

D. and Oki, B. Continuous Queries
Over Append-Only Databases, In
Proceedings ACM-SIGMODS Sympo-
sium on the Management of Data, (San
Diego, June 1992), pp. 321-330.

CR Categories and Subject Descrip-
tors: H.3.3 [Information Storage and
Retrieval]: Information Search and Re-
trieval-query formulation, retrieval models;
H.4.3 [Information Storage and Re-
trieval]: Communications Applications--
electronic mail

General Terms: Design, Documenta-
tion

Additional Key Words and Phrases:
Information filtering, Tapestry

About the Authors:
DAVID GOLDBERG is a member of the
research staff at Xerox Palo Alto Re-
search Center. Current research interests
include full-text databases, floating-point
and user interfaces.

DAVID NICHOLS is a member of the
research staff at Xerox Palo Alto Re-
search Center. Current research interests
include distributed systems and informa-
tion retrieval.

Authors' Present Address: Xerox PARC,
3333 Coyote Hill Road, Palo Alto, CA
94304; email: {goldberg, nichols}@parc.
xerox.com

BRIAN M. OKI is a senior member of the
technical staff at Teknekron Systems, Inc.
Current research interests include distrib-
uted systems for real-time applications,
information storage and retrieval sys-
tems, fault-tolerance, databases, and pro-
gram language methodology. Author's
Present Address: Teknekron Software
Systems, Inc. 530 Lytton Avenue, Suite
301, Palo Alto, CA 94301; emaii:
boki@tss.com

DOUGLAS TERRY is a member of the
research staff at Xerox Palo Alto Re-
search Center. Current research interests
include distributed computing, ubiqui-
tous information systems, and database
management. Author's Present Address:
Xerox PARC, 3333 Coyote Hill Road,
Palo Alto, CA 94304; email: terry.pa@
xerox.com

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the A C M copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Compu t ing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©ACM0002-0782/92/1200-061 $1.50

0 December 1992/Vol.35, No.12 [C O M I W U N I C A T I O N D O I F T H I I A C M

