
RecTree:

A Linear Collaborative Filtering Algorithm

by

Sonny Han Seng Chee
M.Sc., University of Toronto, 1992.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE
in the School

of

Computing Science

© Sonny Han Seng Chee 2000
Simon Fraser University

September, 2000

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

 ii

APPROVAL

Name: Sonny Han Seng Chee

Degree: Master of Science

Title of thesis: RecTree – A Linear Collaborative Filtering Algorithm

Examining Committee: Professor Qiang Yang
 Chair

 Professor Jiawei Han,
 Senior Supervisor

 Professor Wo-shun Luk
 Supervisor

 Professor Louis Hafer
 External Examiner

Date Approved:

 iii

Abstract

With the ever-increasing amount of information available for our consumption, the problem of

information overload is becoming increasingly acute. Automated techniques such as information

retrieval (IR) and information filtering (IF), though useful, have proven to be inadequate. This is

clearly evident to the casual user of Internet search engines (IR) and news clipping services (IF);

a simple query and profile can result in the retrieval of hundreds of items or the delivery of

dozens of news clippings into his mailbox. The user is still left to the tedious and time-

consuming task of sorting through the mass of information and evaluating each item for its

relevancy and quality. Collaborative filtering (CF) is a complimentary technique to IR/IF that

alleviates this problem by automating the sharing of human judgements of relevancy and quality.

Collaborative filtering has recently enjoyed considerable commercial success and is the

subject of active research. However, previous works have dealt with improving the accuracy of

the algorithms and have largely ignored the problem of scalability. This thesis introduces a new

algorithm, RecTree that to the best of our knowledge is the first collaborative filtering algorithm

that scales linearly with the size of the data set. RecTree is compared against the leading nearest-

neighbour collaborative filter, CorrCF [RIS+94], and found to outperform CorrCF in execution

time, accuracy and coverage. RecTree has good accuracy even when the item-rating density is

low – a region of difficulty for all previously published nearest-neighbour collaborative filters

and commonly referred to as the sparsity problem. Our experimental and performance studies

have demonstrated the effectiveness and efficiency of this new algorithm.

 iv

Acknowledgments

I would like to thank my senior supervisor, Professor Jiawei Han, for his encouragement and

guidance during my studies. His boundless enthusiasm and availability for discussion helped

shape this research during the crucial stages. My gratitude also goes to my supervisor Professor

Wo-shun Luk and the external examiner, Professor Louis Hafer for providing valuable feedback

that has served to improve this thesis.

 I would like to thank Compaq Corporation (formerly Digital Corporation) for making the
EachMovie database available online. Without this generous gesture, this research would not
have been possible.
 I would like to thank Geoffrey Bonnycastle Glass for his meticulous proofreading of this
work. He guided me to the virtues of the present tense.
 Lastly and most importantly, I would like to thank my sweetheart and wife for her
enduring support, encouragement, and impetus for the completion of this work.

 v

Dedication

To my Rat, my RatScal and
My wife.

 vi

Contents

ABSTRACT ... III

ACKNOWLEDGMENTS .. IV

DEDICATION...V

CONTENTS... VI

LIST OF TABLES ..X

LIST OF FIGURES .. XI

CHAPTER 1 INTRODUCTION ..1

1.1 INFORMATION OVERLOAD ...1
1.2 INFORMATION FILTERING/INFORMATION RETRIEVAL ...2
1.3 AUTOMATED COLLABORATIVE FILTERING..4
1.4 OLAP AND DATA WAREHOUSING ...5
1.5 PROBLEM STATEMENT ...6
1.6 CONTRIBUTIONS ...7
1.7 THESIS ORGANIZATION ..8
1.8 NOMENCLATURE ..8
1.9 CHAPTER SUMMARY ..9

CHAPTER 2 RELATED WORK...10

2.1 TAPESTRY – THE FIRST COLLABORATIVE FILTERING SYSTEM..10
2.2 COLLABORATIVE FILTERS..11

2.2.1 The GroupLens Collaborative Filter..11
2.2.2 The Ringo Collaborative Filters...12
2.2.3 Personality Diagnosis: A Probabilistic Collaborative Filter14
2.2.4 The Cluster Collaborative Filter..15

 vii

2.2.5 Collaborative Filtering using Clusters...15
2.2.6 Bayesian Classifier for Collaborative Filtering...16

2.3 OPEN PROBLEMS IN CF...16
2.3.1 The Early-Rater Problem ...17
2.3.2 The Sparsity Problem ...17
2.3.3 The Scalability Problem ...17
2.3.4 Combining Filter Bots and Personal Agents with Collaborative Filtering............17
2.3.5 Fab ...18

2.4 CF APPLICATIONS ..20
2.4.1 SiteSeer...20
2.4.2 ReferralWeb ...21
2.4.3 PHOAKS...22

2.5 CHAPTER SUMMARY ..22

CHAPTER 3 RECTREE...23

3.1 OBSERVATIONS AND ASSUMPTIONS...23
3.1.1 Partitioned Collaborative Filtering ...23
3.1.2 In-Memory Algorithms ...24
3.1.3 Overview of RandNeighCorr, KMeansCorr and RecTree......................................25
3.1.4 Example Data Set ...25
3.1.5 Over-partitioning ...26

3.2 RANDNEIGHCORR ...27
3.2.1 Overview...27
3.2.2 Partitioning Phase..28
�...29
3.2.3 Training Phase ...29
3.2.4 Prediction Phase ..31
3.2.5 Time Complexity...34
3.2.6 Space Complexity ...35
3.2.7 RandNeighCorr’s Accuracy ...35

3.3 KMEANSCORR ...37
3.3.1 Overview...37
3.3.2 KMeans...38
3.3.3 KMeans+...39

3.3.3.1 Overview ..39

 viii

3.3.3.2 The Missing Value Replacement Strategy ...40
3.3.3.3 The Seed Selection Strategy...42
3.3.3.4 The Distance metric..44

3.3.4 Time Complexity...46
3.3.5 Space Complexity ...47

3.4 RECTREE ...48
3.4.1 Overview...48
3.4.2 Constructing the RecTree...48

3.4.2.1 Node Splitting ..51
3.4.2.2 The Maximum Iteration Limit, g..53
3.4.2.3 The Tree Nodes ..55
3.4.2.4 Training on the Leaf Nodes..55
3.4.2.5 Training on the Internal Nodes...59
3.4.2.6 Training on the Outlier Nodes..59

3.4.3 Computing a Prediction ...60
3.4.4 Updating the RecTree...63
3.4.5 Time Complexity...64
3.4.6 Space Complexity ...64

3.5 CHAPTER SUMMARY ..64

CHAPTER 4 RESULTS AND DISCUSSION ...66

4.1 METHODOLOGY..66
4.1.1 Accuracy and Coverage ...67
4.1.2 Execution Time...68

4.1.2.1 Batch-Mode..68
4.1.2.2 Interactive-Mode ..69

4.1.3 Data sets...70
4.1.3.1 The GivenXUser Data Set..70
4.1.3.2 The GivenXRating Data Set...71
4.1.3.3 The InteractiveXUser Data Set...71

4.1.4 The Partition Size Parameter β ..72
4.1.5 Hardware & Software ..72

4.2 PERFORMANCE STUDY OF RANDNEIGHCORR ...73
4.2.1 The Partition Size β ..73
4.2.2 RandNeighCorr’s Running Time..74

 ix

4.2.3 RandNeighCorr’s Accuracy ...76
4.2.4 RandNeighCorr’s Coverage...78
4.2.5 Discussion ..80

4.3 PERFORMANCE STUDY OF RECTREE...81
4.3.1 The Partition Parameter β ...82
4.3.2 The Internal Node Limit g ..82
4.3.3 The Outlier Threshold: outlierSize...82
4.3.4 RecTree Implementation...83

4.3.4.1 The Item-Rating Vector..83
4.3.4.2 The Similarity Matrix...84

4.3.5 RecTree’s Batch Mode Running Time..85
4.3.6 RecTree’s Interactive Mode Running Time..87
4.3.7 RecTree’s Accuracy..88
4.3.8 RecTree’s Coverage ...90
4.3.9 Discussion ..92

4.4 CHAPTER SUMMARY ..94

CHAPTER 5 CONCLUSION AND FUTURE WORK ..96

5.1 CONCLUSIONS ..96
5.2 FUTURE WORK ...97

5.2.1 Scalability...97
5.2.2 The Internal Node limit g ...97
5.2.3 The outlierSize Threshold...98
5.2.4 Similarity Measures..98
5.2.5 Predictions ...98

BIBLIOGRAPHY ..99

 x

List of Tables

Table 1: A compilation of movie ratings for Sammy and her friends. A high score indicates
greater preference. The letters R and A following a title denote a romantic and action title,
respectively...6

Table 2: Table of Nomenclature...9
Table 3: Ringo’s 7-point rating scale. ..14
Table 4:The fictitious video store ratings database. The shaded cells are withheld for testing,

while the remainder of the table is submitted for training the collaborative filter.26
Table 5: A comparison of CorrCF's MAE with all correlates and when only low correlates (less

than 0.1 correlation) are used in the prediction. A lower score indicates higher accuracy. ..36
Table 6: The default vector is computed for the video database using the PopAvg recommender.

..44
Table 7. A calculation of the average rating and standard deviation over the longer history

indicates that Dylan is more similar to Sammy than Beatrice..56
Table 8. A comparison of the correlation coefficients computed by

ComputeCorrelationSimilarity+ (denoted by column Correlation+) with those by
ComputeCorrelationSimilarity (denoted by column Correlation)..58

Table 9: The GivenXUser data set. ..70
Table 10: The GivenXRating data set. ...71
Table 11: The InteractiveXUser data set. ...72
Table 12: RandNeighCF’s batch mode running time with number of item-ratings.74

 xi

List of Figures

Figure 1: The rating history for 3 users and their pair–wise correlation.12
Figure 2: Two families of agents filter documents. Users collaborate by passing on highly rated

documents to their neighbour's selection agents. ...19
Figure 3: SiteSeer identifies an interest neighbourhood around folders that have a high degree of

overlap in bookmarks. ..21
Figure 4: The coverage for all nearest-neighbour collaborative filters declines with smaller

training set. ...27
Figure 5: A random bi-partition of the video user base..29
Figure 6: Pair-wise similarity weights between members of the same random partition...............31
Figure 7: The EachMovie rating distribution. ..33
Figure 8: Two different selections for the initial centres yield two different sets of clusters.

Selecting R1 and R2 as the seeds results in cluster C1 and C2, while selecting seeds R8 and
R9 results in the globally optimal clusters C3 and C4. ..38

Figure 9: The default vector provides missing values..41
Figure 10: The default vector is computed for the video database using the PopAvg recommender.

..42
Figure 11: The RecTree data structure. Leaf nodes have a similarity matrix while each internal

node maintains a rating centroid of its sub-tree. Each node has a bi-directional link with its
parent..51

Figure 12: The RecTree branches after processing the video database with β=15 item-ratings. ...52
Figure 13: Building a RecTree on an exponential data distribution with β = 16 creates 4 clusters

with one user each and 1 cluster with 16 users. ...53
Figure 14: The RecTree’s collaborative filter is trained as nodes are attached to the tree.............60
Figure 15: The RecTree’s collaborative filter is trained as nodes are attached to the tree.............62
Figure 16: RandNeighCorr’s batch mode running time with number of item-ratings.75
Figure 17: CorrCF’s batch mode running time is quadratic. ...75

 xii

Figure 18: Accuracy of RandNeighCorr with number of users. ..76
Figure 19: Accuracy of RandNeighCorr with number of item-ratings per user.77
Figure 20: Coverage of RandNeighCorr with number of users. Each user has 80 item-ratings. ..79
Figure 21: Coverage for RandNeighCorr with number of item-ratings per user.79
Figure 22: Average maximum similarity RandNeighCorr and CorrCF.81
Figure 23: Batch mode running time for RecTree with number of users. RecTree demonstrates a

linear complexity with number of users in contrast to CorrCF's quadratic complexity.86
Figure 24: RecTree batch mode running time with number of item-ratings per user.86
Figure 25: RecTree's interactive mode running time..87
Figure 26: Accuracy of RecTree with number of users. β is in units of users.88
Figure 27: The average similarity of advisors in RecTree. ..89
Figure 28: Accuracy of RecTree as a function of item-ratings per user...90
Figure 29: Coverage of RecTree with number of users..91
Figure 30: RecTree's coverage with rating sparsity..91
Figure 31: The contribution of correlation+ and outlier detection to RecTree's accuracy.93
Figure 32: The contribution of request delegation to RecTree's coverage.....................................94

CHAPTER 1. INTRODUCTION

1

Chapter 1 Introduction

Collaborative filtering (CF) is a name used to describe a variety of processes involving the
recommendation of items based upon the opinions of a neighbourhood of human advisors.
Amazon1 and CDNow2 are two well known e-commerce sites that use collaborative filtering to
provide recommendations on books, music and movie titles; this service is provided as a means to
promote customer retention, loyalty and sales [SKR99]. Despite this tremendous commercial
interest, the majority of current research has focussed on improving the accuracy while making
only passing reference to the performance and scalability issues. The fastest CF algorithms have
quadratic complexity [RIS+94] [SM95] [PHL00] [KM99a] [Paz99]. This thesis introduces, to the
best of our knowledge, the first collaborative filtering algorithm, RecTree, with linear time
complexity. RecTree has accuracy and coverage that is superior to the well known correlation-
based collaborative filter [RIS+94].

1.1 Information Overload

In our day-to-day activities, we are faced with an overwhelming amount of information. From

the moment we wake, we are inundated with requests for our attention and time. How do we

choose to spend our limited time on this seemingly endless stream of demands?

We employ several strategies. We rely on spot judgements: quite literally, we judge a

book by its cover. Obviously, marketers use graphic effects and advertising to attract our

attention and to manipulate our decision. As buyers and consumers, many of us can attest to the

1 http://www.amazon.com
2 http://www.cdnow.com

CHAPTER 1. INTRODUCTION

2

mixed success of this strategy. We rely on luck: very interesting or valuable items come to our

attention serendipitously. Conversely, we can argue that luck saves us from wasting our time on

very uninteresting or irrelevant items. As the name implies, this strategy cannot be relied upon.

We rely on the opinions of others: we seek advice from those we trust before making a

consumption decision. We ask our friends and associates to recommend a good movie to watch.

We consult a food critic for a good restaurant to dine at. We rely on the newspaper editor to

bring us information that is relevant to us. We rely on the store manager to stock brand items that

meet our tastes. This advisory circle helps filter and recommend items for our attention.

Advisors who consistently recommend items that we like become more trusted and their

recommendations are accorded more weight in our decision-making. Similarly, advisors whose

recommendations rarely match our preferences are given smaller weight and eventually leave our

circle.

However, our advisory circle is necessarily finite and limited in experience – we can only

form a limited number of relationships in our lifetime and each member of the advisory group can

sample but a small subspace of all items. Consequently, we often make a decision with

inadequate advice. This problem has become increasingly acute with the interconnection of the

world through the Internet. Now, we have access to an even wider selection of products and the

availability of information sources seems to grow exponentially with no limit. Obviously, our

terrestrial strategies for dealing with information overload are inadequate and we need some

automated assistance.

1.2 Information Filtering/Information Retrieval

Information retrieval and information filtering (IR/IF) are a group of techniques that have

enjoyed widespread success [Sho92] [FD92]. The function of the IR system is described as

“leading the user to those documents that satisfy his/her need for information” [Rob81]. IR

systems adopt the view that a query is an approximate expression of an information need. Users

must engage in an iterative process of modifying and refining their query until the information

CHAPTER 1. INTRODUCTION

3

need is satisfied. By contrast, information filtering adopts the view that user’s information

interests are stable and can be accurately reflected in a profile [BC92]. Documents that satisfy a

profile are extracted from a data stream for presentation to the user.

IF and IR use the same basic process for obtaining document matches. The query and

document collection/data stream are initially converted into textual surrogates, typically

keywords [BC92]. These surrogates are then matched using one of three major alternatives:

Boolean, vector space and probabilistic retrieval models. Vector space methods represent the

query and the documents as keyword vectors in a multidimensional space. Terms are weighted by

the importance and distribution of keywords in the corpus and query. The query vector is

compared against each document vector using a similarity measure, such as the vector cosine

[SMc83]. The underlying assumption is that a high similarity of the query and a document vector

implies that the document is highly relevant to the informational need. Extensions to the basic

vector space method attempt to capture term association and domain semantics [DDF+90]

[FD92]. A detailed description of vector space and the other matching methods can be found in

[SMc83].

Despite their success, IR/IF have a number of limitations. IF/IR tend to retrieve many

items that are irrelevant simply because the keywords are contained in the document. This is

readily evident to any casual user of Internet search engines: a simple query string quite often

results in hundreds of matches. This problem is somewhat ameliorated by creating more

expressive queries, but most users lack either the skill or the patience to pursue this approach. In

addition, IF/IR can only be applied to items that are textual or have associated textual attributes

[BC92]. It would be impossible to ask an IR system to retrieve music pieces that are “happy

sounding”. Furthermore, IF/IR cannot readily incorporate subjective judgements into their

matches. Measures of quality and style, for example, cannot be represented. Finally, IF/IR

systems suffer from “more-of-exactly-the-same” syndrome. Only documents that match on

keywords will be presented to the user. A highly relevant document that happens to use different

keywords will never by retrieved/extracted.

CHAPTER 1. INTRODUCTION

4

1.3 Automated Collaborative Filtering

Collaborative filtering (CF) is a new field of study that sprung from the seminal work by
[GNO+92] on the Tapestry email system. Collaborative filtering seeks to automate the terrestrial
advisory circle that we alluded to in an earlier section. Members of the advisory circle are
identified based upon the similarity of their rating history to that of the user. The opinions of the
advisors provide recommendations on as-yet unseen items. Unlike the terrestrial advisory circle,
CF does not require that a personal relationship exist between the user and his advisors; in most
instances, the advisors will be unknown to the user.

Whereas IF/IR seeks similarities between the query/profile and the items, CF seeks
similarities between user rating histories and to exploit other users to make recommendations.
CF is complementary to IF/IR and does not suffer from some of its limitations. Specifically, CF
incorporates subjective judgements into its match. The typical CF query is of the form: “Retrieve
movies that I may like”. Secondly, CF does not require a textual representation and can be as
readily applied to textual, as well as audio and video content; any item that a human user can
evaluate and place a judgement, is amenable to CF. Finally, CF does not suffer from “more-of-
exactly-the-same” syndrome. The advisory circle consists of human members with individualistic
tastes, which are drawn upon to make recommendations.

Unlike traditional classification and segmentation analysis, CF can be applied where user
and item attributes are missing or difficult to obtain. On the Internet, accurate demographic and
psychographics information is notoriously difficult to obtain. To some degree this may be due to
user concern over privacy and the commercial use of personal information; in a survey of 10,000
households by Forrester Research Inc., two thirds had serious concerns about their privacy
[FOR99]. Furthermore, when users submit surveys, over 50% [Gre99] of the applicants provide
false information. These issues complicate the analysis of these online forms of data.

In contrast, users seem less reluctant to provide item-rating information. The EachMovie
recommendation service [EM97] collected 10 or more movie preference ratings from over 60%
of its membership. This same membership however responded poorly when asked their age,
gender and zip code. Less than 10% of the membership provided all three pieces of demographic
information.

CHAPTER 1. INTRODUCTION

5

1.4 OLAP and Data Warehousing

OLAP (On-Line Analytical Processing) and data warehousing are two complementary
technologies that are enjoying considerable recent commercial success. These technologies
rapidly aggregate measures across dozens of dimensions and across all the dimensional
permutations. Decision makers can use OLAP to quickly answer questions such as: “What was
the number 1 selling baby product, across each province, across each store, in the last 3 years?”
This type of query is prohibitively expensive for a relational database to execute. Data
warehousing is the process of cleaning data, making it consistent with a data dictionary, and
persisting it in a non-volatile data store. While an operational database may be purged
periodically (to remove lapsed customers, for example), a data warehouse will never
(theoretically) erase any data. New data is appended to it, but old data is never removed. Data
warehousing is a data pre-processing step to OLAP.
 OLAP and data warehousing is used to implement a popular form of collaborative
filtering. Many on-line retail sites customize a web page to include links like: “X is the most
popular item of type Y” or provide statistics such as: “This item has been downloaded Z times”.
OLAP provides the technology to compute these aggregates very rapidly; in some instances the
computation can be real-time. Provided that users supply demographic information, other
interesting statistics can be computed and displayed to the user. These factoid help the user filter
his selection and hopefully, for the vendor, result in a sale. An example of such a factoid is: “89%
of professionals in your category in your state buy thisTypeOf insurance from X”. Analyzing the
data warehouse for interesting patterns may also be a useful technique for filtering. If a user
discovers that a set of items are viewed frequently together, he may decide after viewing the first,
that the remaining items in the collection are worthy of consideration; the pattern ‘recommended’
the set of items to the user. Other data mining techniques such as time series analysis, sequence
analysis, clustering and classification can be applied to a data warehouse and the discovered
patterns used to recommend items [JCC98].

OLAP and data mining is, however, not inextricably linked to data warehousing.
DBMiner is a data mining-OLAP hybrid system that operates directly on relational databases
[JCC97]. This system could similarly be used to mine and recommend items to users.

Multimedia-Miner is also a data mining-OLAP hybrid system that operates on
multimedia databases [ZHL+98]. This system could be used to discover patterns in multimedia
items such as audio or video clips. These patterns could be the basis of recommendations.

CHAPTER 1. INTRODUCTION

6

1.5 Problem Statement

A CF algorithm makes recommendations to the active user a based on the item ratings of l
advisors. Denote the set of all items as M and the rating of user u for item i as ru,i or alternatively
ru(i). Let the vector ru(M) denote ratings for all items for user u and the set Y = {r1(M), r2(M),
r3(M), …. , rn(M)} denote the database of all user item-rating vectors. Define Su = {i| i∈M ∪ ru,i
=Θ} as the subset of all items for which user u has not yet rated and consequently for which a
collaborative filter may provide predictions. The symbol Θ denotes “no rating”. A collaborative
filter is then a function f that makes recommendations pa for the active user a over the set Sa of
un-rated items, taking the database of item-rating vectors as input.

pa(Sa) = f(Y, Sa)

The function f maps items into real numbers or Θ.

Example 1.
Sammy and her friends are members of a video shop that has established a rudimentary CF
system. Each time Sammy and her friends view a video, they can rate the movie on a scale of 1
to 5 indicating their level of enjoyment. A 5 indicates “I enjoyed it very much, I would strongly
recommend this movie” while a 1 indicates “I hated it, don’t bother”. Her rating history and
those of her friends are recorded in the table below.

 Titles

Starship
Trooper

(A)

Sleepless
in Seattle

(R)

MI-
2

(A)
Matrix

(A)
Titanic

(R)
Sammy 3 4 3 3 5
Beatrice 3 4 3 1 1
Dylan 3 4 3 3 4
Mathew 4 2 3 4 5
Gum-Fat 4 3 4 4 4

U
se

rs

Basil 5 1 5 5 1

Table 1: A compilation of movie ratings for Sammy and her friends. A high score indicates greater
preference. The letters R and A following a title denote a romantic and action title, respectively.

CHAPTER 1. INTRODUCTION

7

Suppose that prior to watching the Matrix and Titanic, Sammy asked the CF system to

choose the movie that best matches her taste. Which movie should the CF system recommend?
A rudimentary CF system could make sensible predictions using the group average. The

average rating of Matrix is 3 while Titanic has an average rating of 14/4. The system would
therefore recommend Titanic over Matrix. We see that this recommendation matches well with
Sammy’s higher rating for Titanic in comparison to Matrix.

This rudimentary system falls well short of automating the terrestrial advisory circle. In
particular, the group average algorithm implicitly assumes that all advisors are equally trusted and
consequently, their recommendations equally weighted. An advisor’s past performance is not
taken into account when making recommendations. However, we know that in off-line
relationships, past performance is extremely relevant when judging reliability of
recommendations. Equally problematic is that the group average algorithm will make the same
recommendation to all users. Basil, who has very different viewing tastes from Sammy, as
evidenced by his preference for action over romantic movies, will nevertheless be recommended
Titanic over Matrix. In the next chapter, we will revisit this example and demonstrate how
sophisticated CF algorithms can provide more accurate and personalized recommendations.

 ٱ

1.6 Contributions

This thesis describes a new collaborative filtering data structure and algorithm called RecTree (an
acronym for RECommendation Tree) that to the best of our knowledge, is the first nearest-
neighbour collaborative filter that can provide recommendations in linear time. The RecTree has
the following characteristics:

1. RecTree can be constructed in linear time and space.
2. RecTree can be queried in constant time.
3. RecTree is more accurate than the leading nearest-neighbour collaborative filter, CorrCF

[RIS+94].
4. RecTree has a greater coverage (provides more predictions) than CorrCF.
5. RecTree does not suffer the rating sparsity problem.

CHAPTER 1. INTRODUCTION

8

We demonstrate the effectiveness and efficiency of RecTree through analysis and performance
studies.

1.7 Thesis Organization

This thesis consists of five chapters. In chapter 1, we introduce collaborative filtering and the

motivation for this work. In chapter 2, we survey related work. Details of the two proposed

algorithms, RandNeighCorr and RecTree are described in chapter 3. In chapter 4, we present

experimental results and discuss the strengths and weaknesses of each approach. Finally, in

chapter 5, we summarize and discuss future directions for research.

1.8 Nomenclature

Unless it is otherwise specified, this thesis uses the following table of symbols to maintain a
consistent discussion:

CHAPTER 1. INTRODUCTION

9

1.9 Chapter Summary

In this chapter we touched on the problem of information overload and the inadequacy of
information retrieval and information filtering techniques for dealing with this problem.
Collaborative filtering is a complementary technology that does not suffer from some of the
limitations of IR/IF. In particular, CF incorporates human judgements of relevancy and quality
by automating the terrestrial advisory circle.

We introduced a database of video ratings that we will serve as a running example in the
chapters that follow. A formal statement of the collaborative filtering problem and summary of
the contributions of this thesis was presented.

SYMBOL DESCRIPTION
A..Z Sets

Y The set of item-rating vectors.
N The set of users.
M The set of items.
l The number of users; l ≡ |N|.
m The number of items; m ≡ |M|.
n The size of the data set; n ≡ lm.

ra or ar
�

 Rating vector for the active user

ra,i The active user’s rating for item i.
ra The active user’s average rating. A scalar.

ru or ur
�

 Rating vector for the current user.

ru,i The current user’s rating for item i.
ru The current user’s average rating. A scalar.
Σ The standard deviation
Θ The “no rating” value.

Table 2: Table of Nomenclature.

CHAPTER 2. RELATED WORK

10

Chapter 2 Related Work

In this chapter we briefly survey the recent developments in collaborative filtering. This is by no
means an exhaustive survey.

2.1 Tapestry – the first collaborative filtering system

The phrase “collaborative filtering“ originated from the Tapestry email system [GNO+92]; they
define collaborative filtering as a process where “people collaborate to help one another perform
filtering by recording their reactions to documents they read.” Tapestry facilitates the sharing of
user opinions about documents by allowing them to annotate documents with key phrases. A user
receives items by executing a complex query that selects on these annotations and the identity of
the annotator. A typical query is: “Show me the documents that Sidney annotated as
‘interesting’”. Tapestry could also use implicit user feedback in its queries. Knowing that Basil
sends an email response to only those documents that he finds interesting, we could express a
query to select on this action.
 Tapestry is essentially a rich querying system where users benefit from the annotations
contributed by others – this is the collaborative aspect of the system. The system suffers from a
number of limitations, however. Firstly, the user must be aware of the identities or have a prior
relationship with his advisors, otherwise he would not think to issue a query based on their
annotations. Tapestry provides assistance to make the interaction of terrestrial advisory circles
more efficient, but is limited by this very feature. A personal relationship needs to exist between
the advisor and advisee. Secondly, users are free to record their reaction using any set of
keywords they choose. The unlikelihood of two users using the same set of keywords makes it
difficult to create a filter expression that is applicable across the entire user base.

Tapestry is largely a manual system and this is the reason for its limited adoption among
the users who participated in the initial study. In the following two sections, we discuss

CHAPTER 2. RELATED WORK

11

collaborative filters that remove the “relationship requirement” and that limit the user’s manual
interaction to providing a numeric rating. In section 2.4 we present some approaches to CF that
relieve the user from the explicit task of rating items by inferring endorsements from their
interactions.
 A collaborative filter is an algorithm that predicts a user’s preference for an item based
only on how advisors have rated their preference for it. A collaborative filter differs from other
data mining techniques in that the item’s attributes and the users’ demographic information are
not necessary for a prediction. This very capability makes CF an attractive technology on the
Internet where demographic information is difficult to obtain and anonymity is treasured.

Collaborative filters can be classified into memory-based and model-based algorithms
[BHK98]. Memory-based algorithms repeatedly scan the user base to locate other users to serve
as advisors. A prediction is then computed by weighting the recommendations of these advisors.
An advisor is identified based on his similarity or nearness in tastes to the active user;
consequently, these algorithms can be equivalently called nearest-neighbour collaborative filters.

Model-based algorithms infer a user model from the database of rating histories. The
user model is then consulted for predictions. Model-based algorithms require more time to train
but can provide predictions in shorter time in comparison to nearest-neighbour algorithms. The
storage requirements for memory-based algorithms also tend to be somewhat less than those of
nearest-neighbour algorithms [BHK98]. In the following sections, we describe some recent
collaborative filters.

2.2 Collaborative Filters

2.2.1 The GroupLens Collaborative Filter

The GroupLens system is one of the first automated collaborative filtering systems [RIS+94] to
apply a statistical collaborative filter to the problem of Usenet news overload. [RIS+94] assert
that user satisfaction with Usenet as a means of disseminating information is declining and that
without some assistance to quickly sift the chaff from the wheat, some users are abandoning the
medium.

The GroupLens system identifies advisors based on the Pearson correlation of voting
history between pairs of users. The Pearson correlation measures the degree with which the
rating histories of two users are linearly correlated. Two users may not score items identically,

CHAPTER 2. RELATED WORK

12

but if they consistently like and dislike the same items then they will have a positive correlation
score. Figure 1 shows the rating history for 3 users and their pair-wise similarity coefficients.

An underlying assumption of the GroupLens collaborative filter is that users rate items
with a Gaussian distribution; users have an ambivalent preference for most items that they
encounter, while for a few items they have a strong like or dislike. The filter takes this behaviour
into account by computing the prediction as a deviation from the active user’s average rating ra:

The weights wa,u are the pair-wise correlation coefficients between the active user a and the
advisor u and the normalization factor α is chosen such that the absolute values of the weights
sum to unity.

2.2.2 The Ringo Collaborative Filters

Ringo is a statistical collaborative filtering system [SM95] that provides on-line
recommendations for music. Users provide ratings on music albums that they have listened to
and the system then recommends a number of music titles. One of Ringo’s most popular features
is the ability for users to add to the inventory of music titles and artists; this feature was

� ⋅−+= uauiuaia wrrrP ,,,)(1
α

(1)

0

1

2

3

4

5

6

Item 1 Item 2 Item 3 Item 4 Item 5

R
at

in
g User A

User B

User C

Figure 1: The rating history for 3 users and their pair–wise
correlation.

Pearson
Correlation
 User
 A B C

A 1 1 -1

B -1 -1 -1

U
se

r

C -1 -1 1

CHAPTER 2. RELATED WORK

13

responsible for the nearly 5-fold increase in the item inventory in the first 6 weeks of operation
[SM95].

Ringo computes a prediction by taking the weighted average of the advisors’ ratings.
The weights are computed using one of three different similarity metrics: mean square difference
(MSD), Pearson correlation, and constrained Pearson correlation. The MSD metric computes
similarity based the mean square difference between rating histories of the users:

The Pearson correlation metric has been discussed above and will not be repeated here.

The constrained Pearson correlation attempts to take into account the positive and negative
endorsements of Ringo’s 7-point rating scale (Table 3). Since ratings above 4 are positive
endorsements while those below 4 indicate negative endorsements, the correlation metric is
modified such that only when both users have rated the item positively or negatively will the
correlation coefficient increase. Specifically, the constrained Pearson correlation metric is given
by:

Ringo also uses an alternate prediction algorithm called artist-artist correlation. This

algorithm inverts the basic collaborative filtering mechanism by treating albums as potential
advisors to other albums. For example, suppose that Basil wants a prediction for the album
“Avalon”. The artist-artist correlation method computes the correlation between “Avalon” and
other albums that Basil has rated and generates a prediction from the weighted average of his
scores on those albums.

[SM95] reports that the constrained Pearson correlation metric results in the highest
accuracy and highest number of predictions (also known as coverage). The artist-artist correlation
metric results in the poorest accuracy and lowest coverage.

�
−

=
N

iuia
ua N

rr
w

2
,,

,

)(

(2)

�
−−

=
uaY uaua

iuia
ua Y

rr
w

,
||

)4)(4(

,

,,
, σσ

(3)

CHAPTER 2. RELATED WORK

14

2.2.3 Personality Diagnosis: A Probabilistic Collaborative Filter

Personality Diagnosis (PD) [PHL00] is based on the assumption that user preferences can be
described by a personality type or true rating vector, ri

true. When users rate items on different
occasions, they do so with some deviation about the true value. Gaussian noise is assumed to
summarize all of the external factors that affect a rating, such as the user’s mood and the context
of any other titles rated in the same session. Specifically, the probability that user a assigns a
rating score of x on an item i is given by the normal distribution with mean y:

 The probability that the active user’s true preferences are those represented by another
user’s ratings is used as measure of similarity and can be computed by applying Bayes’ rule.
Specifically, the probability that the active user a is of the same personality type as another user i,
is given by the product of probabilities that the active user’s rating on each item is normally
distributed about the true values as given by the user i:

RATING DESCRIPTION
7 BOOM! One of my FAVOURITE few! Can’t live without it.
6 Solid. They are up there.
5 Good Stuff.
4 Doesn’t turn me on, doesn’t bother me.
3 Eh. Not really my thing.
2 Barely tolerable.
1 Pass the earplugs.

Table 3: Ringo’s 7-point rating scale.

22 2/)())(|)(Pr(σyxtrue
aa eyirxir −−∝==

(4)

()
() ()∏

=

===

∝===
m

j
i

true
ajai

true
a

maai
true

a

jrjrxjrMrMr

xmrxrMrMr

1

1

)()(|)(Pr)()(Pr

))(,..)1(|)()(Pr
��

��

(5)

CHAPTER 2. RELATED WORK

15

The first term on the right hand side of (5) is the prior probability that the active user votes
according to vector ri(M) and is assumed to be a random variable with a value of 1/l where l is the
number of users. Given these similarity scores, a rating probability distribution can be computed
for any item and taking the most probable rating in the distribution then generates a prediction.
The probability for each rating is simply the sum of probabilities of all personality types that
support that rating score:

PD can equivalently be interpreted as reconstructing the active user’s true preferences by

taking one of the other users at random and adding Gaussian noise to it. Given the user’s rating
history the probability that he is actually one of the other users is inferred. [PHL00] reports the
accuracy of PD is competitive with those of other nearest-neighbour collaborative filters
[BHK98], however the two performance studies were conducted on separate data sets.

2.2.4 The Cluster Collaborative Filter

Recently a collaborative filter based on the weighting of clusters was proposed [KM99a]. This
approach applies a hierarchical divisive clustering algorithm to partition the user base into
successively finer partitions until a cluster distortion threshold is satisfied. Cluster distortion is
defined as the sum of the distance of all data points from the centre of the cluster. Locating the
leaf node where a user resides and then taking a weighted average of each cluster’s
recommendation on the path from the leaf partition to the root generate a prediction. A cluster
recommends an item based on the average rating of all its members. Cluster distortion is used to
weight each cluster’s recommendation. [KM99a] reported that the overall performance was
competitive with the correlation-based collaborative filter [RIS+94].

2.2.5 Collaborative Filtering using Clusters

A straightforward application of clustering techniques to ratings data was recently reported
[UF98]. The authors applied the KMeans and Gibbs Sampling clustering algorithms to create
user and item clusters. Users of the same cluster acted as recommenders for each other. The user
clusters were trained by clustering on items purchased by users and item clusters were trained on
the users they were purchased by. A scheme of repeated clustering was reported where a 2nd and

() ()� =∈====
uY

iuuuaia xirandNuuYMrMrxir })(|{)()(Pr)(Pr �

(6)

CHAPTER 2. RELATED WORK

16

3rd iteration of user and item clustering was performed on the item and user clusters created from
the previous iteration. The authors argue that repeated clustering on clusters, as opposed to
clustering on the actual users/items, has the potential for creating useful neighbourhoods from
which recommendations can be drawn. Initial results for repeat clustering are, however,
inconclusive. Application of the clustering algorithm to the CDNow music online retail site
reportedly doubled email respondents to a music promotional.

2.2.6 Bayesian Classifier for Collaborative Filtering

The naïve Bayesian classifier computes the probability of membership in an unobserved class c
based on the “naïve” assumption that ratings are conditionally independent [BHK98]. The
underlying assumption is that there are certain classes or types of users that have a common set of
preferences and tastes. The probability model relating the joint probability of class membership
and ratings is given below:

The left hand side of expression (7) is the probability that a user a with the rating history
ra(1),..,ra(m) is of class c. The probability of class membership Pr(C=c) and the conditional
probabilities Pr(ra(i)|C=c) are estimated from the training set of user item-ratings. However, the
class labels are not directly observed and methods that can infer model parameters with hidden
variables must be employed. The EM algorithm was selected to learn the model structure with a
fixed number of classes.
 The Bayesian classifier was found to be competitive with the correlation-based classifier
in accuracy and coverage. However, the classifier has a significantly longer training time.

2.3 Open problems in CF

Despite the growing commercial interest in collaborative filtering, there still remain a number of
open problems that have yet to be adequately resolved.

() ()∏
=

====
m

i
aaa cCircCmrrcC

1

|)(Pr)Pr()(),..,1(,Pr

(7)

CHAPTER 2. RELATED WORK

17

2.3.1 The Early-Rater Problem

A collaborative filter does not provide any benefit to a user if she is the first person in her
neighbourhood to rate an item. [AZ97] has speculated that even if the cost of rating an item were
zero, most users will still prefer to benefit from others ratings rather than supply ratings
themselves. Without a compensation mechanism, CF systems depend upon the altruism of their
members to overcome the early rater problem.

2.3.2 The Sparsity Problem

Collaborative filtering systems require a “critical mass” of users to join and provide ratings before
they can provide predictions of reasonable accuracy and coverage. Even when there is a large
membership, a sufficient number of users must rate each item. The accuracy of many
collaborative filters fall below that of non-personalized recommendation via population averages
when the rating density is low [RIS+94] [KM99a] [GSK+99] .

2.3.3 The Scalability Problem

The recent collaborative filter research has focused on improving accuracy and largely ignored
the problem of execution time. We believe this may be due to two factors. Firstly, the focus of
early collaborative filter research was to prove their merit through the accurate prediction of user
preferences. As long the execution time was not prohibitive, accuracy was the driving factor in
CF research. Secondly, the memberships in the early CF systems were relatively small and
consequently satisfactory responses could be achieved by increasing the number of computer
resources devoted to the task. However, given the quadratic time complexity of the fastest
collaborative filters and the inherent less-than-linear gain in throughput for an incremental
increase in computer resources, we believe this is not a problem that can continue to be ignored.

2.3.4 Combining Filter Bots and Personal Agents with Collaborative Filtering

Two recent promising approaches to the early rater and sparsity problem attempt to increase the
rating density by using bots and agents. These automatons submit ratings to the collaborative
filtering system as if they are legitimate users. They differ from real users in that they rate every
item in the inventory but never ask for recommendations. The relevancy of their
recommendation to a human user is automatically determined by the similarity weight that the CF
system computes.

CHAPTER 2. RELATED WORK

18

[SKB+98] reports the use of “filter bots” in a Usenet application where news items are
assigned ratings based upon simple rules. The bots assign a rating based on the proportion of
spelling errors, the length of the messages, and the length of included messages. The rationale for
these bots is that Usenet members prefer messages that have few spelling errors, are brief and
contain more new content in comparison to included messages. Each of these bots rank the entire
set of messages and then partitions them into 5 rating bands. All items within a band are assigned
the same score. The proportion of news items in each band is chosen to match the human rating
distribution of that newsgroup. The spell-checking bot is reported to improve the accuracy and
coverage in 4 of 5 newsgroups, while the remaining bots have mixed results. The authors
postulate that users do not necessarily care about error free messages, but that good spelling
correlates well with such valuable attributes as careful writing style or simple vocabulary.

[GSK+99] reports the use of agents and bots in a movie recommendation application. A
number of simple genre bots are constructed that rate a movie with the maximum preference
score of 5 if it is of a particular genre or the minimum preference score of 1 otherwise. For each
user, three information filter agents are trained on only the movie cast names, the movie’s
keywords, or the cast names and keywords, respectively. The agent profiles are constructed by
computing the TF-IDF (term frequency-inverse document frequency) [SMc83] vector from the
collection of movies that the user has rated. Each movie is also converted into a TF-IDF vector.
The agents then score each movie by computing the vector cosine distance between their profile
and the movie’s TF-IDF vector. The movies are ranked and divided into 5 rating bands in
proportion to the human rating distribution; all movies within a band are assigned the same score.
The results of this study are promising and show substantial improvements in accuracy and
coverage when all the bots and IF agents participate in the collaborative filtering system with the
50 users in the study group.

[GSK+99] noted that despite the promising results of the study, the scalability of the
proposed solution had not been addressed. The MovieLens and other collaborative filtering
systems could not cope with agents and bots that provide such a volume of recommendations nor
agents that changed their ratings periodically to reflect their learning of the user’s preferences.
Furthermore, these approaches are based on information filtering techniques and consequently are
constrained by IR’s limitations.

2.3.5 Fab

Fab is a web-page recommendation system that solves rating sparsity by computing user
similarity from profiles rather than item-ratings [BS97]. A user profile consists of a TF-IDF
vector built up from the documents that the user has rated. The vector cosine metric between user

CHAPTER 2. RELATED WORK

19

profiles, which ranges between –1 and 1, is computed to identify advisors; a value of 1 indicates a
perfect similarity, while –1 indicates complete dis-similarity (a user whose tastes are completely
opposite to the active user), and 0 indicates a complete lack of interest overlap. Web pages that
are highly rated by an advisor are provided to the active user as recommendations. This approach
ameliorates the sparsity problem since content similarity is used as a basis of computing user
similarity.
 Fab’s architecture, shown in Figure 2, consists of two families of agents. Collection
agents gather documents from the web and deposit them into a central pool. Selection agents
match documents to their profiles and deliver them to their users. When a user rates a document,
both the selection and the collection agents receive the relevancy feedback. Collection agents
receive feedback from all users while a selection agent receives feedback from only its “owner”.
This feedback strategy results in collection agents that are trained to serve the needs of a group of
users while the selection agents are trained to serve the needs of a single user. Collection agents
that consistently receive low feedback scores are periodically eliminated and agents with high
feedback scores are duplicated. Fab’s collaborative aspect arises when a user rates a document
highly. At this point the document is forwarded to all of his advisees’ selection agents as
recommendations. The selection agents make the final decision as to whether to forward or filter
a recommended item.

Document PoolSelection
Agents

Selection
Agents

Doc

User

Selection
Agents

Doc

Doc

Doc

Collection
Agents

Collection
Agents

Collection
Agents

Feedback

InternetFab

Figure 2: Two families of agents filter documents. Users collaborate by passing on highly rated
documents to their neighbour's selection agents.

CHAPTER 2. RELATED WORK

20

2.4 CF Applications

2.4.1 SiteSeer

SiteSeer is a recommendation system that predicts preferences for web pages [PR97]. Web-page
ratings are implicitly gathered by examining a user’s bookmark and bookmark folders. A
bookmark is taken as a positive endorsement for a page and a folder provides a context for
computing interest similarity and for providing recommendations.

SiteSeer assumes that each folder represents a distinct interest and that a high degree of
overlap between users’ folder contents are indicative of common interest; a user can therefore
belong to as many interest neighbourhoods as bookmark folders. Recommendations are
generated by taking the most often saved bookmark in the neighbourhood of folders with a high
degree of overlap. SiteSeer treats the bookmarks as purely unique identifiers and does not derive
any semantic value from the titles of folders, the bookmarks nor the contents of the web pages.
The bookmark folders, however, are used to contextualize the recommendations. In Figure 3, a
neighbourhood is formed around Basil’s “vacation spots” folder with Sammy, Bea and Dylan.
SiteSeer recommends to Basil the link http://www.belize.org within the context of the “vacation
spots” folder since it appears in all three of his neighbour’s folders.
 Using bookmarks as inputs to the collaborative filter has a number of advantages.
Bookmarks are less “noisy” data in comparison to mouse-clicks since they represent a conscious
investment in time to create and organize. Furthermore, bookmarks are contextualized by the
organization of folders providing a natural means for recommendations.

Bookmarks also have a number of limitations. Valued sites are not always bookmarked
if they can be reached through other methods such as a search engine, an index page, or if it has a
simple URL that can be easily remembered. In addition, bookmarks are created for a number of
different reasons, ranging from long-term interest to a short-term need to return to a page. Finally,
bookmarks register positive endorsement for a page, but there is no means for registering partial
or negative endorsement.

CHAPTER 2. RELATED WORK

21

2.4.2 ReferralWeb

ReferralWeb is a system for recommending people (experts) and documents based on the social
network [KSS97]. Unlike other automated collaborative filtering systems where the
recommenders are anonymous, the identities of recommenders in ReferralWeb are explicit. This
is crucial for a determination of trustworthiness and quality of the information source.

ReferralWeb exposes the referral chain as it serves two important functions: it provides a
reason for the expert to respond to the requester by making the relationship explicit (perhaps they
have a mutual friend or mutual collaborator), and it provides a means by which the searcher can
evaluate the trustworthiness or quality of the expert. ReferralWeb does not require the user to
explicitly enumerate his contacts, but builds its social network by mining documents published on
the Internet.
 When a user registers with the system, ReferralWeb constructs a social network by
retrieving all documents mentioning the user and then extracting the names of other individuals.
This process is recursively applied several times and the results merged into a network. The
network can then be used to constrain and filter the search for people and documents. The social
network can be used to infer the quality of documents; the underlying assumption is that authors
of high quality documents tend to be collaborators or colleagues. For example: “Retrieve
database documents by colleagues of J. Gray.” Similarly, a query to locate an expert in the data

http://www.cuba.org
http://www.bahamas.org
http://www.guatemala.org
http://www.costarica.org
http://maldives.org
http://bali.org

Vacation Spots

http://belize.org
http://www.brazil.org
http://guatemal.org
http://bali.org

hot destinations

http://www.belize.org
http://www.germany.org
http://www.singapore.org
http://www.hongkong.org
http://www.maldives.org
http://www.bali.org

Travel

http://www.cuba.org
http://www.bahamas.org
http://www.mexico.org
http://www.venezula.org
http://www.brazil.org
http://www.thailand.org

South Pacific Trips

http://www.belize.org
http://www.maldives.org
http://www.bali.org
htp://www.greece.org
http://www.turkey.org

Vacation Getways http://www.belize.com

Basil

Dylan

Bea

SammyMathew

Figure 3: SiteSeer identifies an interest neighbourhood around folders that have a high degree of
overlap in bookmarks.

CHAPTER 2. RELATED WORK

22

mining field could be expressed as: “Show me the names of individuals who have published a
document about data mining that are colleagues or colleagues of colleagues of J. Han.”
 ReferralWeb’s obvious disadvantage is that it can build a social network only around
individuals who have published online or are mentioned in online press releases, for example
academics, CEOs, or spokespersons. However, there is a growing trend for individuals to create
an online presence and this will help to extend ReferralWeb’s applicability.

2.4.3 PHOAKS

PHOAKS is an on-line recommendation service that mines Usenet postings as a source of web-
resource endorsement [THA+97]. Using a complex library of heuristics, the authors report an
88% accuracy in extracting web-page endorsements from Usenet postings. The basic strategy
consists of three steps. Firstly, if the URL contains the word markers that indicate it is being
recommended as opposed to being advertised or announced, it is counted as an endorsement.
Secondly, if the endorsement has been cross-posted to many newsgroups then it is discarded –
such a message is assumed to be too general to be thematically close to any of the groups.
Finally, the web-page endorsement is discarded if it is part of the poster’s signature file,
embedded in a message or endorsed by the same user in the past; these strategies deprecate self-
promotions and double counting.

PHOAK predicts the quality of a web-resource based on the number of distinct users that
recommend it. The authors test this assumption of quality by comparing the recommended
resources with those in newsgroups FAQs; domain experts maintain FAQs and typically direct
users to high quality web pages. [THA+97] report a positive correlation between the number of
distinct recommenders to the probability that it will be mentioned in a FAQ.

PHOAKS is still operational and can be accessed on-line at www.phoaks.com

2.5 Chapter Summary

In this chapter we have summarized the recent research in collaborative filtering. We described a
number of nearest-neighbour and model-based collaborative filters and indicated some of their
strengths and weaknesses. We presented the open-problems in CF and some CF applications.

CHAPTER 3. RECTREE

23

Chapter 3 RecTree

In this chapter, we discuss our approach to designing collaborative filters with faster execution
times. We begin in Section 3.1 with a discussion of preliminary observations that motivate our
approach and the assumptions that we make. The following three sections present successive
refinements to the basic approach. Section 3.4 presents RecTree, a new data structure and
algorithm that can deliver recommendations in linear time.

In this and subsequent chapters, the term “item-rating vector” is used interchangeably with
user since each item-rating vector is uniquely identified with a user. Therefore, when we say the
user ru, it is understood that we mean the user u associated with that item-rating vector.

3.1 Observations and Assumptions

3.1.1 Partitioned Collaborative Filtering

The fastest collaborative filters to date have quadratic complexity with data set size [RIS+94]
[SM95] [PHL00]. Each of these algorithms differ in the mechanism of computing a prediction
and the metric used to gauge similarity. However, they all require an exhaustive search over the
database of l users to locate advisors. To generate predictions for a test set of q users requires lq
passes over the database. Obviously, a CF system is required to make predictions for all
subscribing users, otherwise excluded users would derive no utility from the system and hence
cease to be members. The test set therefore consists of the same users as the database of
candidate advisors - yielding the quadratic complexity.

Clearly, we can only hope to improve the complexity of any proposed algorithm if we can
avoid or limit the exhaustive search for advisors. We take the latter approach and describe three
algorithms below that limit the neighbourhood over which advisors are sought. Each of these

CHAPTER 3. RECTREE

24

algorithms attempts to create partitions of independent neighbourhoods of approximately similar
users. Predictions are computed from only the recommendations of members of the same
partition. Our general approach can thus be described in the following framework:

1. Phase I: Partition the data set.
2. Phase II: Train the collaborative filter.
3. Phase III: Generate predictions.

Phase II of the framework makes no assumption about the type of collaborative filter used.

Nearest-neighbour and model-based algorithms can be inserted without difficulty. A recent
empirical study [BHK98] into several nearest-neighbour and model-based collaborative filters
reports that both types of algorithms have comparable accuracy. Differences between the
algorithms arise in terms of execution time and space cost; nearest-neighbour filters execute
significantly faster but require somewhat more disk space. We rationalize that disk space, unlike
time, can always be purchased and given the continuing improvements in storage technology, at a
steadily declining per unit cost. This thesis focuses on improving the execution time for nearest-
neighbour collaborative filters. Phase II can alternatively be paraphrased as: “Train nearest-
neighbourhood CF.”

3.1.2 In-Memory Algorithms

For this work, we assume that all of the rating data will fit into memory. This is not an
unreasonable assumption, as we argue here.

The EachMovie recommendation service3 accumulated almost 3 million ratings over an
eighteen-month period. The service used a 6-point rating scale that is typical of
recommendations systems4. The total cost to store 3 million ratings is therefore only 3 mega-
bytes. If we assume an operating system with the capability to address 1 gigabyte of memory
space, an in-memory algorithm should be able to accommodate a service 300 times larger than
the EachMovie service. We therefore believe that in-memory collaborative filters can adequately
serve the short and intermediate term needs of a recommendation service. It should be pointed

3 The EachMovie recommendation service was modestly sized with a membership of 73,000 users and an
inventory of 1600 items.
4 There is evidence to suggest that reliability of the data collected does not substantially increase if the
number of choices exceeds seven [RR91].

CHAPTER 3. RECTREE

25

out that our 1 gigabyte memory limitation is somewhat conservative - the next generation of 64-
bit operating systems will remove this limitation altogether. An extension of this work to handle
very large databases is nevertheless discussed in Chapter 5.

3.1.3 Overview of RandNeighCorr, KMeansCorr and RecTree

Starting in section 3.2 we describe three algorithms, RandNeighCorr, KMeansCorr and RecTree,
with the potential for delivering recommendations in linear time. RandNeighCorr is the most
naïve approach to partitioned collaborative filtering. We present it as the baseline algorithm
against which the other two partitioned filters can be compared. RandNeighCorr partitions the
data set by randomly assigning users to partitions in phase I. In phase II, it computes the
similarity between users using the Pearson correlation measure. Finally, in phase III it generates
predictions by taking a weighted deviation from the user’s mean rating.
 KMeansCorr represents a refinement on RandNeighCorr’s simplistic partitioning
strategy. It replaces the partitioning stage (phase I) with the KMeans+ clustering algorithm.
Phase II and Phase III of KMeansCorr are identical to those of RandNeighCorr. A complexity
analysis of KMeansCorr will reveal that despite being able to execute in isolation the partitioning
and training phases in linear time, the combined action of all phases results in at best quadratic
complexity.
 The RecTree algorithm partitions the data in phase I by recursively calling KMeans+ to
split the data set into child clusters. The chain of intermediate clusters leading from the initial
data set to the final partitioning is retained in the RecTree data structure, which resembles an
unbalanced binary tree. The collaborative filter is trained in Phase II by computing the pair-wise
similarity coefficient within each leaf partition using a more accurate similarity metric that we
call correlation+ for clarity. The RecTree generates a prediction by employing a dual strategy. If
the user is located in a partition with a sufficient number of neighbours, taking the weighted
deviation from the mean generates a prediction. If the user is located in a small neighbourhood,
RecTree generates a prediction by taking the neighbourhood’s average rating.

3.1.4 Example Data Set

Throughout this chapter we will return to the fictitious video store, first introduced in Chapter 1,
as a running example. The values in the shaded cells are withheld as testing data and the
remainder of the table is used for training the proposed collaborative filters. We will on occasion
refer to the table below, without the values in the shaded cells, as the video database training set.

CHAPTER 3. RECTREE

26

Similarly we will refer to the shaded cells as comprising the video database test set. The
prediction task will be to predict Sammy’s and Basil’s ratings for the movies Matrix and Titanic.

3.1.5 Over-partitioning

One may imagine that by partitioning the data into smaller subsets we may be able to
obtain any desired performance. However, as Figure 4 shows, an over-partitioning of the data
adversely affects the coverage (the number of predictions that can be generated); a small
neighbourhood means that there are fewer advisors from which to draw recommendations.

 Titles

Starship
Trooper

(A)

Sleepless
in Seattle

(R)
MI-2
(A)

Matrix
(A)

Titanic
(R)

Sammy 3 4 3 3 4
Beatrice 3 4 3 1 1
Dylan 3 4 3 3 4
Mathew 4 2 3 4 5
Gum-Fat 4 3 4 4 4

U
se

rs

Basil 5 1 5 4 5

Table 4:The fictitious video store ratings database. The shaded cells are withheld for testing, while
the remainder of the table is submitted for training the collaborative filter.

CHAPTER 3. RECTREE

27

3.2 RandNeighCorr

3.2.1 Overview

In this section, we present the most naïve approach to partitioned collaborative filtering to serve
as the baseline. This algorithm partitions the database by randomly assigning users to k
independent partitions. Within each partition we train a correlation-based collaborative filter by
computing the pair-wise similarity coefficients between members. Then, we generate a
prediction by taking the weighted deviations from the rating mean.

RandNeighCorr will serve as our baseline algorithm against which the other proposed
partitioned algorithms must surpass to be worthy of further consideration. In the following
subsections we describe each phase of RandNeighCorr.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Number of Users

C
ov

er
ag

e
(%

)

Figure 4: The coverage for all nearest-neighbour collaborative filters declines with smaller training
set.

CHAPTER 3. RECTREE

28

3.2.2 Partitioning Phase

[KMM+97] reports that anecdotal evidence supports a strategy of randomly partitioning users
into neighbourhoods and then applying a collaborative filter within each partition. They claimed
that this strategy leads to an improvement in speed over the un-partitioned case and yields “useful
predictions”. However, they presented no performance results. We choose random assignment
as it represents the most simplistic approach to partitioning. Our subsequent approaches to
partitioning in later algorithms must result in neighbourhoods of more correlated users than
random assignment, otherwise the clustering algorithm’s contribution must be suspect.

Algorithm 1. RandNeighCorr(Y,S,k)
Input: Y is the training set and is the database of all user item-rating vectors. S is the test set and
is the database of all user “no-rating” item vectors; each vector is the set of items for which the
user has yet to rate and for which we would like RandNeighCorr to produce predictions. k is the
number of partitions to create and k << |Y|.
Output: A mapping of each element of each vector of S onto a rating score or “no rating”, Θ.
Method: The RandNeighCorr algorithm is implemented as follows.
Phase I: Partition the data set.

1. Randomly assign each member of Y to one of k partitions.
Phase II: Train the collaborative filter
 1. For each partition Y ΄, call ComputeCorrelationSimilarity(Y΄).
Phase III: Generate predictions.

1. Call ComputeDeviationFromMeanPrediction(S)

CHAPTER 3. RECTREE

29

Example 2.
We take our fictitious video database and randomly assign users to one of two partitions.

 ٱ

Corollary 1. RandNeighCorr’s partitioning phase has O(l) complexity.
Proof. A database of l users is randomly assigned to k partitions in a single scan of the database.
 ٱ

3.2.3 Training Phase

In the training phase we can select from a number of similarity metrics to train our collaborative
filter. The recently published metrics include: the mean square difference (MSD), constrained
Pearson correlation [SM95], Pearson correlation [RIS+94], vector cosine [BHK98], and
personality diagnosis [PHL00]. [BHK98] reports that among the first three of these metrics, the
Pearson correlation consistently gave the most accurate predictions. [PHL00] subsequently
reports better prediction accuracy with personality diagnosis (PD), but his performance studies
were inconclusive as he compares the performance of PD against the other similarity metrics
using different data sets.
 We choose the Pearson correlation metric as it measures the linear relationship between
the rating behaviour of the active user and his advisor. A linear metric is desirable since in the
prediction phase we will specify a linear function to map advisors’ ratings to a recommendation.
The subroutine ComputeCorrelationSimilarity() computes the pair-wise correlation between
members of a partition Y. The user’s mean rating ru and standard deviation σu are computed over
the set of items that both users have rated in common.

Partition #1 Partition #2
Beatrice Sammy
Gum-Fat Dylan

U
se

rs

Basil U
se

rs

Mathew

Figure 5: A random bi-partition of the video user base.

CHAPTER 3. RECTREE

30

Example 3.
We continue our running example and apply ComputeCorrelationSimilarity() on the two random
partitions from Example 2. In each partition, the user’s mean item-rating ru and the standard
deviation σu are computed from the items that both users have rated in common. The correlation
between Sammy and Dylan for example is computed only over the movies, Starship Trooper,
Sleepless in Seattle, and MI-2; we withhold Sammy’s ratings for Matrix and Titanic for testing.
The correlation between Dylan and Mathew is computed over all movies since their ratings for all
five movies is available for training. The similarity matrix for each of the partitions is
summarized in the table below.

Subroutine 1: ComputeCorrelationSimilarity(Y)
Input: Y is a set of user item-rating vectors.
Output: A square matrix of pair-wise similarity weights wi,j between all members.
Method: The similarity weights are computed in the following procedure.
For each user ra, compute the pair-wise similarity wa,u to each other member ru in the set Y using
Pearson correlation:

�
−−

=
uaY uaua

uiuaia
ua Y

rrrr
w

, ||
))((

,

,,
, σσ

�=
uaY ua

ku
u Y

r
r

,
|| ,

,

�
−

=
uaY ua

uku
u Y

rr

,

2

,

,2

||
)(

σ

}|{ ,,, Θ≠∪Θ≠∪∈= kukaua rrMkkY

CHAPTER 3. RECTREE

31

 ٱ

Theorem 1. The subroutine ComputeCorrelationSimilarity() has O(n2/k) complexity.
Proof. The cost of computing the pair-wise similarity between members of the same partition is
O(n/k)2, where n is the data set size and k is the number of partitions. The complexity of
computing the similarity weights for all k partitions is then O(n2/k). ٱ

3.2.4 Prediction Phase

We approximate the mapping of advisors’ ratings to a user recommendation with a linear
function. Recently published linear mappings include weighted average [SM95], weighted
deviations from mean [RIS+94], and most probable rating [PHL00]. The latter approach is not
applicable since we have not selected PD as our similarity metric. We now provide the rationale
for selecting the weighted deviations from mean approach over the weighted average approach.
 We postulate that for a majority of users the absolute rating scale is not meaningful.
Rather, users rate items on a relative scale - they rate an item in context with the ratings they have
previously assigned to other items. Mathew for example, likes MI-2 and likes Matrix even more
and therefore assigns scores of 3 and 4, respectively. His rating does not mean that MI-2 is a
mediocre movie, but that Matrix is better. We further postulate that users are ambivalent about a
majority of items, like or dislike a small number of items, and are passionate about even fewer
items. Given these hypothesises, we expect that a user’s rating distribution will resemble a bell
curve with a mean that is not necessarily located at the rating scale’s median value. This
hypothesises is supported by a plot of the rating distribution for the EachMovie5 database in
Figure 7. The rating mean is not at the scale median (between 2 and 3) - supporting our first

5 The EachMovie movie recommendation service ran for a period of 18 months starting in 1996 and
gathered almost 3 million ratings from 73,000 members.

 Correlation Correlation
 Partition #1 Partition #2
 Beatrice Gum-Fat Basil Sammy Dylan Mathew

Beatrice 1 -0.92 -1 Sammy 1 1 -0.87
Gum-Fat -0.92 1 1 Dylan 1 1 0.21

U
se

rs

Basil -1 1 1 U
se

rs

Mathew -0.87 0.21 1

Figure 6: Pair-wise similarity weights between members of the same random partition.

CHAPTER 3. RECTREE

32

hypothesis. The rating distribution is not uniform, but shows a peak about which the votes
decline on either side - supporting our second hypothesis. The subroutine
ComputeDeviationFromMeanPrediction() generates predictions that are distributed in a bell
curve about the user’s mean rating ru. It aggregates the weighted deviations of all of the advisors’
rating from their mean. The weights wij are the pair-wise correlation coefficients computed from
the subroutine ComputeCorrelationSimilarity().

Subroutine 2. ComputeDeviationFromMeanPrediction(S)
Input: S is the test set and is the database of all user “no-rating” item vectors; each vector is the
set of items for which the user has yet to rate and for which we would like to produce predictions.
Output: Each element of each vector of S is mapped into a rating score or “no rating”, Θ.
Method: A prediction pa,i for the active user a and item i is computed from the weighted sum of
deviations from the mean ru of all its advisors. The weights wa,u are computed from the method
ComputeCorrelationSimilarity(..).

uau
Y

iuaia wrrrp
ua

,,
1

,)(
,

⋅−+= �α

�=
uaY ua

ua

Y
w

,
||
||

,

,α

}0|{ ,, ≠= uaua wuY

CHAPTER 3. RECTREE

33

Example 4.
In this example, we generate Sammy’s and Basil’s predictions for the movies Matrix and Titanic
using the subroutine ComputeDeviationFromMeanPrediction(). The similarity weights wij are
obtained from the tables in Example 3. The results of the calculation are summarized in the table
below. The mean absolute difference between the prediction and the actual rating is shown in the
column labelled MAE.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1 2 3 4 5

Rating Score

Fr
eq

ue
nc

y

Figure 7: The EachMovie rating distribution.

CHAPTER 3. RECTREE

34

 ٱ

Theorem 2. The prediction step has O(l/k) complexity.
Proof. RandNeighCorr partitions a data set of l users into k partitions of approximately l/k size.
A prediction is generated by aggregating the weights of all members of the partition and is
therefore O(l/k). ٱ

3.2.5 Time Complexity

RandNeighCorr is the fastest partitioned collaborative filter that we study in this work with a time
complexity of O(nβ) + O(l), where n is the data set size, l is the number of users, and β is the
partition size. In this section we discuss how each of the phases in RandNeighCorr contribute to
this total complexity.

By Corollary 1, Theorem 1, and Theorem 2 the accumulated cost of partitioning the data
set, training the collaborative filter, and generating predictions is:

 Prediction Actual MAE
 Matrix Titanic Matrix Titanic

Sammy 3.6 2.8 3 4 0.9

U
se

rs

Basil 4.6 4.1 4 5 0.75

{ }
6.3

)87.01/()87.0()2.32(1)4.33(3.3

||||
1

)(

)(

,,,,

,,

,

=
+−⋅−+⋅−+=

+
⋅

��

�
�
�

��

�
�
�

⋅−

+⋅−
+=

MathewSammyDylanSammyMathewSammyMathewMatrixMathew

DylanSammyDylanMatrixDylan

SammyMatrixSammy wwwrr

wrr
rP

)/()/()(2 klOknOlO ++

(8)

CHAPTER 3. RECTREE

35

Theorem 3. The execution time for RandNeighCorr is O(n) for constant partition size β.
Proof. Let the partition size β be given by n/k. Substituting for β in (8) we obtain
RandNeighCorr’s complexity which is linear in data set size n: O(nβ) + O(l) + O(l/k) ٱ

The constraint β is equivalent to fixing the number of item-ratings per partition and we therefore
call β the partition size. By Theorem 3, we know that the execution time for RandNeighCorr can
be linearized for constant values of β. In the next chapter we present our performance study into
RandNeighCorr and demonstrate the effect of β on its performance.

3.2.6 Space Complexity

RandNeighCorr has a space complexity of O(l2/k), where l is the number of users and k is the
number of partitions.
 In the first phase all of the users are distributed among k partitions. This requires at most
the storage of a 4-byte partition identifier per user; for the entire data set of users this operation
requires O(l) disk space. In the second phase, the pair-wise similarity coefficients between all
members of a partition are computed and saved. If there are k partitions, the average number of
users in a partition is l/k and the space complexity of computing pair-wise similarity coefficients
for a partition is O(l2/k2) and for all k partitions is O(l2/k). Therefore, the total space complexity
of RandNeighCorr is:

O(l) + O(l2/k)

3.2.7 RandNeighCorr’s Accuracy

The accuracy of a collaborative filter depends upon its ability to locate good advisors. This
obvious observation is supported by the experiment summarized in Table 5. In the “All” column
all advisors are used in the prediction, while in the “< 0.1” column only advisors with correlation
coefficients less than 0.1 are used for prediction. As expected, using only advisor who are poorly
correlated worsens the accuracy of predictions.

CHAPTER 3. RECTREE

36

To improve the execution time, RandNeighCorr limits the neighbourhood over which
advisors are sought. Intuitively we expect that the accuracy of RandNeighCorr should be
affected. The following theorems confirm this intuition and the corollary proves the result that
RandNeighCorr’s accuracy diminishes with increasing data set size. This result is somewhat
surprising, as a collaborative filter should improve in accuracy as more data is available for it to
train on.

Theorem 4. The probability of locating the f globally best advisors in a database of l users,
which has been partitioned into k partitions of approximately equal size, is O(1/kf).

Proof. The probability that a user’s most similar advisor is located in his partition is equal to the
probability of being located in any of the k-1 other partitions and is therefore 1/k. Since users are
distributed into each partition randomly and the partitions are independent, the probability that
each of the second and subsequent f-1 best advisors is also collocated is also 1/k. The total
probability therefore of locating the f globally best advisors is the product of these probabilities:
1/kf. ٱ

Theorem 5. The probability of locating the f globally best advisors in a partition is O(β f n-f).
Proof. RandNeighCorr guarantees its linear execution time by the constancy of the partition size
β=n/k. As the data set size n increases, the number of partitions k must also increase to maintain
�’s constancy. Substituting for β in Theorem 4 we have the probability of locating the f globally
best advisors in a partition: O(β f n-f). ٱ

Corollary 2. The accuracy of RandNeighCorr diminishes with increasing data set size.
Proof. The accuracy of a collaborative filter depends upon its ability to locate the f best advisors
to draw recommendations from. By Theorem 5 we know that as the data set size increases, the
probability of locating these advisors in a partition is O(n-f). ٱ

MAE
All < 0.1

0.87 0.97

Table 5: A comparison of CorrCF's MAE with all correlates and when only low correlates (less
than 0.1 correlation) are used in the prediction. A lower score indicates higher accuracy.

CHAPTER 3. RECTREE

37

3.3 KMeansCorr

3.3.1 Overview

KMeansCorr is a refinement on the RandNeighCorr algorithm. The random assignment strategy
of phase I is replaced by a clustering algorithm that subdivides the database into partitions of
correlated users. There exists a collection of clustering algorithms that we can choose from
[KR89] [EKS+96] [ZRL96] [GRS98] [AGG+98] [ACW+99]. We make our selection based on
the following criteria: the clustering algorithm must have quadratic time complexity or better, be
applicable to high dimensional sparse data and be straightforward to implement. The first
criterion is necessary since the raison d’être of this thesis is on the development of a faster
collaborative filter; a clustering algorithm that took longer than quadratic time to complete would
negate the very benefit that was intended. The second criterion is a necessary applicability
condition: each item will be treated as a dimension along which a clustering is sought and the
number of users who may have sampled any particular item is usually quite small. The average
user of the EachMovie recommendation service [EM97] for example, has sampled only 10 movie
titles out of a possible 1628. The third criterion, though not necessary, was deemed a desirable
property due to time constraints for the completion of this work.
 Several of the recent clustering algorithms [ZRL96] [GRS98] [AGG+98] [ACW+99]
were designed specifically to handle high dimensional data in very large databases. These
algorithms are disk-based and consequently very efficient when the database is larger than
memory. However, this work assumes (and argues in 3.1.2) that all of the rating data will fit into
memory; the KMeans algorithm [KR89] is a very fast in-memory clustering algorithm and with
some modification can serve our purposes. We call this extended clustering algorithm KMeans+
and describe it in detail in Algorithm 2. The CF algorithm we call KMeansCorr consists of
replacing the partition phase (Phase I) of Algorithm 1 with KMeans+.
 It should be noted that our purpose in selecting a clustering algorithm for phase I is
neither to locate nor to identify the cluster structure in the data set. We partition the data because
we want to improve the execution time of the collaborative filter. In section 3.2 we show that a
random partitioning of the data resulted in linear time complexity, but with an increasing loss in
accuracy with data set size. KMeansCorr attempts to remedy the deterioration in accuracy by
populating each partition with users that are highly correlated. Therefore, the purpose of inserting
a clustering algorithm into Phase I is to seek a ‘good’ partitioning of the data such that execution

CHAPTER 3. RECTREE

38

time is linearized. Improving accuracy is a secondary objective. We are not using the clustering
algorithm to identify cluster structures in the data.

3.3.2 KMeans

KMeans is a straightforward and fast in-memory clustering algorithm. Selecting k random
points as temporary centres initializes the algorithm. It then iterates over the steps of assigning
points to temporary centres and computing new centres until either the change in computed
centres falls below a threshold or the maximum number of iterations is exceeded. KMeans has a
time complexity that is proportional to ktn, where k is the number of clusters, t is the maximum
number of iterations and n is the number of data points. Consequently, KMeans has linear time
complexity with the number of data points.

KMeans has a number of limitations. The seeding of the algorithm with k initial starting
centres is problematic - given inappropriate starting centres the algorithm can be trapped by
locally optimal solutions. Secondly, the initial centres are chosen by random selection;
consequently, each run of the KMeans algorithm may yield different clusters. Furthermore,
KMeans cannot handle missing data. A distance calculation between a point and a candidate
cluster centre can only be carried out if both vectors have fully specified dimensions. Finally,
KMeans is susceptible to outliers; the algorithm has no way of detecting and removing outliers
from its calculation of the cluster centre. Figure 8 illustrates some of these conditions. In the
following subsections we discuss how KMeans+ overcomes some of these limitations.

R1

R2

(a) (b)

R8

R9

Origin

C1

C2

C3
C4

Figure 8: Two different selections for the initial centres yield two different sets of clusters. Selecting
R1 and R2 as the seeds results in cluster C1 and C2, while selecting seeds R8 and R9 results in the
globally optimal clusters C3 and C4.

CHAPTER 3. RECTREE

39

3.3.3 KMeans+

3.3.3.1 Overview
We denote the KMeans clustering algorithm with the extensions described below as KMeans+.
KMeans+ can handle sparse data and uses correlation as the distance metric between users.
 The KMeans+ algorithm has a two-step initialization phase: it first computes a default
vector that is part of the strategy for dealing with sparse data (Step 1) and then selects k
temporary centres to seed the algorithm (Step 2). It then iterates over the following steps.
KMeans+

 scans over the data set and assigns each vector to the cluster centre that it is closest to. If
a vector is missing a term, the default vector supplies it (Step 3). Once all the vectors are
assigned, the centroid of each cluster is computed from the average coordinate of all its members
and a global counter is incremented (Step 4-5). KMeans+ iterates over these steps (Step 3-5) until
the maximum number of iterations t has been exceeded or the cluster centres have stabilized (Step
6-7).
 In the following subsections we discuss each phase of the KMeans+ algorithm in detail.
The KMeans+ algorithm differs from KMeans in its missing value replacement strategy and its
seed selection strategy (Step 1-3). KMeans does not have a way to deal with missing data and it
selects seeds by random selection.

CHAPTER 3. RECTREE

40

3.3.3.2 The Missing Value Replacement Strategy
The item-rating vectors in CF applications are very sparse with many terms that have the “no
rating” value, Θ. This presents a problem to our clustering algorithm since a distance metric can
only be computed over numeric values. We propose to handle this problem by using a default
vector for missing value replacement (Step 3). In Figure 9 we show a Euclidean distance
calculation between the item-rating vectors r1 and r2 with missing values replaced by the default
vector ro. Each cell consists of an item identifier and rating score pair; the “?” indicates a missing
value. User r1 for example rates item 3 with a score 1 and has not rated items 1, 12 and 36.

A default vector is used to replace missing values in the user’s rating vector. It therefore
represents a guess at how the user will rate an item once he has seen it. This replacement strategy
is necessary for our clustering algorithm, which requires fully specified vectors.

Algorithm 2. KMeans+(Y, k, t, minChange)
Input: Y is the training set and is the database of all user item-rating vectors. k is the number of
partitions to create and k << |Y|. minChange is the change in the cluster centres’ position below
which we assume the clustering algorithm has converged while t is the maximum number of
iterations we allow before terminating the clustering algorithm.
Output: k partitions that are characterized by their centroids: c1, c2,.., ck
Method: The partitions are computed using the following procedure:
1. Compute the default vector ro of Y as the centroid:

ro = Σ ri/|Y| , i ∈ Y
2. Select k-mutually-well-separated centres: c1, c2, .. ck
3. Assign each vector in Y to the cluster, Cj whose centre cj is most correlated. Use the default

vector, ro, for missing value replacement.
4. Compute the centre of each cluster from the average of its members.

cj = Σ ri/|Cj| , i∈ Cj
5. iterations++
6. If iterations > t then goto Step 3
7. If the change in all of the clusters’ position relative to the last iteration is above the threshold,

minChange, then goto Step 3
d(cj, cj

prev) < minChange 1 ≤ j ≤ k
8. STOP.

CHAPTER 3. RECTREE

41

How do we compute a default vector? By definition, a collaborative filter provides us
with these missing ratings since its very purpose is to compute predictions for items that the user
has yet to see. Selecting a personalized recommender for this task is circuitous; we are using a
clustering algorithm to speed up a collaborative filter but we are using a collaborative filter to
initialize the clustering algorithm. Can any performance gain be realized with this arrangement?
Personalized recommenders have at best quadratic complexity and introducing them into our
algorithm would create a performance bottleneck. Selecting a non-personalized recommender is
a different story however. Non-personalized recommenders have the potential to benefit the
clustering algorithm since they are very fast.

We select the population average recommender, “PopAvg” for brevity, to generate the
default vector. PopAvg generates a value for each term in the default vector by computing the
average rating of an item. The default vector as computed by PopAvg is equivalently the cluster
centroid if we view the data set itself as a cluster. PopAvg is a fast recommender and can
compute the default vector with a single scan over the data set. The PopAvg recommender is
used to compute the default vector in Step 1 of the KMeans+ algorithm.

1:4.5 3:2.3 7:3.3 12:3 36:5 41:2

1:? 3:1 7:4 12:? 36:? 41:3 1:4 3:2 7:? 12:? 36:4 41:3r1 r2

ro

d1 = |4.5 - 4| + |1 - 2| + |4 - 3.3| + |3 - 3| + |5 - 4| + |3 - 3|

1:4.5 3:1 7:4 12:3 36:5 41:3 1:4 3:2 7:3.3 12:3 36:4 41:3r1 r2

Figure 9: The default vector provides missing values.

CHAPTER 3. RECTREE

42

Example 5.
The default vector for the video database is computed using the PopAvg recommender and
summarized in the table below.

 ٱ

Theorem 6. The default vector is computed in O(n).
Proof. PopAvg computes the default vector. PopAvg requires a single scan of the database to
accumulate the average rating for each item and therefore the default vector is generated in O(n)
where n is the size of the data set. ٱ

3.3.3.3 The Seed Selection Strategy
The selection of the initial seeds for the KMeans algorithm is a subtle issue. Selecting poor seeds
can result in the algorithm gravitating to locally optimal solutions. One approach to overcoming
this problem is to execute the KMeans algorithm several times (selecting a new random set of
seeds during each execution) and choosing the best clusters from the result sets. Another
approach involves executing KMeans on a sub-sample of the dataset [BP98]. However, both of
these approaches only improve the probability of locating the globally optimal solution. They do
not guarantee it.

Fortunately, in this work a globally optimal clustering is not necessary. We use the
KMeans+ algorithm not as a means to discover the cluster structure in the data set, but as a means
to create partitions of correlated users.

Furthermore, we want the KMeans+ algorithm to create partitions of approximately equal
size, otherwise the partitioned collaborative filter will not scale linearly. If for example k-1
clusters of size 1 and 1 cluster of size n-k+1 are created, the cost of training the collaborative
filter will be O(n-k+1)2 ~ O(n2). On the other hand, if k clusters each of approximately n/k size

Titles

Starship
Trooper

(A)

Sleepless
in Seattle

(R)
MI-2
(A)

Matrix
(A)

Titanic
(R)

3.7 3 3.5 3 3.5

Figure 10: The default vector is computed for the video database using the PopAvg recommender.

CHAPTER 3. RECTREE

43

are created, the cost of training a single partition is O(n/k)2 and the cost of training all k
partitioning is O(n/k2) which is linear with the data set size n.

KMeans+ selects its seeds using a strategy that we call k-mutually-well-separated centres
(Step 2). This procedure picks seeds, which under certain conditions (see Proposition 1),
increases the probability that KMeans+ will create clusters of approximately equal size. The
procedure we follow to achieve this is as follows. First, from the database of user item-rating
vectors Y, select the vector that is farthest from the rating centroid (i.e. the default vector) and
add it to the set P. Until |P| is k, iteratively select vectors from the set Y-P whose sum of
distances to all members of P is greatest. In Figure 8, the principle of k-mutually-well-separated
centres would result in the selection of the points R8 and R9. Notice that this selection of seeds
results in the KMeans+ algorithm converging to the globally optimal clusters C3 and C4 in Figure
8.

This approach to seeding the KMeans+ algorithm may be criticized for increasing its
susceptibility to outliers since outliers tend to be points that are distant from other points
[GRS98]. However, the partitioning phase of KMeansCorr is intended to find neighbourhoods of
approximately similar users. The final computation for similarity is carried out in Phase II with a
pair-wise evaluation. Consequently, a partition that includes some outliers merely results in the
cost of computing their similarity to other users, but has negligible effect on the prediction since
these users will have low similarity scores.

Example 6.
In this example, we apply the principle of k-mutually separated centres to select two temporary
seeds from the video database. The default vector, as computed in Example 5, is used to replace
the missing values in the training data for Sammy and Basil’s ratings of Matrix and Titanic.

Gum-Fat is the furthest from the origin with a value of 8.54. We next compute the
distance from Gum-Fat to the other members of the database. Beatrice is the furthest from Gum-
Fat and therefore we selected her as the second seed.

If we need to select three seeds, the next candidate will be selected on the basis that
his/her total distance to Gum-Fat and Beatrice is the greatest.

CHAPTER 3. RECTREE

44

 ٱ

Theorem 7. The cost of locating k-mutually well-separated centres is O(k2n).
Proof. The selection of the ith seed requires a single scan over the database (of size n-i) and i-1
comparisons with the other members already in the set P. By induction, the cost to select k seeds
is at most k(k-1)n ~ O(k2n). ٱ

Proposition 1. When k=2 and the data distribution is Gaussian, the principle of “k-mutually
well separated centres” results in two clusters of approximately equal size.

Proof. For k=2 the two seeds form the diameter of the rating-space volume. Since the data has a
Gaussian distribution, each seed lies at the opposite ‘tails’ of the distribution and half of the data
will be closest to each. As a result of these conditions the KMeans+ algorithm will stabilize at
two clusters of approximately equal size.

3.3.3.4 The Distance metric
The KMeans algorithm assigns each point to the cluster centre that it is closest to. However, we
have yet to specify what metric will be used to compute distance. Metrics that have been used for
KMeans clustering include: Manhattan distance, Euclidean distance, and the other Lp metrics
[KR89]. For our application, we want neighbourhoods of users who are highly similar in rating
behaviour. Since phase II of KMeansCorr uses correlation to compute similarity (i.e.,
ComputeCorrelationSimilarity(..)), we will also use correlation as the distance metric for the
clustering (Step 3) to obtain partitions of highly correlated users.
 Unlike the Lp metrics where a smaller value denotes proximity, larger values denote
proximity in correlation space. In correlation space the user is “closest” to the cluster centre to

 Titles Distance

Starship
Trooper

(A)

Sleepless
in Seattle

(R)
MI-2
(A)

Matrix
(A)

Titanic
(R)

to Origin to
Gum-Fat

Sammy 3 4 3 3 3.5 7.43 2.00
Beatrice 3 4 3 1 1 6.00 3.46

Dylan 3 4 3 3 4 7.68 2.00
Mathew 4 2 3 4 5 8.37 1.41
Gum-Fat 4 3 4 4 4 8.54 0.00

U
se

rs

Basil 5 1 5 3 3.5 8.50 2.65

Table 6: The default vector is computed for the video database using the PopAvg recommender.

CHAPTER 3. RECTREE

45

which his correlation score is the highest. The correlation between ratings can range from –1 to
1. A value of 1 denotes that the ratings are perfectly correlated and two users occupy the same
point in correlation space. A value of –1 denotes anti-correlation; the users’ rating behaviour are
opposite and the two users are maximally distant.
 The KMeans+ algorithm therefore assigns each user to the cluster centre to which his or
her correlation coefficient is the maximum.

Example 7.
In this example, we demonstrate the partitioning of the video database into two partitions using
the KMeans+ algorithm. The two-step initialization of the algorithm is shown in Example 5 and
Example 6 where the default vector and the cluster seeds are selected, respectively. The training
set is shown in Table 6 where the default vector has been used to replace the missing values for
Sammy and Basil (the shaded cells). The cluster seeds are shown in the table entries for c1 and
c2 for the set of tables labelled Iteration 1.

In the first iteration, the correlation between each user and the cluster seeds c1 and c2 are
computed. We see that Sammy, Beatrice, and Dylan are closest to the cluster centre c1, while
Mathew, Gum-Fat, and Basil are closest to c2. The new centroid of each cluster is computed
from its members, yielding the new centres c3 and c4 (shown in the Iteration 2 tables).

In the second iteration, the correlation calculation yields two clusters with the same
members as in the previous. We can therefore terminate KMeans+ as the cluster centres have
stabilized. The KMeans+ algorithm therefore created two clusters with members {Sammy,
Beatrice, Dylan} and {Mathew, Gum-Fat, Basil} respectively.

Iteration 1
 Titles Correlation to

 Starship Sleepless MI-2 Matrix Titanic c1 c2
c1 4.0 3.0 4.0 4.0 3.0 Sammy -0.9 0.4

ce
nt

re
s

c2 3.0 4.0 3.0 1.0 1.0 Beatrice -0.1 1.0
 Dylan -1.0 0.1
 Mathew -0.2 -0.3
 Gum-Fat 1.0 -0.1

U
se

rs

Basil 0.7 -0.2

CHAPTER 3. RECTREE

46

 ٱ

Theorem 8. KMeans+ has time complexity of O(n) + O(k2n) + O(ktn).
Proof. By Theorem 6 the cost to compute the default vector is O(n), where n is the data set size.
By Theorem 7 the seed selection strategy has complexity O(k2n) where k is the number of seeds
to select. During an iteration (Step 3-6) each point must be compared against k temporary centres
and a complete iteration therefore requires kn comparisons. The algorithm is bounded by the
limit of t iterations and consequently the complexity for the iterative phase is ktn. The total
complexity is linear with the size of the data set: O(n) + O(k2n) + O(ktn) ٱ

3.3.4 Time Complexity

KMeansCorr has complexity of O(n2), where n is the data set size. Let m be the average number
of item-ratings per user and l be the number of users in the data set, then define n as the size of
the data set given by ml.
 KMeansCorr partitions the data set in Phase I using the KMeans+ algorithm. It trains
the collaborative filter in Phase II by computing pair-wise correlation coefficients with the
subroutine ComputeCorrelationSimilarity(..) and generates predictions in Phase III with the
subroutine ComputeDeviationFromMeanPrediction(..). Theorem 8, Theorem 1, and Theorem 2
give the accumulated cost of these phases:

Iteration 2
 Titles Correlation to

 Starship Sleepless MI-2 Matrix Titanic c3 c4
c3 4.3 2.0 4.0 3.0 3.8 Sammy -0.7 0.9

ce
nt

re
s

c4 3.0 4.0 3.0 2.3 3.3 Beatrice -0.3 0.7
 Dylan -0.5 0.8
 Mathew 0.7 0.0
 Gum-Fat 0.5 -0.8

U
se

rs

Basil 1.0 -0.5

O(n) + O(k2n) + O(ktn) + O(n2/k) + O(l/k)

(9)

CHAPTER 3. RECTREE

47

Theorem 9. KMeansCorr has time complexity of O(n2).
Proof. Imposing the constraint that n/k = β is a constant, the training and prediction phase of
KMeansCorr can be linearized. However, substituting for β in (9) we find that the partitioning
phase’s complexity is cubic under this constraint: O(n) + O(n3/β2) + O(tn2β). Therefore the best
achievable time complexity is O(n2) and is achieved by allowing the partitioning phase to
complete in linear time and executing the training phase in quadratic time. ٱ

KMeans+’s complexity is dependant upon both the number of item-ratings n and the number of
partitions k. The best achievable complexity is O(n2) and is obtained by fixing the number of
partitions k. This results in the partitioning phase completing in linear time, but the training phase
completing in O(n2) time. Despite the disappointing result this approach is instructive and we
draw a number of lessons from it:

• The training and prediction phase consisting of ComputeCorrelationSimilarity(..) and
ComputeDeviationFromMeanPrediction(..) can be made linear if the partition size β is
kept constant.

• The partitioning phase consisting of KMeans+ can be made linear if the number of
partitions k can be kept constant.

The KMeansCorr algorithm has quadratic complexity at best, because it cannot optimize the
partitioning and prediction phase independently. In section 3.4, we describe a new algorithm,
RecTree, that builds upon KMeans+ and is linear in complexity.

3.3.5 Space Complexity

KMeans+ has a space complexity of O(l) + O(km), where l is the number of users in the data set, k
is the number of partitions and m is the size of the item set, M (i.e.: m ≡ |M|).

During each iteration, users are assigned to the cluster centre that is closest. This operation
requires at most 4-bytes per user to store the current cluster identifier. Each iteration of the
algorithm can overwrite this identifier since a history of cluster identifiers is not required. Storing
the cluster identifiers for all l users therefore requires O(l).

Each of the cluster centroids may span the entire item space and therefore each centroid
requires at worst O(m) storage. For k partitions the storage for all centroids is O(km).

CHAPTER 3. RECTREE

48

3.4 RecTree

3.4.1 Overview

RecTree is the acronym for a new data structure and collaborative filtering algorithm called the
RECommendation Tree. The RecTree algorithm partitions the data in phase I by recursively
calling KMeans+ to split the data set into child clusters. The chain of intermediate clusters
leading from the initial data set to the final partitioning is maintained in the RecTree data
structure, which resembles an unbalanced binary tree. The collaborative filter is trained in Phase
II by computing the pair-wise similarity coefficient within each leaf partition using a more
accurate similarity metric that we call correlation+. The internal nodes are processed by the
collaborative filter by computing the rating centroid based on the item-vectors in its sub-tree. The
RecTree generates a prediction in Phase III by employing a dual strategy. If the user is located in
a leaf partition with a sufficient number of neighbours, taking the weighted deviation from the
mean generates a prediction. If the user is located in a small neighbourhood, RecTree generates a
prediction by returning the neighbourhood’s average rating.

A prediction request is made by passing a message directly to a tree node for processing.
A recommendation message takes the form of 2 integer identifiers and a double representing the
prediction. The RecTree responds to a message by filling in the prediction field in the message.

UserID: integer ItemID: integer Prediction: double

In the subsections below we describe in detail how to construct the RecTree and then how
to query it for recommendations.

3.4.2 Constructing the RecTree

The ConstructRecTree(..) routine builds the RecTree data structure by recursively
splitting the data set Y into child clusters until stopping conditions are met. ConstructRecTree(..)
interleaves Phase I and Phase II of our framework by partitioning the data and training the
collaborative filter during the course of building the tree.

During each iteration a node is associated with the current data cluster and a bi-
directional link is created to the predecessor (Step 2-3). The routine then classifies the node as an
internal node, an outlier node, or a leaf node by checking the size of the cluster. If the node is

CHAPTER 3. RECTREE

49

classified as an internal node, the KMeans+ splits the current data cluster into two child clusters
and the ConstructRecTree(..) routine is recursively called to insert each of the child clusters into
the tree (Step 7 & 9).

A node is classified as an outlier if it has fewer ratings than the threshold outlierSize and
classified as a leaf if it has fewer ratings than the partition size parameter β (Step 4-5). A leaf
node represents the final partitioning of the data and as such is ready to be trained on by a
collaborative filter; the subroutine ComputeCorrelationSimilarity+(..) trains the collaborative
filter on each leaf node (Step 5).

A node that is not classified as an outlier or a leaf is by definition an internal node.
Internal nodes implement the secondary prediction strategy and train an average rating vector
from all of the members of that node.

The RecTree’s construction is complete when the growth along every branch has been
terminated. In addition to outlier and leaf nodes, the global iteration threshold g can also
terminate the tree growth. If the RecTree has recursed more than g times then the recursion at
every branch is terminated (Step 5).

The primary purpose of the RecTree data structure is to seek a ‘good’ partitioning of the
data set such that the complexity of delivering recommendations is linearized. Improving the
accuracy of predictions is a secondary objective. As with the KMeansCorr algorithm, the
partitioning phase of RecTree is not intended to identify nor locate cluster structures.

In the following subsections we describe details of the algorithm and discuss the rationale
for the design.

CHAPTER 3. RECTREE

50

Algorithm 3. ConstructRecTree(parent, Y, ββββ, g,outlierSize)
Input: parent is the parent of the current node. Y is a database of user item-rating vectors. β is the
threshold at which to stop subdividing a partition. g is the maximum number of times that this
method will call itself before terminating. outlierSize is the threshold at which a leaf node is
marked as an outlier node. outlierSize < β.
Output: The RecTree.
Method: The RecTree is constructed by calling this method recursively. On the first invocation,
the argument, parent, is NULL.
1. If parent is NULL then

Set global_iterations = 0.
2. Build a node V and create a bi-directional link between V and parent.
3. Assign all members of Y to V.
4. If |Y| < outlierSize then mark this leaf node as an outlier node; STOP.
5. If |Y| ≤ β OR (global_iterations > g) then

ComputeCorrelationSimilarity+(Y); STOP.
6. Compute the centroid, cY of Y.
7. Call KMeans+(Y, 2, t, minChange).
8. global_iterations++.
9. For each child cluster Y΄:

Call ConstructRecTree(V, Y΄, β, g, outlierSize).

CHAPTER 3. RECTREE

51

3.4.2.1 Node Splitting
The RecTree is grown from the root downwards by node splitting. How do we decide

when node splitting can be terminated? Hierarchical divisive clustering methods continue
splitting a cluster until a quality threshold is reached. Metrics such as minimum, maximum, and
average distance have been used to control the splitting [KR89]. However, each of these metrics
may lead to clusters with a small membership. This condition is not appropriate to our application
since the size of the partitions affects the coverage of the collaborative filter. A smaller
neighbourhood implies fewer candidate advisors from which we can draw recommendations (See
Figure 4). Therefore, in this work we investigate the use of a minimum neighbourhood size as a
clustering control. A node that contains more item-ratings than the threshold, β, is split.
Equivalently, a node that has fewer than β item-ratings is classified as a leaf node and growth
along that branch is terminated (Step 5).

Once the decision to subdivide a node has been made, we employ the KMeans+ algorithm
described in 3.3.3 to cluster the data into two partitions (Step 7). KMeans+ is suited to the task
since it can handle sparse multidimensional data and has linear complexity with data set size n
when the number of partitions, k, is held constant and independent of n. We satisfy this
requirement in ConstructRecTree(..) by always calling KMeans+ to split each internal node to

c1

c2 c6

c3

c4

c7

c5

U1

U2

U3

U1 U2 U3

...

..

w11 w12 w13 w1*

w21 w22 w23 w2*

w31 w32 w33 w3*

w*1 w*2 w*3 w**

Figure 11: The RecTree data structure. Leaf nodes have a similarity matrix while each internal node
maintains a rating centroid of its sub-tree. Each node has a bi-directional link with its parent.

CHAPTER 3. RECTREE

52

exactly two clusters (Step 7). Each of the child clusters that results is added to the tree by a
recursive call to the method ConstructRecTree(..) (Step 9).

Example 8.
In this example we demonstrate the branch growing steps of ConstructRecTree(..) on the video
database. We assume that the partition size parameter, β, has been set to 15 item-ratings and
ignore the outlierSize and g thresholds for the time being.

On the first invocation of ConstructRecTree(..), a root node is created and associated with
the entire video database of users (Step 2-3). The root node contains 26 item-ratings. This
exceeds our partition size parameter β so we proceed to split the node into two child clusters by
calling KMeans+ (Step 5 & 7). The first invocation concludes with a root node and two child
partitions shown as dashed circles.
 ConstructRecTree(..) is then invoked on each of the child partitions. Each child partition
is associated with a node and attached to the root through a bi-directional link. Each of these
partitions has 13 item-ratings, the size parameter β is satisfied and the growth along each branch
is terminated (Step 5).

 ٱ

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Invocation 1

Invocation 2 Invocation 3

Figure 12: The RecTree branches after processing the video database with ββββ=15 item-ratings.

CHAPTER 3. RECTREE

53

3.4.2.2 The Maximum Iteration Limit, g
For some data distributions, the hierarchical clustering we propose may result in an over-
partitioning of the data. Figure 13 illustrates one hypothetical data distribution that would be
partitioned into n-β clusters of size 1 and one cluster of size β. Clearly the calculation of
recommendations on this pathological data distribution and others similar to it would not benefit
from any form of clustering. The small clusters would be useless since they have too few
advisors from which to draw recommendations. A straightforward application of a collaborative
filter on the un-partitioned data would have yielded the same recommendations in shorter time.

We therefore propose to avoid these problematic data distributions by limiting the
maximum number of times that the data can be subdivided using an iteration threshold, g. Each
time that a node is split we increment a global iteration counter (Step 8). We then test to see if
the threshold g has been exceeded on each invocation of ConstructRecTree(..) (Step 5). g can
equivalently be viewed as a limit on the maximum number of internal nodes in the RecTree, as
demonstrated in Corollary 5.

Lemma 1. The RecTree has at least n/β leaf nodes.
Proof. Assume that g is an arbitrarily large number. For a given data set with n item-ratings, the
RecTree partitions the data until all nodes contains β or fewer item-ratings. When each partition
has exactly β item-ratings, there are a minimum number of leaf nodes given by n/β. ڤ

Corollary 3. If the RecTree has n/β leaf nodes then each leaf node has β item-ratings.

p1 p5 p20

p20

p19

p18

p17 p1, p2,
..p16

Figure 13: Building a RecTree on an exponential data distribution with ββββ = 16 creates 4 clusters with
one user each and 1 cluster with 16 users.

CHAPTER 3. RECTREE

54

Proof. If a data set of n item-ratings is partitioned into clusters of β size then there are
n/β clusters. ڤ

Lemma 2. The RecTree has at most n-β+1 leaf nodes.
Proof. Assume that g is an arbitrarily large number. Suppose on each of ith recursive calls to
ConstructRecTree(..) the node V2

i-1 with ni-1 members is subdivided into the two child nodes V1
i

and V2
i such that |V1

i| = 1 and |V2
i| ≡ ni = ni-1-1. Then ConstructRecTree(..) will be called n-β

times – each recursion yielding another leaf node of size 1. On the n-β th recursive call, two leaf
nodes are created, one of size 1 and another of size β; the total number of leaf nodes is therefore
n-β+1. If during any iteration, |V1

i| > 1, then ConstructRecTree(..) will recurse fewer than n-β
times and therefore yield fewer leaf nodes. Therefore RecTree has at most n-β+1 leaf nodes.ڤ

Corollary 4. If the RecTree has n-β+1 leaf nodes then there are 2 leaf nodes whose total size is β
and n-β nodes each of size 1.

Proof. By Lemma 2 there are at most 2 leaf nodes whose size is greater than 1 otherwise the tree
has fewer than n-β+1 leaf nodes. ڤ

Lemma 3. The RecTree has at most g internal nodes.
Proof. On each call to ConstructRecTree(..), a leaf node is split into two child nodes. The former
leaf node increases the population of internal nodes by 1. After the ith recursive call to
ConstructRecTree(..), there are i internal nodes. By induction, if the construction terminates after
recursing at most g times, there are g internal nodes. ڤ

Lemma 4. The RecTree has z+1 leaf nodes where z is the number of internal nodes.
Proof. On each recursive call to ConstructRecTree(..), a leaf node is split into two child nodes.
The former leaf node becomes an internal node and the two child clusters are by definition leaf
nodes and the population of leaf and internal nodes increases in total by 1. By induction, after the
ith recursive call to ConstructRecTree(..), the population of leaf and internal nodes has increased
by i members. On the first invocation of ConstructRecTree(..) the tree has exactly one leaf node,
the root. Therefore the total population of leaf nodes after the ith invocation is z+1 where z is the
number of leaf nodes. ڤ

Corollary 5. The RecTree has at most g+1 leaf nodes.
Proof. By Lemma 3 and Lemma 4 ڤ

CHAPTER 3. RECTREE

55

Theorem 10. The branches of the RecTree can be constructed with complexity O(gtn).
Proof. The branches of the RecTree are grown by recursively calling the KMeans+ algorithm to
split a node into two child clusters until the partition size parameter is satisfied or a maximum
recursion threshold g is exceeded. By Theorem 8 the complexity for each invocation of KMeans+
to create two child clusters is: O(n) + O(4n) + O(2tn), where n is the data set size and t is the
maximum number of clustering iterations. KMeans+ is invoked at most g times and
consequently, the total complexity of inserting the branches is O(5gn) + O(2gtn) ~ O(gtn) since
t>>1. ڤ

3.4.2.3 The Tree Nodes
Every node that is added to the RecTree has a bi-directional link connecting to its

predecessor and a reference to a cluster of data (Step 2-3). The RecTree filter is trained as each
node is attached to the tree. As a consequence of RecTree’s dual recommendation strategy (see
3.4.3), the filter’s training depends upon the node type. In the following three sections we
discuss how each node type is used to train RecTree’s filter.

3.4.2.4 Training on the Leaf Nodes
RecTree’s filter is trained on the leaf nodes by computing a similarity matrix between all
members of the partition. The leaf nodes provide the coefficients by which advisors’
recommendations can be weighted in aggregate to generate a personalized prediction. We
propose to use an enhanced version of the correlation similarity measure, that we call
correlation+, to compute pair-wise user similarity.

The design of correlation+ is motivated by a number of observations in regard to the
recently proposed similarity metrics. In the statistical collaborative filters proposed by [RIS+94]
and [SM95], pair-wise similarity is computed using only the ratings for items that both users have
rated. If the item intersection set is small, then the proximity coefficients are poor measures of
similarity as they are based on too few item-rating comparisons. Furthermore, an emphasis on
similarity based on the intersection set neglects the global rating behaviour that is reflected in a
user’s entire rating history. The following example illustrates these problems.

Example 9.
Sammy and her friends have the rating history shown in the table below. A similarity measure
that considers only items in the intersection set ({Starship Trooper, Sleepless in Seattle, MI-2})
would render Beatrice and Dylan indistinguishable and equally valuable advisors for Sammy.
However, if we look at the entire rating history we note that Dylan appears more similar to

CHAPTER 3. RECTREE

56

Sammy than Beatrice and Beatrice exhibits a greater rating volatility in comparison to Sammy
and Dylan. This intuition is confirmed in the table columns that summarize the “global” average
rating and standard deviation of ratings. These values are computed from all of the available
rating data in the video training set.

 ڤ

We believe a collaborative filter that took into account global rating behaviour would be
more accurate. It would locate advisors that were globally more similar to the active user rather
than advisors that exhibited only local similarities. We incorporate this intuition into the design
of correlation+. This measure differs from the standard correlation-based similarity calculation in
that the mean rating r and standard deviation σ are computed over the entire set of items rated by
each user.

Extending the set of items over which a similarity measure is computed should improve
the metric’s accuracy in capturing user similarity. The t-statistic for the correlation coefficient is
proportional to the square root of the sample set size [HM85] and therefore increasing the number
of ratings increases the confidence of the correlation calculation. How do we extend the set over
which the correlation is computed given that user ratings are sparse? As in the KMeans+
algorithm we employ a missing value replacement strategy. We replace missing values in a
user’s item-rating vector by the values in a default vector.

The semantics of the default vector in this discussion are the same as those in the
KMeans+ clustering algorithm. Specifically, the default vector represents an estimate of the
user’s rating for items that he has yet to rate. Although it would be ideal to compute a

 Titles

Starship
Trooper

(A)

Sleepless
in Seattle

(R)

MI-
2

(A)
Matrix

(A)
Titanic

(R) Average σ
Sammy 3 4 3 ? ? 3.3 0.6
Beatrice 3 4 3 1 1 2.4 1.3
Dylan 3 4 3 3 4 3.4 0.5
Mathew 4 2 3 4 5 3.6 1.1
Gum-Fat 4 3 4 4 4 3.8 0.4

U
se

rs

Basil 5 1 5 ? ? 3.7 2.3

Table 7. A calculation of the average rating and standard deviation over the longer history indicates
that Dylan is more similar to Sammy than Beatrice.

CHAPTER 3. RECTREE

57

personalized default vector for each user this approach is infeasible. Personalized recommenders
have quadratic complexity at best and their operation would introduce a bottleneck into our linear
recommender. We therefore select the non-personalized recommender, PopAvg, to generate the
default vector. PopAvg provides the same prediction for every user and requires only a single
scan to train. The default vector as generated by PopAvg is equivalently the rating centroid of the
leaf partition.

The subroutine ComputeCorrelationSimilarity+(..) computes a more accurate measure of
user similarity with a higher confidence by using the global values of mean rating and standard
deviation and by extending the intersection set with a missing value replacement strategy.

Subroutine 3. ComputeCorrelationSimilarity+(Y)
Input: Y is a set of user item-rating vectors.
Output: A square matrix of pair-wise similarity coefficients between all members of Y.
Method: The similarity weights are computed in the following manner:
1. Compute the default vector ro of Y as the centroid:

ro = Σ ri/|Y| , i ∈ Y
2. For each user ra compute the pair-wise similarity wa,u to each other member ru using Pearson
correlation over the set of items they both have rated (Ya,u). Use the default vector to replace
missing values in each user’s rating vector. The average rating and standard deviation of each
user is computed over the entire set of items that each user has rated (Yu)

 �
−−

=
uaY uaua

uiuaia
ua Y

rrrr
w

,
||

))((

,

,,
, σσ

�=
uY u

ku
u Y

r
r

||
,

()
�

−
=

uY u

uku
u Y

rr 2
,2

||
σ

}|{ , Θ≠∪∈= kuu rMkkY
}|{ ,,, Θ≠Θ≠∪∈= kukaua rorrMkkY

CHAPTER 3. RECTREE

58

Example 10.
The table below shows the correlation and correlation+ coefficients for the video database. The
correlation coefficients are computed only over the titles Starship Trooper, Sleepless in Seattle,
and MI-2. Correlation+ is computed over all five titles with the missing ratings for Sammy and
Basil estimated by the default vector.

Beatrice and Dylan are indistinguishable to the correlation metric; they are perfectly
correlated to Sammy. Correlation+ captures the global similarity between these advisors and
Sammy and distinguishes them by assigning a significantly higher correlation coefficient to
Dylan in comparison to Beatrice.

 ڤ

Proposition 2. The confidence of coefficients as computed by ComputeCorrelationSimilarity+
is higher or equal to than those computed by ComputeCorrelationSimilarity.

Proof. The confidence of a correlation coefficient is given by the t-statistic [HM85]:
21

2

r

qr
t

−

−
=

where r is the correlation coefficient and q is the number of samples. Since
ComputeCorrelationSimilarity+ computes the correlation over the set of items that both users
have rated rather than just the items that they have rated in common, the confidence of the
correlation coefficients generated by ComputeCorrelationSimilarity+ is higher or equal to the
confidence of coefficients generated by ComputeCorrelationSimilarity. ڤ

 Titles Similarity to Sammy

Starship
Trooper

(A)

Sleepless
in Seattle

(R)
MI-2
(A)

Matrix
(A)

Titanic
(R) Correlation Correlation+

Sammy 3 4 3 3 3.75 1.00 1.00

Beatrice 3 4 3 1 1 1.00 0.21

Dylan 3 4 3 3 4 1.00 0.98

Mathew 4 2 3 4 5 -0.87 -0.25

Gum-Fat 4 3 4 4 4 -1.00 -0.75

U
se

rs

Basil 5 1 5 3 3.75 -1.00 -0.74

 Table 8. A comparison of the correlation coefficients computed by ComputeCorrelationSimilarity+
(denoted by column Correlation+) with those by ComputeCorrelationSimilarity (denoted by column
Correlation).

CHAPTER 3. RECTREE

59

3.4.2.5 Training on the Internal Nodes
RecTree’s filter is trained on the internal nodes by computing the rating centroid of each node.
The rating centroids represent the average voting preference for each item among the members of
that neighbourhood (node). The rating centroids provide the data to support RecTree’s dual
recommendation strategy.

3.4.2.6 Training on the Outlier Nodes
In this collaborative filtering application we consider outliers as individuals whose preferences lie
outside of the main of the current membership. However, as new users join the system or
existing members rate additional items, these outlying individuals may find themselves among a
group of like-minded members and thus cease to be outliers.
 This perspective of outliers motivates us not to discard nor discount outliers, as
customary in cluster analysis. Rather, we retain them in the leaf nodes of the RecTree until such
time that enough like-minded individuals appear. [Guh84] recognizes outliers as data points that
are distant from other data points. [EKS+96] considers a point as an outlier if the regional
density is below a threshold. We modify this intuition for our CF application: RecTree marks a
leaf node as an outlier node if it contains fewer than outlierSize item-ratings.

Example 11.
In this example, we demonstrate the training of the RecTree collaborative filter on the video
database. During the first invocation, an internal node is created and the filter is trained by
computing the rating centroid. In the second and third invocation, a leaf node is attached to the
tree. The collaborative filter trains on the leaves by computing a similarity matrix for each leaf
partition.

CHAPTER 3. RECTREE

60

 ڤ

Theorem 11. Creating the leaf nodes in the RecTree is O(nβ).
Proof. The training of the collaborative filter on a leaf node requires the population of a
similarity matrix, which is O(β2) where β is the partition size. We estimate the complexity of
training all the leaf nodes by examining the case when the minimum and maximum number of
leaf nodes are created. By Lemma 1 and Corollary 3, the cost of training on the minimum
number of leaf nodes is O(nβ). By Lemma 2 and Corollary 4, the cost of training on the
maximum number of leaf nodes is O(n-β) + O(β2). The cost of training on the leaf nodes is at
therefore at worst O(nβ). ڤ

3.4.3 Computing a Prediction

RecTree employs a dual strategy for generating predictions. When the size of the neighbourhood
is sufficient, a prediction is computed by taking the weighted deviation from the mean. When the
neighbourhood is small, a recommendation is computed by taking the rating average. RecTree’s
dual strategy is based on the observation that the accuracy of personalized recommenders
diminishes greatly when the neighbourhood is small [SKB+98] [GSK+99] [KM99a].
Furthermore, for very small neighbourhoods the accuracy of the non-personalized recommender
PopAvg surpasses that of the personalized recommenders. By selecting an appropriate value for

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Sammy, Beatrice,
Dylan, Mathew,
Gum-Fat, Basil

Mathew, Gum-
Fat, Basil

Sammy,
Beatrice, Dylan

Invocation 1

Invocation 2 Invocation 3

Sammy Bea Dylan

Sammy 1 0.21 0.98

Bea 0.21 1 0.07

Dylan 0.98 0.07 1

Mathew Gum-
Fat Basil

Mathew 1 0.78 0.51

Gum-
Fat 0.78 1 0.86

Basil 0.51 0.86 1

3.7 3 3.5 3 3.75

Figure 14: The RecTree’s collaborative filter is trained as nodes are attached to the tree.

CHAPTER 3. RECTREE

61

outlierSize, the threshold at which RecTree switches between its recommendation strategies can
be controlled.

A prediction query message consisting of a user and item identifier is passed directly to a
tree node for processing. How do we locate this node? We simply follow a pointer in the user
data structure that links the user record with the tree node that he resides in. The manner in which
each type of node processes a request is detailed below.
 Leaf nodes implement RecTree’s primary prediction strategy. They compute a
prediction by taking the weighted deviations from the advisors’ mean. The subroutine
ComputeDeviationFromMeanPrediction(..) described in 3.2 is used for this purpose. However
the weights wij are those computed by the subroutine ComputeSimilarityWeight+(..). If a leaf
cannot provide a prediction due to rating sparsity (i.e. the user’s advisors have yet to rate the item
of interest) then the request is delegated to the immediate parent (internal) node.

Outlier nodes by definition have small neighbourhoods and given our earlier discussion
will generate poor predictions. An outlier node is used by RecTree to mark the transition to the
second recommendation strategy. Any user that resides within an outlier node has
recommendation requests bounced to the immediate parent (internal) node.
 Internal nodes implement the secondary prediction strategy. Each internal node
maintains an average item-rating vector that summarizes the rating behaviour of all the users in
its sub-tree. An internal node can therefore answer a recommendation request by returning the
average rating of its membership for that item.
 RecTree’s dual recommendation strategy is intended to overcome the deterioration in
accuracy at low item-rating densities. It switches to the more robust non-personalized
recommendation strategy of population averages when the size of the neighbourhood is small.
When the neighbourhood is large, RecTree uses the prediction subroutine
ComputeDeviationFromMeanPrediction(..). This subroutine is more accurate with large
neighbourhoods since it has a larger pool of candidates in which to seek good advisors. When the
pool of candidates is small, the weighted recommendations are less accurate since the subroutine
has fewer advisors on which to base a recommendation.

The outlierSize threshold controls the transition between the two recommendation
strategies. If the outlierSize threshold is set to 0, a leaf node terminates every branch of the
RecTree. The leaves handle all of the recommendation requests and RecTree degenerates to a
single prediction strategy using ComputeDeviationFromMeanPrediction(..). If outlierSize is set
larger than the partition size parameter β then an outlier node terminates each branch of the
RecTree. All recommendation requests are handled by returning the neighbourhood’s average

CHAPTER 3. RECTREE

62

rating for the item of interest and RecTree degenerates to non-personalized recommendation via
population averages.

Example 12.
In this example we generate Basil and Sammy’s predictions for Matrix and Titanic using the
RecTree. Each user’s data structure has a pointer linking the user to the RecTree node that he
resides in. Both users reside in leaf nodes (see Figure 14) and so the subroutine
ComputeDeviationFromMean(..) is called to generate predictions. The weights for the
predictions are derived from the similarity matrix of each leaf.

Subroutine 4. QueryRecTree(S)
Input: S is the test set and is the database of all user “no-rating” item vectors; each vector is the
set of items for which the user has yet to rate and for which we would like RecTree to produce
predictions.
Output: A mapping of each element of each vector of S into a rating score or “no rating”, Θ.
Method: A prediction is computed in the following manner:
For each user ra in the test set, S:
 For each item i, in ra:
 i. Create a recommendation message, recMess(a, i, ?)
 ii. Descend the RecTree to the maximum depth.
 iii. If the user is located in an internal node, Ck, and ck is the node centroid then
 return pa,i = ck(i).
 iv. If the user is located in a leaf node Call ComputeDeviationFromMeanPrediction(..)
 v. If the user is located in an outlier node then
 ascend up the link to the parent node, Ck with centroid ck.; return pa,i = ck(i)

 Prediction Actual MAE
 Matrix Titanic Matrix Titanic

Sammy 2.7 3.5 3 4 0.4

U
se

rs

Basil 4 4.4 4 5 0.3

Figure 15: The RecTree’s collaborative filter is trained as nodes are attached to the tree.

CHAPTER 3. RECTREE

63

 ڤ

Theorem 12. The RecTree generates predictions with complexity O(β).
Proof. An internal node provides a recommendation in constant time by consulting its centroid.
A leaf node provides a prediction by weighting all of the advisors in the partition. Given that the
average size of a partition is β, the complexity is Ο(β). ڤ

3.4.4 Updating the RecTree

An active CF system is continually collecting new item-ratings on existing users and increasing
its membership. In this section we discuss how the RecTree is updated when a new user with a
history of item-ratings is added to the system. An existing user who submits additional ratings or
makes changes to his existing ratings can be modelled conceptually by deleting the user and then
re-inserting the user into the RecTree.

A new user is added by descending the tree until the leaf node is reached or it is not
possible to proceed. At each internal node, the user item-rating vector is compared to the cluster
centres of each child node. The branch with the closest cluster centre is descended. If both
branches are equally distant from the user, then neither branch is taken. The user is associated
with the terminating node and the cluster centres on the path leading back up to the root are
updated to reflect this new member.

If the user’s descent reaches a leaf node VL, a node splitting operation may be triggered if
the node size exceeds the threshold β, otherwise the similarity matrix is simply updated with a
call to ComputeCorrelationSimilarity+(..). The ConstructRecTree(..) routine is called to grow the
sub-tree beneath VL.

 A user is removed from the RecTree by updating all the cluster centres on the path to the
root. If the user resided in a leaf node, then the similarity matrix is updated by deleting the
appropriate column and row entries.

CHAPTER 3. RECTREE

64

3.4.5 Time Complexity

The RecTree can be constructed in O(n) and queried in constant time. Let m be the average
number of item-ratings per user and l be the number of users in the dataset, then define n as the
size of the data set given by ml.

The partitioning and the collaborative training phases of our framework are interleaved in
the construction of the RecTree data structure. By Theorem 10 and Theorem 11 the total
complexity of these two phases is O(gtn) + O(nβ), which is linear with data set size. By Theorem
12 the RecTree can be queried in O(β), which is independent of the size of the data set n.

3.4.6 Space Complexity

RecTree has space complexity of O(g(m+1)) + O(β 2k/m2) where g is the maximum number of
internal nodes, m is the number of items in the item set M, β is the partition size, l is the number
of users, and k is the number of partitions.

Each branch of the tree requires constant space to store a link between a parent and a child
node. From Lemma 3 and Corollary 5, we know that there are at most 2g+1 nodes and therefore
the storage requirements for the links is O(g).

Internal nodes require storage for their centroids, which at worst will be required to span the
entire item space. If m is the number of items in the item set M then each centroid will require
O(m) storage. There are at most g internal nodes and therefore O(gm) storage is required to store
all of the internal nodes.

The leaf nodes require storage for the similarity coefficient matrix. This matrix as discussed
in section 3.2.6 requires O(l2/k) storage. Substituting for β = ml/k the total space complexity is
therefore:

O(g) + O(gm) + O(β 2k/m2)

3.5 Chapter Summary

In this chapter, we introduced three new partitioned collaborative filters with the potential for
linear complexity: RandNeighCorr, KMeansCorr and RecTree. Each of these algorithms

CHAPTER 3. RECTREE

65

partitions the data into k statistically independent partitions. Since only advisors within a single
partition are consulted to make a recommendation, these algorithms have the potential to scale
well. A detailed complexity analysis was presented and it was discovered that while all three
algorithms have linear space complexity, only RandNeighCorr and RecTree have linear time
complexity; the KMeansCorr algorithm is at best quadratic in time with data set size.
 RandNeighCorr is a naïve partitioned collaborative filter. It is presented as the baseline
algorithm against which the other partitioned collaborative filter will be measured against. A filter
that does not surpass RandNeighCorr is not worthy of further consideration. RandNeighCorr
randomly partitions the data set into k independent partitions. The correlation-based collaborative
filter [RIS+94] is then applied within each partition to obtain recommendations.
 KMeansCorr is a refinement of the RandNeighCorr algorithm. It replaces
RandNeighCorr’s partitioning phase with the KMeans+ clustering algorithm. It was discovered
that the partitioning phase (consisting of the KMeans+ algorithm), filter training phase
(population of a correlation similarity matrix) and the prediction phase could not be
simultaneously linearized. Linearizing one component made the other component at least
quadratic in time.
 RecTree is a new data structure that achieves linear time complexity by decoupling the
parametric dependencies of the partitioning phase from the training and prediction phase.
RecTree resembles an unbalanced binary tree with the leaves of the tree representing a
partitioning of the data set and the path from the root to the leaves representing successive
refinements in partitioning. RecTree employs a dual prediction strategy to improve its overall
accuracy and to make it less susceptible to the rating sparsity problem.

CHAPTER 4.Results and Discussion

66

Chapter 4 Results and Discussion

This chapter presents a performance study into the accuracy, coverage and running time of the
new collaborative filtering algorithms, RandNeighCorr and RecTree. We compare each of these
algorithms against the correlation-based collaborative filter, CorrCF [RIS+94]. In summary, we
find that although RandNeighCorr is the fastest algorithm with linear scalability, its accuracy can
be worse than non-personalized recommendations. RecTree in contrast outperforms CorrCF in
accuracy, coverage and running time. In particular, RecTree exhibits linear scalability while
CorrCF is quadratic with data set size.
 This chapter is organized into 3 sections. In section 4.1 we discuss the methodology and
the data set used for this study. In section 4.2 and 4.3 we present performance studies for
RandNeighCorr and RecTree, respectively.

4.1 Methodology

We base our performance study on a comparison with the well-known correlation-based
collaborative filter, CorrCF [RIS+94]. This filter has been demonstrated to be the most accurate
of the nearest neighbour filters and has been incorporated into the GroupLens [KMM+97] and
MovieLens recommendation systems [SKB+98].

In each of the performance studies that we present, a user’s rating history is partitioned into
two disjoint data sets; a test set consisting of 20 randomly selected item-ratings and a training set
that comprises the remaining item-ratings. Once the collaborative filter has been trained, the test
set is submitted to the filter for making recommendations. We compare the filter’s predictions on
the test set with the user’s actual rating to obtain the accuracy and coverage. A discussion of the
various accuracy metrics follows.

CHAPTER 4.Results and Discussion

67

4.1.1 Accuracy and Coverage

The effectiveness of collaborative filters has traditionally been measured by their accuracy and
their degree of coverage. Coverage is defined as the percentage of prediction requests that a
filter can fulfill. Accuracy has been measured with a number of metrics that can be classified into
statistical based and decision support based metrics.
 A popular statistical accuracy metric is the mean absolute error (MAE) [RIS+94][SM95].
This measure is computed by averaging the absolute difference between the filter’s
recommendation and the user’s actual vote. The mean square error (MSE) is a variation on MAE
[RIS+94]; this measure is computed by averaging the square of the difference between the
prediction and the actual vote. The rationale is that users will notice large deviations and their
confidence in a system’s utility will be greatly diminished by predictions that are significantly
different from their actual rating. MSE penalizes a filter for large errors. The correlation
between the recommendations and the actual ratings has also been used as an accuracy metric
[RIS+94] [SM95]. The correlation measures the degree to which the filter’s predictions track the
user’s actual ratings.

Reversal rate, F-number, and ROC sensitivity are examples of decision-support accuracy
metrics. Reversal rate is the percentage of times the recommendations are very contrary to the
user’s actual rating. On a 5 point scale it could be defined as the percentage of predictions that
deviate more than 3 points from the actual rating [SKB+98]. F-number is an information
retrieval measure of accuracy that combines precision and recall, given by F =
2⋅precision⋅recall/(precision+recall) [SMc83]. Precision is the percentage of documents that are
retrieved that are relevant and recall is the percentage of all relevant documents that are retrieved.
In one CF application with an ascending 5 point rating scale, items with a score exceeding 4 were
classified as relevant [BP99]. A F-number of 1 indicates perfect accuracy; every item that the
user rated as relevant was correctly classified and only items that were relevant were presented to
the user. ROC sensitivity is a signal processing measure first used by [SKB+98] to measure the
decision support accuracy of the MovieLens movie recommendation system. The area under the
sensitivity vs. 1-specificity curve gives the ROC sensitivity [Swe98]. Sensitivity is the
probability that a randomly selected relevant item will be categorized as a relevant item by the
filter. Specificity is the probability that a randomly selected irrelevant item will be categorized as
an irrelevant item by the filter. A ROC sensitivity of 0.5 indicates an indiscriminate filter that is
no better than random predictions. A score of 1 indicates a perfect filter.

Despite the myriad of accuracy metrics [GSK+99] reports that comparisons of different
algorithms tend to be consistent regardless of the metric chosen. Given this observation, we

CHAPTER 4.Results and Discussion

68

choose MAE as our accuracy metric. It is straightforward to implement and seems to enjoy the
widest support in use [RIS+94] [SM95] [Mil96] [KMM+97] [BHK98] [GSK+99] [PHL00].

4.1.2 Execution Time

The focus of this work is on the development of faster collaborative filters. The
computationally intensive needs of traditional collaborative filters have necessitated that the
similarity matrix, or user models be computed off-line. The GroupLens Usenet recommendation
system employs separate process pools to compute predictions and similarity weights
[KMM+97]. The rating process pool continually monitors a ratings log for new entries and
assigns a process to update the similarity matrix as additional items are rated or new users join the
system. The prediction process pool waits for requests and assigns a prediction process to
compute a prediction using the current state of the similarity matrix. The recommendation is
most accurate if the prediction process waits for any pending rating processes as this will allow
the prediction process to take into account the ratings that the user has recently submitted. On the
other-hand, this strategy imposes severe performance bottlenecks and with on exception is not
used: when a user first joins the CF system the similarity matrix does not contain any references
to him, consequently a prediction process cannot compute any predictions unless it waits for the
similarity matrix to be updated by the rating process.

4.1.2.1 Batch-Mode
We present a hypothetical CF architecture whose running time is simpler to model than

the GroupLens’ architecture. In our hypothetical system, recommendations for all possible items
are pre-computed. When a user requests an item-recommendation, a lookup into the
recommendation table is performed in essentially constant time. If l is the number of users, and
m is the number of items, the storage cost of such a strategy is O(lm). The EachMovie
recommendation site accumulated nearly 73,000 users for 1600 movie titles over an 18-month
period. Assuming that an item recommendation requires 6 bytes of storage (4 bytes to store the
item id, and 2 bytes to store the numeric recommendation), pre-computing all of the item-
recommendations would require approximately 700 megabytes of storage6 (73000x1600x6) - well

6 The storage requirements will in fact be significantly less since the sparsity of ratings will result in the
“no-rating” prediction for a majority of items. The author’s casual inspection of the sparsity suggests that a
simple compression scheme such as run-length encoding could easily accomplish a compression factor of
10 to 1.

CHAPTER 4.Results and Discussion

69

within the storage capability of currently available commodity hard drives. We refer to this mode
of operation as batch mode. When a user rates additional items, the similarity matrix and
recommendations are recomputed during the next batch window.

Batch mode is simulated in our study by clearing any data structures and asking the CF
algorithm to repopulate using a new training set, Y. The CF algorithm then receives a test set, S,
for which it computes predictions.

The batch mode execution time includes the time to train on the training set and the time
to complete predictions on all of the test set. The test set consists of the same users as in the
training set with 20 randomly withheld ratings per user. The batch mode running time for the
training set of 200 users, for example, includes the time to train on 200 users and the time to
complete 4000 predictions.

4.1.2.2 Interactive-Mode
When a new user joins the CF system we cannot wait until the next batch window to

compute all potential recommendations. The CF system must respond immediately by locating
his advisors and computing a prediction for the requested item. In contrast to batch mode, only a
recommendation for the requested item is computed. We refer to this mode of operation as
interactive mode.

Passing a single item-recommendation request for an as-yet unseen user to the CF
algorithm simulates this interactive mode. The data structures are not cleared but updated as
needed. The interactive mode assumes that the data structures to support recommendations have
already been computed. This is the state of the system between batch processing windows. A
new user joins the CF service, initializes his profile by rating some items, and then expects a
recommendation. Typically, online recommendation sites ask the user to provide 10 to 20
ratings7,8 before providing any recommendations. Obviously, a user can expect more and better
recommendations if she provides more ratings on joining a service. In this work we studied the
execution time for providing recommendations to new users who were required to provide 10
ratings to initialize their profile on joining the system.

7 QRate: a free on-line service for movie recommendations asks for 12 initial ratings. This service can be
accessed at: http://www.qrate.com
8 Jester: an on-line service for recommending jokes asks for 15 initial ratings. This service can be accessed
at: http://shadow.ieor.berkeley.edu/humor/.

CHAPTER 4.Results and Discussion

70

4.1.3 Data sets

The data for this study is drawn from the EachMovie database [EM97]. This database was
compiled over a 18-month period from the online movie and video recommendation site
www.eachmovie.com. More than 2.8 million numeric ratings on 1,628 movie titles were
compiled from a membership of 72,916 user. Each movie is rated on an ascending scale of
preference from 0 to 5. Users have the option of supplying their age, gender and the zip code of
their residence. Over 60% of the membership submitted more than 10 item ratings while only
10% submitted all three pieces of demographic data. We create a working set that consists of
users each of whom have rated at least 100 items. We eliminated one user from the working set
who consistently rated every item with a score of 4.

4.1.3.1 The GivenXUser Data Set
The purpose of this work is to evaluate how data size affects algorithmic performance of the
collaborative filters. There are two dimensions along which data size can be varied: the number of
users and the number of item-ratings per user. Along the user dimension we drew at random 200,
400, 600, 800, 1000, and 1400 users from the working set. We call these the GivenXUser data
sets where X takes on the number of users in that data set. The item ratings of each GivenXUser
dataset are partitioned into a training set and a test set. The training set consists of 80 randomly
drawn item-rating per user while the test set consists of 20 randomly drawn item-ratings. The
Given400Users data set, for example, is divided into a training set of 400 users with 80 randomly
selected ratings and a test set of the same 400 users with 20 randomly drawn item ratings.

 GivenXUser Data Set
 Training Set Size Test Set
Data Set
Name Users Ratings /

User Users Ratings /
User

G200U 200 80 200 20
G400U 400 80 400 20
G600U 600 80 600 20
G800U 800 80 800 20
G1000U 1000 80 1000 20
G1400U 1400 80 1400 20

Table 9: The GivenXUser data set.

CHAPTER 4.Results and Discussion

71

4.1.3.2 The GivenXRating Data Set
Along the item-rating sparsity dimension, we drew at random 40, 60, 80 and 100 item-ratings for
each of 1400 users. We call these the GivenXRatings data sets where X takes on the number of
item-ratings per user. As in the GivenXUser data sets, the item-ratings of each user are
partitioned into a training set and a test set; the test set consists of 20 randomly drawn item-
ratings while the training set retains the remainder of item-ratings. The Given60Ratings data set,
for example, is divided into a training set of 1400 users each with 40 item ratings and a test set of
the same 1400 users with 20 item ratings.

4.1.3.3 The InteractiveXUser Data Set
RecTree’s interactive mode running time was tested as a function of the number of users in the
system. As per the discussion in 4.1.2 we want to test the algorithm’s performance when a new
user joins the system. We took the GivenXUsers data sets and randomly withdrew 20 users from
each data set to form the InteractiveXUser data sets; for clarity we refer to the reduced data set as
GivenXUser΄. Each InteractiveXUser data set is then partitioned into an interactive training set
consisting of 10 randomly drawn item-ratings and a test set consisting of 20 randomly drawn item
ratings. For example, 20 users are withdrawn from the Given200User data set to form the
Interactive20User data set; each user in the Interactive20User data set has 10 item-ratings to train
on and 20 item-ratings for testing.
 We initially train CorrCF and RecTree on the GivenXUser΄ data set. This initial training
simulates the state of the CF system after a batch processing window. Once this training is
complete we submit the InteractiveXUser data set to each of the filters for interactive mode
prediction.

 GivenXRating Data Set
 Training Set Size Test Set
Data Set
Name Users Ratings /

User Users Ratings /
User

G20R 1400 20 1400 20
G40R 1400 40 1400 20
G60R 1400 60 1400 20
G80R 1400 80 1400 20

Table 10: The GivenXRating data set.

CHAPTER 4.Results and Discussion

72

4.1.4 The Partition Size Parameter ββββ

We show in 3.2.5 and 3.4.5 that RandNeighCorr and RecTree’s complexity can be linearized if
 the partition size is kept constant. β is given by lm/k where l is the number of users, m is the
average number of ratings per user and k is the number of partitions. If the value of β is fixed,
then each of these factors must be varied to maintain the constancy of β’s value.

An increase in the number of users can be adjusted for by decreasing the average number
of item-ratings m in a partition, or by increasing the number of partitions k. The latter strategy is
obvious and requires no further explanation. The former method however, is not feasible. The
item-ratings for each user cannot be divided into smaller units since the entire history is required
for computing similarity. Consequently, in the experiments utilizing the GivenXUser data set we
maintain β constancy by varying the number of partitions k.

An increase in the number of ratings per user can be adjusted for by decreasing the
number of users in a partition or equivalently, by increasing the number of partitions. In the
experiments utilizing the GivenXRating data set, we also maintain β constancy by varying the
number of partitions k.

4.1.5 Hardware & Software

The experiments for this thesis were conducted on a laptop PC with a Pentium III 600 MHz
processor and 128 MB of RAM. The laptop has a 7 Gig hard drive. The laptop is running
Windows 2000 Advanced Server operating system and all the software is written in Java using
Borland’s Jbuilder 3.5 and the Sun Java JDK 1.2.

 GivenXUser' InteractiveXUser Data Set
 Training Set Size Training Set Size Test Set
Data Set
Name Users Ratings /

User
 Data Set

Name Users Ratings /
User

Users Ratings /
User

G200U 180 80 I200 20 10 20 20
G400U 380 80 I400 20 10 20 20
G600U 580 80 I600 20 10 20 20
G800U 780 80 I800 20 10 20 20
G1000U 980 80 I1000 20 10 20 20
G1400U 1380 80 I1400 20 10 20 20

Table 11: The InteractiveXUser data set.

CHAPTER 4.Results and Discussion

73

4.2 Performance Study of RandNeighCorr

In this section we present a study into the performance of RandNeighCorr. In summary, we find
that for non-degenerate values of β, RandNeighCorr is a fast linear collaborative filter that
outperforms CorrCF’s running time in batch and interactive mode; CorrCF, however, always has
superior coverage and accuracy. The administrator of a CF system can choose an operational
point at which the trade-off between accuracy and running time is acceptable for his application.
The value of β is bounded above by the data set size, n – choosing values larger than n causes
RandNeighCorr to degenerate to CorrCF in operation. β is bounded below – choosing a partition
size that is too small results in recommendations that are worse than non-personalized
recommendations.

RandNeighCorr’s accuracy is dramatically affected by item-rating sparsity; this study
found that on data sets with fewer than 20 item-ratings per user, its accuracy was worse than non-
personalized recommendations via population averages. The stability of RandNeighCorr’s
overall accuracy was also affected by a growing database of users. As users are added to the
system, the accuracy of RandNeighCorr’s predictions decline. This phenomenon confirms our
analysis of 3.2.7.

4.2.1 The Partition Size ββββ

RandNeighCorr‘s running time can be linearized if we constrain the partition size (β=ml/k) to a
constant (see section 3.2.5). We vary the parameter β and report on its effect on the algorithm’s
performance. If the value of β is greater than or equal to the size of the data set, the partitioning
phase of RandNeighCorr puts all the data into one partition and the algorithm’s performance
degenerates to that of the un-partitioned collaborative filter, CorrCF.
 We compare RandNeighCorr’s performance against CorrCF and that of PopAvg.
PopAvg is a non-personalized recommendation algorithm that recommends an item based upon
the average rating for that item. This algorithm makes no attempt to account for similarities
between users in computing a prediction and computes the same recommendation for every user.
We intend to use PopAvg to highlight RandNeighCorr’s performance at low item-rating densities.

RandNeighCorr partitions the users into independent clusters by random assignment,
consequently the set of candidate advisors that are available for the prediction phase changes
between each run of this algorithm. In some runs, very similar users were serendipitously

CHAPTER 4.Results and Discussion

74

grouped into the same cluster resulting in good recommendations and in other runs, a poor
partitioning results in poor recommendations. Therefore, for each value of β we ran
RandNeighCorr 10 times and reported the average performance measures.

4.2.2 RandNeighCorr’s Running Time

Figure 16 and Table 12 show the running time of RandNeighCorr in batch mode as a function of
the data set size; these experiments were run on the GivenXUser data sets. The experiment was
repeated 10 times for each value of β to obtain the average running times. We can clearly see that
RandNeighCorr’s running time has a linear dependency on the size of the data set and the
partition size β; these results confirm the complexity calculations of section 3.2.5. For the
degenerate value of β = 16000 item-ratings, we see from Table 12 that the running time of
RandNeighCorr is approximately the same as CorrCF for the data set with 16000 item-ratings
For non-degenerate values of β, RandNeighCorr has a running time that is 4 to 36 times faster
than CorrCF.

CorrCF has the slowest running time and is shown in Figure 17 with a quadratic fit. The
running time for CorrCF is not shown in Figure 16, since it will skew the scale and hide the
details for RandNeighCorr’s curves.

The running time for the non-personalized recommender PopAvg, is the fastest. This is
to be expected since PopAvg requires only a single pass to compute all of the recommendations.
PopAvg’s running time has a linear dependency on the data set size.

 Recommender
 RandNeighCorr

Data Set Ratings

CorrCF
(sec)

PopAvg
(sec) β=4000

(sec)
β=8000

(sec)
β=16000

(sec)
G200U 16000 211 4 78 114 207
G400U 32000 1213 11 157 221 478
G600U 48000 2515 18 233 365 872
G800U 64000 4235 25 288 499 1132
G1000U 80000 6321 32 322 645 1234
G1400U 112000 13991 45 389 718 1450

Table 12: RandNeighCF’s batch mode running time with number of item-ratings.

CHAPTER 4.Results and Discussion

75

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000 120000

Data Set Size (item-ratings)

R
un

ni
ng

 T
im

e
(s

ec
)

PopAvg b=4000 b=8000 b=16000

Figure 16: RandNeighCorr’s batch mode running time with number of item-ratings.

R2 = 0.9973

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20000 40000 60000 80000 100000 120000

Data Set Size (item-ratings)

R
un

ni
ng

 T
im

e
(s

ec
)

Figure 17: CorrCF’s batch mode running time is quadratic.

CHAPTER 4.Results and Discussion

76

4.2.3 RandNeighCorr’s Accuracy

We test the accuracy of RandNeighCorr by computing the MAE. Each experiment is repeated 10
times for each value of β and the MAE is then averaged. Smaller values of MAE indicate greater
accuracy. In Figure 18, we show the accuracy of RandNeighCorr after training on the
GivenXUser data set. The accuracy of CorrCF and PopAvg are also shown for comparison.
Since the GivenXUser data set prescribes 80 item-ratings per user, we can equivalently express
the partition size in terms of users. In Figure 18, the three separate runs of RandNeighCorr are
shown with partitions of 50, 100, and 200 users.

RandNeighCorr‘s accuracy improves as the partition size β/m increases. A larger

partition allows the method ComputeCorrelationSimilarity(..) more candidates from which to find
better advisors to make recommendations. As β increases to that of the data set size, the
partitioning phase will put all of the data into a single partition and we expect RandNeighCorr to
degenerate to collaborative filtering on un-partitioned data. This behaviour is demonstrated in
Figure 18 for β/m = 200 users and at 200 users, where we see that RandNeighCorr’s accuracy
matches that of CorrCF. For non-degenerate values of β, we note that RandNeighCorr is less

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

100 300 500 700 900 1100 1300 1500

Number of Users

A
cc

ur
ac

y
(M

A
E)

CorrCF PopAvg b/m=50 b/m=100 b/m=200

Figure 18: Accuracy of RandNeighCorr with number of users.

CHAPTER 4.Results and Discussion

77

accurate than CorrCF for all training set sizes. Each of RandNeighCorr’s curves exhibits an
overall rising MAE (declining accuracy) with the number of users in the training set.

PopAvg’s accuracy monotonically improves with the number of users in the data set. It is
always less accurate than CorrCF over the range of this study. PopAvg’s accuracy is better than
that of RandNeighCorr at β/m = 50 users and with a training set of 800 or more users. If we
extrapolate PopAvg’s trend, it’s accuracy will match or exceed RandNeighCorr at β/m = 100
users on a training data set with more than 1600 users.

RandNeighCorr’s naïve approach to partitioning results in poor accuracy. By creating
more partitions to accommodate larger data sets, the probability of locating the best advisors for
each prediction is diminished – with the consequent reduction in recommendation accuracy. This
unfortunate behaviour means that as the data set gets large, the accuracy of RandNeighCorr will
at some point become worse than that of even non-personalized recommendations via population
averages – this phenomenon is observed for the data sets and partition sizes tested. This
behaviour confirms our analysis of 3.2.7.

Figure 19 shows the accuracy with the number of item-ratings available per user (the

GivenXItems data set). RandNeighCorr is executed on this data set with partition sizes fixed at

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

15 25 35 45 55 65 75 85

Number of item-ratings/user

A
cc

ur
ac

y
(M

A
E)

CorrCF PopAvg b=1400 b=2800 b=4000 b=7000 b=14000

Figure 19: Accuracy of RandNeighCorr with number of item-ratings per user.

CHAPTER 4.Results and Discussion

78

1400, 2800, 4000, 7000 and 14000 item ratings. The accuracy of CorrCF and PopAvg are also
plotted for comparison.

The accuracy of RandNeighCorr and CorrCF monotonically improves with the number
of item-ratings per user. More item-ratings allow for better recommendations since a more
accurate calculation of similarity can be computed from longer item-rating histories.
RandNeighCorr’s accuracy also improves with the size of the partition β, but its accuracy is
always inferior to that of CorrCF. For this experiment, none of the values chosen for β are
degenerate.
 The non-personalized recommender, PopAvg, outperforms all of the personalized
recommenders when the item-ratings are very sparse; PopAvg has the best accuracy at 20 item-
ratings per user. PopAvg outperforms RandNeighCorr for the majority of the partition sizes
tested and is only beaten by RandNeighCorr at β =14000 item ratings and at 40 or more item-
ratings/user.

4.2.4 RandNeighCorr’s Coverage

The coverage of RandNeighCorr, CorrCF, and PopAvg is shown in Figure 20 as a function of the
number of users in the data set. The coverage of PopAvg and CorrCF monotonically improve
with more users. This occurs because more advisors are available to make recommendations.
The coverage of RandNeighCorr is worse than CorrCF except for the degenerate value of β =
200 users and the data set with 200 users; Figure 20 shows that the coverage in this case is
identical. RandNeighCorr’s coverage improves as the size of the partitions increases. A larger
partition gives the collaborative filter more candidates from which advisors may be sought.

PopAvg’s coverage is the greatest, since it can provide a recommendation on any item
that at least one other person has rated. The personalized filters can provide recommendations
only if an advisor has rated the item of interest.

Figure 21 shows the coverage as a function of the number of item-ratings per user. The
coverage for all three algorithms monotonically improves with the number of item-ratings per
user. The coverage increases since each advisor is able to provide more recommendations.

CHAPTER 4.Results and Discussion

79

93

94

95

96

97

98

99

100

101

100 300 500 700 900 1100 1300 1500

Number of Users

C
ov

er
ag

e
(%

)

CorrCF PopAvg b/m=50 b/m=100 b/m=200

Figure 20: Coverage of RandNeighCorr with number of users. Each user has 80 item-ratings.

10

20

30

40

50

60

70

80

90

100

15 25 35 45 55 65 75 85

Number of item-ratings/user

C
ov

er
ag

e
(%

)

CorrCF PopAvg b=1400 b=2800 b=4000 b=7000 b=14000

Figure 21: Coverage for RandNeighCorr with number of item-ratings per user.

CHAPTER 4.Results and Discussion

80

4.2.5 Discussion

The accuracy of RandNeighCorr diminishes as users are added to the CF system. Our
analysis of 3.2.7 shows that as the number of users increases, the probability of serendipitously
putting highly correlated users in the same partition diminishes. We test this hypothesis further
by plotting the average maximum similarity of advisors for each user as a function of partition
and data set size in Figure 22. The plot provides more support for our hypothesis and indicates a
declining average similarity as users are added to the system. The decline is sharpest for the
smallest partition size.

RandNeighCorr makes a trade-off between running time and accuracy. We obtain
predictions significantly faster in comparison to CorrCF, but the predictions are somewhat less
accurate. Choosing an appropriate value for the partition size � can set the operational point of
the algorithm. For partition sizes greater than or equal to the data set size, RandNeighCorr
degenerates in operation to CorrCF. For non-degenerate values of β, RandNeighCorr exhibits
significant improvements over CorrCF in running time while sacrificing accuracy and coverage.
However, if β is chosen too small in relation to the data set size, its accuracy falls below even that
of non-personalized recommendations via PopAvg. The lower bound on β is determined
empirically for each data set as it depends on the item-rating distribution.

PopAvg has the best accuracy, running time and coverage when the item-ratings density is
low: PopAvg outperforms all of the personalized recommenders at less than 20 item-ratings per
user.

CHAPTER 4.Results and Discussion

81

4.3 Performance Study of RecTree

In this section we present a performance study into RecTree. In summary, we find that RecTree
significantly outperforms CorrCF in running time: RecTree’s linear complexity is confirmed.
RecTree has accuracy and coverage that is superior to CorrCF regardless of the number of users
and item-ratings. Furthermore, RecTree performs reasonably well even when item-rating density
is low. RecTree’s performance can be tuned to trade-off accuracy for running time by adjusting
the partition parameter β.
 The construction of the RecTree requires the adjustment of three parameters: the partition
size β, the internal node limit g and the outlier size limit outlierSize. In the following subsections
we discuss how each of these parameters is set.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 200 400 600 800 1000 1200 1400 1600

Number of Users

A
ve

ra
ge

 M
ax

im
um

 S
im

ila
rit

y

CorrCF b/m=50 b/m=100 b/m=200

Figure 22: Average maximum similarity RandNeighCorr and CorrCF.

CHAPTER 4.Results and Discussion

82

4.3.1 The Partition Parameter ββββ

There are some values of β for which the RecTree is degenerate. If β is greater than or
equal to the data set size, then the partitioning phase of ConstructRecTree(..) is bypassed and all
of the data is placed into a single partition. We expect then that the accuracy, coverage and
running time for degenerate values of β will be identical.

4.3.2 The Internal Node Limit g

The internal node limit g prevents RecTree’s construction algorithm from exhaustively
partitioning pathological data distributions. Selecting a threshold that is too high may result in
RecTree expending so much effort in partitioning the data that there will be no performance
speed-up in comparison to CorrCF. Selecting a threshold that is too low may result in RecTree
abandoning the partitioning phase pre-maturely. We use the following heuristic for selecting g.
 If the data set has n item-ratings and the partition size has been set to β, then from
Lemma 1 and Lemma 2 we have that the minimum and maximum number of partitions (leaf
nodes) that RecTree can create is L = n/β and H = n-β +1, respectively. We want to select a
value of g between these two extremes such that RecTree will pursue a partitioning while it is
profitable. We set g to the maximum of the following two values: L*s1 and L+(H-L)*s2. For this
study the values of s1=3/2 and s2=1/3 yields good values for g.

Example 13.
RecTree is given a training data set of 400 users, each user has 80 item-ratings to train on. The
partition size has been set to 100 users. The minimum and maximum number of leaf nodes that
can be created are L=4 and H=301, respectively. Our heuristic dictates that g will be set to the
maximum of 6 (=4*3/2) and 103 (=4+(297)*1/3). g is therefore set to 103 iterations.

4.3.3 The Outlier Threshold: outlierSize

The outlierSize threshold prevents RecTree from computing predictions on small
neighbourhoods. Predictions from small neighbourhoods tend to have poor coverage since there
are relatively few potential advisors from which to draw recommendations and the accuracy of
predictions tends to be low since the predictions are based on a small number of advisors

CHAPTER 4.Results and Discussion

83

[HKB99]. Consequently, nodes with fewer members than outlierSize do not answer
recommendation requests directly, but delegate such requests to their parent node. Section 3.4.3
discusses in detail how RecTree answers recommendation queries.

How do we choose an appropriate value for outlierSize? Figure 4 shows that for
neighbourhoods with fewer than 20 users, the coverage declines sharply. [HKB99] shows that for
the MovieLens data set, the prediction accuracy declined sharply with neighbourhood sizes
smaller than 10 users. For this study we set the outlierSize threshold at 20 users.

4.3.4 RecTree Implementation

The sparsity of the item-rating space presents challenges to an efficient implementation of the
RecTree. In this section we address the specific implementation choices that were made in this
study.

4.3.4.1 The Item-Rating Vector
The user’s item-ratings must be represented in a space and access-efficient data structure.

An obvious choice for storing the item-ratings is an array. In this representation, each cell in the
array stores either the user’s rating for an item or the “no-rating” value Θ. The cell’s ordinal
position is the item identifier. The first cell in the array is special and stores the identifier of the
user that “owns” this item-rating vector. In the item-rating vector below, User36 has rated item 1
with a score of 2 and item 3 with a score of 4. The remaining items have yet to be rated.

User36 2 Θ 4 Θ .. …

Arrays have the advantage of being extremely fast to access since each cell in the array can be
retrieved in constant time. The EachMovie database had a membership of 72,000 users and an
inventory of 1628 movie titles. Storing the EachMovie ratings database in an array data structure
would require ~ 200MB of storage. Although this storage requirement is easily met with
commodity hard drives, it is highly inefficient; only 60% of the membership provided more than
10 movie ratings, resulting in an array of largely “no rating” value. In addition, it should be noted
that the EachMovie recommendation site operated for only a brief period (approximately 18
months) and its membership is not large. A viable recommendation service will require
significantly more memory to accommodate its operational need to both continually increase the
membership and the inventory of items that users can rate.

CHAPTER 4.Results and Discussion

84

Furthermore, it should be noted that the performance of the RecTree (and incidentally,
CorrCF) degrades significantly if the database of item-rating vectors can not be loaded into
memory in entirety9. Scanning the database of item-rating vectors from disk is at least an order of
magnitude slower than reading that information from RAM. The array representation of the
EachMovie database would fit into commodity RAM but would have limited capacity to grow
with increasing membership and item inventory.
 The shortcomings of the array approach and the high sparsity of the item-rating space
motivated us to pursue a compressed data representation. In this approach, only the items for
which the user has submitted ratings are represented in the data structure. A numeric pair
consisting of the item identifier and the rating score represents each item rating. In the rating
vector below, User45 has rated items 4, 7, 99, and 107 with the scores of 3, 2, 4, and 3
respectively. Items that the user has not rated are implicitly represented by their absence.

User45 4:3 7:2 99:4 107:3

This new representation is significantly more space efficient, but is not amenable to direct
array access. One method of access is to use binary search on the item identifiers. This approach
is relatively fast with a time complexity of O(log(N)), where N is the number of item identifiers.
However, the array would need to be maintained in sorted order as users submit more ratings.
We selected an alternative data structure, the binary tree. The binary tree also has a time
complexity of O(log(N)) and the insertion and deletion of item-ratings is handled within the
framework of the data structure. The Java JDK 1.2 provides an implementation of the binary tree
and consequently reduced our development time.

4.3.4.2 The Similarity Matrix
RecTree answers a query in O(β) time. This complexity arises from having to scan through the
similarity matrix for advisors. We improve on this search problem by representing the similarity
matrix in a compressed format. A vector of numeric pairs represents each user’s group of
advisors; the first number is the advisor’s identifier and the second number is the advisor’s
similarity score. In the similarity vector below, User88 has 3 advisor: User26, User28, and
User98 with similarity scores of 0.67, 0.21, and 0.33 respectively.

9 The assumption that the entire database of item-rating vectors will fit into memory is not necessariy
unreasonable. Refer to 3.1.2 for detailed discussion.

CHAPTER 4.Results and Discussion

85

User88 26:0.67 28:0.21 98:0.33

4.3.5 RecTree’s Batch Mode Running Time

The batch mode running time for RecTree is tested as a function of the number of users (the
GivenXUsers data set) and of partition size. The experiment was run 10 times for each partition
size and the average running time reported in Figure 23. Each of the users in the GivenXUser
data set had 80 item-ratings, so we have equivalently expressed the partition parameter, β in
terms of number of users. The batch mode running time for CorrCF is shown for comparison.
 It can be clearly seen that RecTree outperforms CorrCF in running time for all values of
β/m tested. The improvement is most dramatic for data sets with 1000 or more users. The
significant improvement in speed is due to the linear complexity of RecTree in comparison to
CorrCF’s quadratic complexity. A linear fit on each of the RecTree curves yields R2 of 0.99 –
empirically confirming the complexity analysis of 3.4.5. A quadratic fit on CorrCF curve yields
R2 better than 0.99.

The running time for RecTree improves with smaller partition sizes. For example, at
1400 users, the running time for β/m = 300 users is 5049 seconds in comparison to a running time
of 4411 seconds when β/m = 100 users. In particular, the ratio of the partition size in relation to
the size of the data set is an indication of the performance speedup that can be expected. The β/m
= 200 curve at 200 users shows almost no improvement over CorrCF. However, at 1400 users,
this same curve shows greater than 3 time reduction in the execution time in comparison to
CorrCF.

The partition sizes β/m ≥ 200 users are degenerate. These partition sizes equal or exceed
the size of the training set with 200 users and we note that the running time for RecTree is
identical in these two cases.

The batch running time for RecTree and CorrCF as a function of item-ratings per user
(the GiveXRatings data set) is shown in Figure 24. RecTree significantly outperforms CorrCF’s
running time at all levels of item-ratings. RecTree’s linear dependency on item-ratings is
confirmed with a linear fit. Each of the RecTree curves yield a fit of R2 = 0.99. This linear
dependency is in agreement with our analysis of 3.4.5. None of the partition sizes tested were
degenerate.

CHAPTER 4.Results and Discussion

86

0

2000

4000

6000

8000

10000

12000

14000

100 300 500 700 900 1100 1300 1500

Number of Users

R
un

ni
ng

 T
im

e
(s

ec
)

b/m=100 b/m=200 b/m=300 CorrCF

Figure 23: Batch mode running time for RecTree with number of users. RecTree demonstrates a
linear complexity with number of users in contrast to CorrCF's quadratic complexity.

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80

Number of item-ratings/user

R
un

ni
ng

 T
im

e
(s

ec
)

CorrCF b=14000 b=12000 b=7000

Figure 24: RecTree batch mode running time with number of item-ratings per user.

CHAPTER 4.Results and Discussion

87

4.3.6 RecTree’s Interactive Mode Running Time

Figure 25 shows the running time for RecTree and CorrCF to compute 200 predictions in
interactive mode as a function of the number of users already in the system.
 RecTree significantly outperforms CorrCF in running time. Its response time is
relatively constant with the number of users and shows only a dependency on the partition
parameter β. From our analysis of 3.4.5 we know that querying the RecTree has a complexity of
O(β). Our performance study confirms this analysis.
 In comparison, the running time for CorrCF in interactive mode increases linearly with
the number of users already in the system. For the largest data set, CorrCF is from 10 to 30
times slower than RecTree.

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

Number of Users

R
un

ni
ng

 T
im

e
(s

ec
)

CorrCF b=100 b=200

Figure 25: RecTree's interactive mode running time

CHAPTER 4.Results and Discussion

88

4.3.7 RecTree’s Accuracy

The accuracy of RecTree as a function of the number of users is shown in Figure 26.
RecTree significantly outperforms CorrCF for almost all data set sizes and partition parameters
β/m. RecTree’s accuracy improves with larger partition sizes. RecdTree’s intelligent partitioning
eliminates the degradation in accuracy with population increases that was evident in
RandNeighCorr. A larger partition allows the algorithm more candidates among whom to locate
good advisors.

For partition parameter β/m ≥ 200 users, RecTree’s accuracy is degenerate and we note
that these curves have identical accuracy on a training set of 200 users.

The improvement in accuracy is due in part to the success of the partitioning phase of
RecTree in localizing highly correlated users in the same partition. Figure 27 shows that the
average similarity of advisors for RecTree is always higher than that of CorrCF.

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

100 300 500 700 900 1100 1300 1500

Number of Users

A
cc

ur
ac

y
(M

A
E)

CorrCF b/m=100 b/m=200 b/m=300

Figure 26: Accuracy of RecTree with number of users. ββββ is in units of users.

CHAPTER 4.Results and Discussion

89

 The accuracy of RecTree as a function of the number of item-ratings per user is tested
with the GivenXRatings data set. This data set simulates the conditions of a CF system in the
first months of operation: many users have joined the service, but each user has submitted only a
few ratings. Traditionally, CF systems have poor accuracy during this period; [GSK+99] have
referred to this situation as the sparsity problem. In 4.2.3 we show that for very sparse data, the
recommendations for the personalized recommenders CorrCF and RandNeighCorr is worse than
non-personalized recommendation via population averages, PopAvg.

The accuracy of RecTree as a function of rating sparsity is shown in Figure 28, with
CorrCF and PopAvg also plotted for comparison. RecTree has very good accuracy even when
the number of ratings per user is low. Its accuracy is always superior to CorrCF and PopAvg at
all levels of rating sparsity.

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0 200 400 600 800 1000 1200 1400

Number of Users

A
ve

ra
ge

 S
im

ila
rit

y

CorrCF b/m=100 b/m=200 b/m=300

Figure 27: The average similarity of advisors in RecTree.

CHAPTER 4.Results and Discussion

90

4.3.8 RecTree’s Coverage

RecTree’s coverage as a function of the number of users is shown in Figure 29. RecTree has very
high coverage and is able to provide predictions more than 99% of the time for a majority of the
data sets and partition sizes. At 200 users, RecTree outperforms CorrCF by almost 2% and for
β/m ≥ 200, the coverage of RecTree is always greater than that of CorrCF for all data set sizes.

RecTree’s coverage as a function of rating sparsity is shown in Figure 30. Its coverage is
very good even when ratings sparsity is high; at 10 item-ratings per user, RecTree has a coverage
that is almost double that of CorrCF. At 5 item-ratings per user, CorrCF has a slightly better
coverage of roughly 11% in comparison to RecTree’s 9%.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 10 20 30 40 50 60 70 80 90

Number of item-ratings/user

A
cc

ur
ac

y
(M

A
E)

CorrCF b=14000 b=12000 b=7000 PopAvg

Figure 28: Accuracy of RecTree as a function of item-ratings per user.

CHAPTER 4.Results and Discussion

91

97

97.5

98

98.5

99

99.5

100

0 200 400 600 800 1000 1200 1400 1600

Number of Users

C
ov

er
ag

e
(%

)

CorrCF b/m=100 b/m=200 b/m=300

CorrCF

Figure 29: Coverage of RecTree with number of users.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Number of item-ratings/user

C
ov

er
ag

e
(%

)

CorrCF b=14000 b=12000 b=7000

Figure 30: RecTree's coverage with rating sparsity.

CHAPTER 4.Results and Discussion

92

4.3.9 Discussion

 RecTree can compute predictions in batch and interactive modes significantly faster than
CorrCF and other nearest-neighbour collaborative filters. We show that in batch mode and for
the largest data set, RecTree provides predictions in approximately 1/3 the time it takes CorrCF.
RecTree’s linear scale up with number of users and item-ratings was confirmed. As each of these
quantities increase, RecTree creates more partitions to accommodate the larger data set size.

In interactive mode, RecTree’s performance is even better: for the largest data set,
predictions are provided in 1/10 to 1/30 of the time it takes CorrCF. RecTree’s constant query
time with size of the data set was confirmed.

RecTree’s superior running time arises from its partitioning of the user base into a set of
independent clusters. Since advisors are sought only within a cluster, the time consuming task of
computing similarity coefficients is substantially reduced. RecTree’s running time in batch mode
is worse than interactive mode since it includes the time to grow the branches and the nodes of
the tree. In interactive mode the existing tree is merely traversed for predictions. The time to
construct the RecTree is dominated by the two processes of growing the tree branches and
computing the similarity matrix at the leaf nodes. When the partition size is small the time
required to compute the similarity matrix is reduced but more time is devoted to growing the tree.
As we saw in Figure 23, Figure 24, and Figure 25, smaller partition sizes lead to improved
execution time. Similarly, when the partition size is large RecTree spends less time constructing
the tree branches but the time required to compute the similarity matrix increases; this strategy
leads to increased execution times.
 RecTree outperforms CorrCF in accuracy for almost all partition sizes and data sets.
This achievement is the result of the three complimentary strategies of creating neighbourhoods
of highly correlated users, computing pair-wise similarities based on each user’s entire rating
history, and avoiding spurious predictions from outlier nodes. RecTree’s partitioning phase is
successful as the average similarity of advisors within a partition is higher than that of advisors in
the un-partitioned case (c.f. Figure 27). A plot of the contributions of each of the latter two
strategies to the overall accuracy of RecTree is shown in Figure 31.

RecTree has good accuracy even when there are few item-ratings. The accuracy of other
collaborative filters diminishes greatly at low item-rating density, falling below even that of non-
personalized recommendation via population averages [KM99a]. RecTree, on the other hand,
maintains good accuracy even at low item-rating density. RecTree is able to deliver on this
feature by avoiding spurious recommendations from outlier nodes. Figure 31 shows the accuracy
with outlier node detection disabled.

CHAPTER 4.Results and Discussion

93

 RecTree outperforms CorrCF in coverage for almost all partition sizes and data sets. It
achieves its high coverage due to its dual prediction strategy. RecTree initially seeks predictions
from the user’s advisors in the leaf node. If the user’s advisors have not rated the item in
question, then they cannot provide a recommendation. RecTree then delegates the
recommendation request to the parent node where the larger group of users (to whom the user is
similar to on a coarser granularity) may be able to satisfy the request. If the internal node cannot
satisfy the recommendation request, the prediction is returned with a “no rating” value Θ.
Obviously, if RecTree continued to pass the request up through the chain of parent-child links, it
could increase its coverage even more. However, it was observed that the accuracy of the
predictions degraded significantly when the prediction was delegated beyond the immediate
parent node. Figure 32 shows the contribution of the delegation strategy to the overall coverage
of RecTree.

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0 200 400 600 800 1000 1200 1400 1600

Number of Users

A
cc

ur
ac

y
(M

A
E)

RecTree No Outlier Detection No Outlier Detection and No Correlation+

Figure 31: The contribution of correlation+ and outlier detection to RecTree's accuracy.

CHAPTER 4.Results and Discussion

94

4.4 Chapter Summary

In this chapter we presented a performance study of RandNeighCorr and RecTree and compared
their performance against the baseline algorithm CorrCF. The linear time complexity of each of
these algorithms with data set size was confirmed.

RandNeighCorr has the fastest execution time since it partitioned the data with a single
pass over the data set. However, its naïve approach to partitioning also resulted in poor accuracy
and inferior coverage in comparison to CorrCF. It was shown that as the data set size increases,
RandNeighCorr’s accuracy (for a fixed partition size β) monotonically decreases. By creating
more partitions to accommodate larger data sets, the probability of locating the best advisors for
each prediction is diminished – with the consequent reduction in recommendation accuracy. This
unfortunate behaviour means that as the data set gets large, the accuracy of RandNeighCorr will
at some point become worse than that of even non-personalized recommendations via population
averages – this phenomenon is observed for the data sets and partition sizes tested.

94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

0 200 400 600 800 1000 1200 1400 1600

Number of Users

C
ov

er
ag

e
(%

)

RecTree No Request Delegation

Figure 32: The contribution of request delegation to RecTree's coverage.

CHAPTER 4.Results and Discussion

95

RecTree outperforms CorrCF in batch and interactive mode for almost all data sets and
partition sizes tested. It not only has linear execution time scale-up, but also monotonic
improvement in accuracy with data set size. RecTree’s superior accuracy arises from the success
of the partitioning phase in creating neighbourhoods of highly correlated users, the use of longer
rating histories for computing user similarity, and the avoidance of spurious recommendations
from outlier nodes. RecTree has the unique capability among nearest-neighbour collaborative
filters of providing accurate recommendations even when the rating density is low.

CHAPTER 5. CONCLUSION AND FUTURE WORK

96

Chapter 5 Conclusion and Future Work

In this chapter we summarize our contributions and discuss the direction for future research to
extend this study.

5.1 Conclusions

This thesis describes a new collaborative filtering data structure and algorithm called RecTree (an
acronym for RECommendation Tree) that to the best of our knowledge, is the first nearest-
neighbour collaborative filter that can provide recommendations in linear time. RecTree has the
following characteristics:

1. RecTree can be constructed in linear time and space.
2. RecTree can be queried in constant time.
3. RecTree is more accurate than the leading nearest-neighbour collaborative filter, CorrCF

[RIS+94].
4. RecTree has a greater coverage (provides more predictions) than CorrCF.
5. RecTree does not suffer the rating sparsity problem.

It was demonstrated that RandNeighCorr’s naïve approach to partitioning data yields
clusters of un-correlated users. The resulting predictions were less accurate and the coverage was
smaller than that of collaborative filtering on un-partitioned data via CorrCF. RecTree by
comparison, outperforms CorrCF significantly in both accuracy and coverage. RecTree uses
three strategies to achieve this result. Firstly, it partitions the user base into clusters of highly
correlated users using the KMeans+ algorithm. Secondly, it computes a more accurate measure of
user similarity based on the entire rating history rather than just the intersection set between users.

CHAPTER 5. CONCLUSION AND FUTURE WORK

97

Lastly, it avoids computing spurious predictions based on too few advisors by identifying outlier
clusters.

5.2 Future Work

Due to time constraints, only a limited performance study into the effectiveness and efficiency of
RecTree was possible. In this section, we indicate the work that we defer to the future for the
extension and improvement of the RecTree algorithm.

5.2.1 Scalability

RecTree cannot handle large databases. In particular, if the database of item-ratings vectors can
not fit into memory in entirety, the algorithm ConstructRecTree(..) becomes very inefficient since
each clustering iteration of the KMeans+ algorithm would require a complete scan of the database
from disk. We hope to pursue the adaptation of recent scaleable clustering algorithms [ZRL96]
[GRS98] [AGG+98] [ACW+99] to RecTree to deal with very large databases.

5.2.2 The Internal Node limit g

The internal node limit g is introduced to protect RecTree from computing useless partitions for
pathological data distributions. However, a single threshold may not be flexible enough. For
example, if the data was a superposition of an exponential and Gaussian distribution, a single
threshold may cause RecTree to abandon the partitioning prematurely. We leave it to future work
to investigate the use of multiple thresholds for improving RecTree’s ability to deal flexibly with
these cases.
 Alternatively, we believe that studying new and more effective means of detecting
pathological distributions is an interesting and important direction for extension to the RecTree.

CHAPTER 5. CONCLUSION AND FUTURE WORK

98

5.2.3 The outlierSize Threshold

The outlierSize threshold was set to 20 users. It would be an important improvement in
RecTree’s applicability if future work discovered a more disciplined approach to setting this
important parameter.

5.2.4 Similarity Measures

RecTree uses correlation as the similarity measure between users, however other similarity
measures should be investigated. The probabilistic similarity measure of [PHL00] is an
interesting alternative that we leave to future work.

5.2.5 Predictions

RecTree computes predictions by taking a weighted sum of deviations from a mean. This
prediction has proven to be quite effective, but other methods should be tested. The weighted
average score [SM95] and the most probable rating [PHL00] are two interesting alternatives that
we did not pursue due to time constraints. Furthermore, previous collaborative filters have
proposed only linear functions for generating predictions. It would be interesting to investigate
the effectiveness of non-linear mapping functions.

While we have shown that RecTree offers improvements in accuracy, coverage and speed over its
competitors, it is clear that there remains room to extend this lead even further.

 ٱ

BIBLIOGRAPHY

99

Bibliography

[ACW+99] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fast Algorithms
for Projected Clustering, In Proc. 1999 ACM SIGMOD Int. Conf. Management of Data
(SIGMOD’99), pages 61-72, Philadephia, PA, June 1999.

[AGG+98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic Subspace
Clustering in High Dimensional Data for Data Mining Applications, In Proc. 1998 ACM
SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages 94-105, Seattle, WA, June 1998.

[AZ97] C. Avery and R. Zeckhauser, Recommender Systems for Evaluating Computer Messages,
CACM, 40(3), 88-89, March 1997.

[BC92] N. J. Belkin and W. B. Croft, Information Filteringa nd Information Retrieval: Two sides
of the Same Coin?, CACM, 35(12), 29-38, December 1992.

[BF98] P. Bradley and U. Fayyad. Refining Initial Points for K-Means Clustering.
http://www.research.microsoft.com/~fayyad/papers/icml98.htm. July 1998.

[BHK98] J. S. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms
for collaborative filtering. In Proc. 14th Conf. Uncertainty in Artificial Intelligence (UAI-98),
pages 43-52, San Franciso, CA, July 1998.

[BP99] D. Billsus and M. J. Pazzani, Learning collaborative information filters. In Proc 15th Int.
Conf. Machine Learning, pages 46-54, Madison, WI, 1998.

[BS97] M. Balbanovic and Y. Shoham, Fab: Content-based, Collaborative Recommendation,
CACM, 40(3), 66-72, March 1997.

BIBLIOGRAPHY

100

[DDF+90] S. Deerwester, S. T. Dumais, G.W. Furnas, T. K. Landauer, and R. Harshman,
Indexing by Latent Semantic Analysis, J. Am. Soc. Inf. Sci. 41, 391-407, (1990).

 [EKS+96] M. Ester, H-P. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise, In Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining (KDD’96), pages 226-231, Portland, OR, 1996.

[EM97] http://www.research.digital.com/SRC/eachmovie/

[FD92] P. W. Foltz and S. T. Dumais, Personalized Information Delivery: An Analysis of
Information Filtering Methods, CACM, 35(12), 51-60, December 1992.

[FOR99] Forrester Research Inc., Forester Technographics Finds Online Customers Fearful of
Privacy Violations, http://www.forrester.com/ER/Press/Release/0,1769,177,FF.html, October,
1999.

[GNO+92] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using Collaborative Filtering to
Weave an Information Tapestry, CACM 35(12), 61-70, December 1992.

[Gre99] B. Greenman, Liar Liar, http://www.zdnet.com/yil/content/mag/9903/liar.html, 1999.

[GRS98] S. Guha, R. Rastogi, and K. Shim, CURE: An Efficient Clustering Algorithm for Large
Databases, In Proc. 1998 ACM SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages
73-84, Seattle, WA, June 1998.

[GSK+99] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker and J.
Riedl, Combining Collaborative Filtering with Personal Agents for Better Recommendations, In
Proc. 1999 Conf. American Association of Artifical Intelligence (AAAI-99). July 1999 .

[HCC97] J. Han, J. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong, M. Kamber, K.
Koperski, G. Liu, Y. Lu, N. Stefanovic, L. Winstone, B. Xia, O. R. Zaiane, S. Zhang, and H. Zhu,
DBMiner: A System for Data Mining in Relational Databases and Data Warehouses, In Proc.
CASCON'97: Meeting of Minds, Toronto, Canada, November 1997.

BIBLIOGRAPHY

101

[HCC98] J. Han, S. Chee, and J. Y. Chiang, Issues for On-Line Analytical Mining of Data
Warehouses, In Proc. of 1998 SIGMOD'96 Workshop on Research Issues on Data Mining and
Knowledge Discovery (DMKD'98) , Seattle, Washington, June 1998, pages 2:1-2:5.

[HKB+99] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, An Algorithmic Framework
for Performing Collaborative Filtering, In Proc. 1999 Conf. Research and Development in
Information Retrieval, pages 230-237, Berkeley, CA, August 1999.

[HM85] D. L. Harnett and J. L. Murphy, Statistical Analysis for Business and Economics, third
edition, Addison Wesley, 1985.

[KM99a] A. Kohrs and B. Merialdo, Clustering for collaborative filtering applications. In
Computational Intelligence for Modelling, Control & Automation (CIMCA'99), Vienna. IOS
Press, 1999.

[KM99b] Arnd Kohs and Bernard Merialdo, Improving Collaborative Filtering with Multimedia
Indexing Techniques to create User-Adapting Web Sites, In Proc. 7th ACM Multimedia Conf.,
Orlando. ACM, 1999.

[KMM+97] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl,
Applying Collaborative Filtering to Usenet News, CACM, 40(3), 77-87, March 1997.

[KR89] L. Kaufman and P. Rousseeuw, Finding Groups in Data, An Introduction to Clustering
Analysis. John Wiley and Sons, 1989.

[KSS97] H. Kautz, B. Selman, and M. Shah, Referral Web: Combining Social Networks and
Collaborative Filtering, CACM, 40(3), 63-65, March 1997.

[MRK97] B. Miller, J. Riedl, and J. Konstan, Experiences with GroupLens: Making Usenet
Useful Again. In Proc. 1997 Usenix Technical Conf., January 1997.

[Paz99] M. Pazzani, A Framework for Collaborative, Content-Based and Demographic Filtering,
Artificial Intelligence Review, 1999.

BIBLIOGRAPHY

102

[PHL00] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, Collaobrative filtering by
personality diagnosis: A hybrid memory and model-based approach, In Proc. 16th Conf.
Uncertainty in Artificial Intelligence (UAI-2000), Stanford, CA, June 2000.

[RIS+94] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl, GroupLens: An open
architechure for collaborative filtering of netnews. In Proc. ACM Conf. Computer Support
Cooperative Work (CSC) 1994, New York, NY, pages 175-186, October 1994.

[Rob81] S. E. Robertson, The methodology of information retrieval experiment. Information
Retrieval Experiment, K. S. Jones, Ed., Chapter 1, pages 9-31. Butterworths, 1981.

[RP97] J. Rucker and M. J. Polanco, SiteSeer: Personalized Navigation for the Web, CACM,
40(3), 73-75, March 1997.

[RR91] R Rosenthal and R. Rosnow, Essentials of Behavioral Research: Methods and Data and
Analysis, McGraw Hill, second edition, 1991.

[Sho92] L. Shoshana, Architechtng Personalized Delivery of Multimedia Information, CACM,
35(12), 39-50, December 1992.

[SKB+98] B. M. Sarwar, J. A. Konstan, A. Borchers, J. L. Herlocker, B. N. Miller, and J. Riedl,
Using Filtering Agents to Improve Prediction Quality in the Grouplens Research Collaborative
Filtering System. In Proc. ACM Conf. Computer Support Cooperativ Work (CSCW) 1998,
Seattle, WA., page 345-354 Novemer 1998.

[SKR99] J. B. Schafer, J. Konstan, and J. Riedl, Recommender Systems in E-Commerce, ACM
Conf. Electronic Commerce (EC-99), Denver, CO, pages 158-166, November 1999.

[SMc83] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-
Hill, 1983.

[SM95] U. Shardanand and P. Maes, Social information filtering: Algorithms for automating
“word of mouth.” In Proc. 1995 ACM Conf. Human Factors in Computing Systems, New York,
NY, pages 210-217, 1995.

BIBLIOGRAPHY

103

[Swe88] J. A. Swets, Measuring the accuracy of diagnostic systems, Science, 240(4857): 1285-
1289, June 1988.

[THA+97] L. Tereen, W. Hill, B. Amento, D. McDonald, and J. Creter, PHOAKS: A System for
Sharing Recommendations, CACM, 40(3), pages 59-62, March 1997.

[UF98] L. H. Ungar and D. P. Foster, Clustering Methods for Collaborative Filtering, In AAAI
Workshop on Recommendation Systems, 1998.

[ZHL+98] O. R. Zaiane, J. Han, Z. N. Li, J. Y. Chiang, and S. Chee, MultiMedia-Miner: A
System Prototype for MultiMedia DataMining, In Proc. 1998 ACM-SIGMOD Conf. on
Management of Data, (system demo), Seattle, Washington, June 1998, pp. 581-583.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny, Birch: And Efficient Data Clustering
Method for Very Large Databases, In Proc. 1996 ACM SIGMOD Int. Conf. Management of Data,
pages 103-114, Montreal, Canada, June 1996.

1

1

