
Learning Collaborative Information Filters

Daniel Billsus and Michael J. Pazzani
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

{dbillsus, pazzani}@ics.uci.edu

Abstract

Predicting items a user would like on the basis of
other users’ ratings for these items has become a
well-established strategy adopted by many rec-
ommendation services on the Internet. Although
this can be seen as a classification problem, algo-
rithms proposed thus far do not draw on results
from the machine learning literature. We propose
a representation for collaborative filtering tasks
that allows the application of virtually any ma-
chine learning algorithm. We identify the short-
comings of current collaborative filtering tech-
niques and propose the use of learning algo-
rithms paired with feature extraction techniques
that specifically address the limitations of previ-
ous approaches. Our best-performing algorithm
is based on the singular value decomposition of
an initial matrix of user ratings, exploiting latent
structure that essentially eliminates the need for
users to rate common items in order to become
predictors for one another's preferences. We
evaluate the proposed algorithm on a large data-
base of user ratings for motion pictures and find
that our approach significantly outperforms cur-
rent collaborative filtering algorithms.

1 INTRODUCTION

Research on intelligent information agents in general, and
recommendation systems in particular, has recently at-
tracted much attention. The reasons for this are twofold.
First, the amount of information available to individuals is
growing steadily. Information overload has become a
popular buzzword of our times and people feel over-
whelmed when navigating through today's information
and media landscape. This leads to a clear demand for
automated methods, commonly referred to as intelligent
information agents, that locate and retrieve information

with respect to users’ individual preferences. Second, the
number of users accessing the Internet is also growing.
Not only does this lead to an incredible variety of subjects
that can be learned about online, it opens up new possi-
bilities to organize and recommend information. The cen-
tral idea here is to base personalized recommendations for
users on information obtained from other, ideally like-
minded, users. This is commonly known as collaborative
filtering or social filtering.

The underlying techniques used in today's recommenda-
tion systems fall into two distinct categories: content-
based and collaborative methods. Content-based methods
require textual descriptions of the items to be recom-
mended and draw on results from both information re-
trieval and machine learning research (e.g., Pazzani and
Billsus, 1997). In general, a content-based system ana-
lyzes a set of documents rated by an individual user and
uses the content of these documents, as well as the pro-
vided ratings, to infer a profile that can be used to rec-
ommend additional items of interest. In contrast, collabo-
rative methods recommend items based on aggregated
user ratings of those items, i.e. these techniques do not
depend on the availability of textual descriptions. Both
approaches share the common goal of assisting in the
user’s search for items of interest, and thus attempt to
address one of the key research problems of the informa-
tion age: locating needles in a haystack that is growing
exponentially.

In this paper we focus on collaborative filtering tech-
niques. A variety of algorithms have previously been re-
ported in the literature and their promising performance
has been evaluated empirically (Shardanand and Maes,
1995; Hill et al. 1995; Resnick et al. 1994). These results,
and the continuous increase of people connected to the
Internet, led to the development and employment of nu-
merous collaborative filtering systems. Virtually all topics
that could be of potential interest to users are covered by
special-purpose recommendation systems: web pages,
news stories, movies, music videos, books, CDs, restau-
rants, and many more. Some of the best-known represen-

tatives of these systems, such as FireFly
(www.firefly.com) or WiseWire (www.wisewire.com)
have turned into commercial enterprises. Furthermore,
collaborative filtering techniques are becoming increas-
ingly popular as part of online shopping sites. These sites
incorporate recommendation systems that suggest prod-
ucts to users based on products that like-minded users
have ordered before, or indicated as interesting. For ex-
ample, users can find out which CD they should order
from an online CD store if they provide information about
their favorite artists, and several online bookstores (e.g.
amazon.com) can associate their available titles with other
titles that were ordered by like-minded people.

Although there seems to be an increasingly strong de-
mand for collaborative filtering techniques, only a few
different algorithms have been proposed in the literature
thus far. Furthermore, the reported algorithms are based
on rather simple predictive techniques. Although collabo-
rative filtering can be seen as a classification task, the
problem has not received much attention in the machine
learning community. It seems likely that predictive per-
formance can be increased through the development of
special-purpose algorithms that draw on results from the
machine learning literature.

This paper can be outlined as follows. We briefly present
the central ideas of previously reported collaborative fil-
tering algorithms. We identify the main shortcomings of
these approaches and motivate the need for techniques
that do not suffer from these limitations. We then explain
how the task of computing collaborative recommenda-
tions can be represented as a classification task. Within
this framework we present a learning algorithm that ad-
dresses the limitations of previous approaches. The pro-
posed method is based on dimensionality reduction
through the singular value decomposition (SVD) of an
initial matrix of user ratings, exploiting latent structure
that essentially eliminates the need for users to rate com-
mon items in order to become predictors for one another’s
preferences. An artificial neural network is used to com-
pute final recommendations. We evaluate our algorithm
on a large database of user ratings for motion pictures and
show that it significantly outperforms previously pro-
posed algorithms.

2 COLLABORATIVE FILTERING
ALGORITHMS

In this section we briefly outline the main ideas of col-
laborative filtering algorithms reported in the literature.
Shardanand and Maes, 1995, discuss a variety of social
filtering algorithms and evaluate them in the context of
their music recommendation system Ringo (predecessor
to FireFly). These algorithms are based on a simple intui-
tion: predictions for a user should be based on the simi-

larity between the interest profile of that user and those of
other users. Therefore, the first step of these algorithms is
to compute similarities between user profiles. Suppose we
have a database of user ratings for items, where users in-
dicate their interest in an item on a numeric scale. It is
now possible to define similarity measures between two
user profiles, U and J, where a user profile simply con-
sists of a vector of numeric ratings. A measure proposed
by Shardanand and Maes is the Pearson correlation coef-
ficient, rUJ. Once the similarity between profiles has been
quantified, it can be used to compute personalized
recommendations for users. All users whose similarity is
greater than a certain threshold t are identified and
predictions for an item are computed as the weighted
average of the ratings of those similar users for the item,
where the weight is the computed similarity. Note that
this prediction scheme leads to cases where predictions
cannot be computed for all items in the database. If the
threshold t is set to a high value, only a few very similar
users are considered and it becomes increasingly likely
that ratings for some specific item are not available. In
order to avoid this problem, (Resnick et al., 1994)
compute predictions according to the following formula,
where Ux is a rating to be predicted for User U on item x
and rUJ is the correlation between users U and J.

∑
∑

∈

∈

−
+=

xofRatersJ
UJ

xofRatersJ
UJx

x r

rJJ

UU

)(

where

∑∑
∑

−⋅−

−−
=

22)()(

))((

JJUU

JJUU
rUJ

If no ratings for item x are available, the prediction is
equivalent to the mean of all ratings from user U. Similar
algorithms were reported and evaluated in (Hill et al.
1995).

While these correlation-based prediction schemes were
shown to perform well, they suffer from several limita-
tions. Here, we identify three specific problems: First,
correlation between two user profiles can only be com-
puted based on items that both users have rated, i.e. the
summations and averages in the correlation formula are
only computed over those items that both users have
rated. If users can choose among thousands of items to
rate, it is likely that overlap of rated items between two
users will be small in many cases. Therefore, many of the
computed correlation coefficients are based on just a few
observations, and thus the computed correlation cannot be
regarded as a reliable measure of similarity. For example,
a correlation coefficient based on three observations has
as much influence on the final prediction as a coefficient

based on 30 observations. Second, the correlation ap-
proach induces one global model of similarities between
users, rather than separate models for classes of ratings
(e.g. positive rating vs. negative rating). Current ap-
proaches measure whether two user profiles are positively
correlated, not correlated at all or negatively correlated.
However, ratings given by one user can still be good pre-
dictors for ratings of another user, even if the two user
profiles are not correlated. Consider the case where user
A’s positive ratings are a perfect predictor for a negative
rating from user B. However, user A’s negative ratings do
not imply a positive rating from user B, i.e. the correlation
between the two profiles could be close to zero, and thus
potentially useful information is lost. Third, and maybe
most importantly, two users can only be similar if there is
overlap among the rated items, i.e. if users did not rate
any common items, their user profiles cannot be corre-
lated. Due to the enormous number of items available to
rate in many domains, this seems to be a serious stum-
bling block for many filtering services, especially during
the startup phase. However, just knowing that users did
not rate the same items does not necessarily mean that
they are not like-minded. Consider the following exam-
ple: Users A and B are highly correlated, as are users B
and C. This relationship provides information about the
similarity between users A and C as well. However, in
case users A and C did not rate any common items, a cor-
relation-based similarity measure could not detect any
relation between the two users. We believe that poten-
tially useful information is lost if this kind of transitive
similarity relation cannot be detected.

3 COLLABORATIVE FILTERING AS A
CLASSIFICATION PROBLEM

In this section we present collaborative filtering in a ma-
chine learning framework and suggest the use of an algo-
rithm that specifically addresses the aforementioned
limitations of correlation-based approaches.

Collaborative filtering can be seen as a classification task.
Based on a set of ratings from users for items, we are
trying to induce a model for each user that allows us to
classify unseen items into two or more classes, for exam-
ple like and dislike. Alternatively, if our goal is to predict
user ratings on a continuous scale, we have to solve a
regression problem.

Our initial data exists in the form of a sparse matrix,
where rows correspond to users, columns correspond to
items and the matrix entries are ratings. Note that sparse
in this context means that most elements of the matrix are
empty, because every user typically rates only a very
small subset of all possible items. The prediction task can
now be seen as filling in the missing matrix values. Since
we are interested in learning personalized models for each

user, we associate one classifier (or regression model)
with every user. This model can be used to predict the
missing values for one row in our matrix.

Table 1: Exemplary User Ratings

I1 I2 I3 I4 I5

U1 4 3
U2 1 2
U3 3 4 2 4
U4 4 2 1 ?

With respect to Table 1, consider that we would like to
predict user 4’s rating for item 5. We can train a learning
algorithm with the information that we have about user
4’s previous ratings. In this example user 4 has provided 3
ratings, which leads to 3 training examples: I1, I2, and I3.
These training examples can be directly represented as
feature vectors, where users correspond to features (U1,
U2, U3) and the matrix entries correspond to feature val-
ues. User 4’s ratings for I1, I2 and I3 are the class labels of
the training examples. However, in this representation we
would have to address the problem of many missing fea-
ture values. If the learning algorithm to be used cannot
handle missing feature values, we can apply a simple
transformation. Note that we cannot introduce an addi-
tional numeric value that indicates a missing feature, be-
cause this would conflate the new value and the observed
ratings. However, every user can be represented by up to
n Boolean features, where n is the number of points on the
scale that is used for ratings. For example, if the full n-
point scale of ratings is used to represent ratings from m
users, the resulting Boolean features are of the form “User
m's rating was i”, where 0 < i ≤ n. We can now assign
Boolean feature values to all of these new features. If this
representation leads to an excessive number of features
that only appear rarely throughout the data, the rating
scale can be further discretized, e.g. into the two classes
like and dislike. The resulting representation is simple and
intuitive: a training example E corresponds to an item that
the user has rated, the class label C is the user’s discre-
tized rating for that item, and items are represented as
vectors of Boolean features Fi.

Table 2: Exemplary Feature Vectors

E1 E2 E3

U1like 1 0 1
U1dislike 0 0 0
U2like 0 0 0
U2dislike 0 1 0
U3like 1 1 0
U3dislike 0 0 1
Class like dislike dislike

Table 2 shows the resulting Boolean feature vectors (true
= 1 and false = 0) for user 4, where a rating of either 1 or
2 corresponds to the class dislike, and a rating of either 3
or 4 corresponds to the class like.

After converting a data set of user ratings for items into
this format, we can draw on the machine learning litera-
ture and apply virtually any supervised learning algorithm
that, through analysis of a labeled training sample T = {Ej,
Cj}, can induce a function f : E→ C.

However, if we look back at the correlation-based ap-
proaches described earlier and express them in our learn-
ing framework, we notice that these algorithms solve a
classification problem in a somewhat unconventional
way. If features and classes are represented as ordinal
values (no discretization), these algorithms measure the
degree of correlation between features and class labels.
Predictions for unseen examples are then computed as a
weighted average of feature values. While this approach
seems to work reasonably well for the domain at hand, it
is not supported by a sound theory that we could use to
motivate the algorithms’ use for either a classification or
regression task. It comes as no surprise that researchers in
machine learning have thus far not attempted to solve any
task with this algorithm. It seems likely that theoretically
well-founded algorithms that have the discrimination
between classes as their specific goal, can outperform
correlation-based approaches.

3.1 REDUCING DIMENSIONALITY

Our goal is to construct or apply algorithms that address
the previously identified limitations of correlation-based
approaches. As mentioned earlier, the computation of
correlation coefficients can be based on too little infor-
mation, leading to inaccurate similarity estimates. When
applying a learning algorithm, we would like to avoid this
problem. In particular, we would like to discard informa-
tion that we do not consider informative for our classifi-
cation task. Likewise, we would like to be able to take
possible interaction and dependencies among features into
account, as we regard this as an essential prerequisite for
users to become predictors for one another's preferences
even without rating common items. Both of these issues
can be addressed through the application of appropriate
feature extraction techniques. Furthermore, the need for
dimensionality reduction is of particular importance if we
represent our data in the proposed learning framework.
For large databases containing many users we will end up
with thousands of features while our amount of training
data is very limited. Learning under these conditions is
not practical, because the amount of data points needed to
approximate a concept in d dimensions grows exponen-
tially with d, a phenomenon commonly referred to as the
curse of dimensionality (Bellman, 1961). This is, of
course, not a problem unique to collaborative filtering.

Other domains with very similar requirements include the
classification of natural language text or, in general, any
information retrieval task. In these domains the similarity
among text documents needs to be measured. Ideally, two
text documents should be similar if they discuss the same
subject or contain related information. However, it is of-
ten not sufficient to base similarity on the overlap of
words. Two documents can very well discuss similar
subjects, but use a somewhat different vocabulary. A low
number of common words should not imply that the
documents are not related. This is very similar to the
problem we are facing in collaborative filtering: the fact
that two users rated different items should not imply that
they are not like-minded. Researchers in information re-
trieval have proposed different solutions to the text ver-
sion of this problem. One of these approaches, Latent
Semantic Indexing (LSI) (Deerwester et al., 1990) is
based on dimensionality reduction of the initial data
through singular value decomposition (SVD). We will
now show how the SVD can be used as a dimensionality
reduction technique for our collaborative filtering task. A
more detailed description of underlying algebraic princi-
ples can be found in (Berry et al., 1994).

3.2 COLLABORATIVE FILTERING AND THE
SVD

We start our analysis based on a rectangular matrix con-
taining Boolean values that indicate user ratings for items
(see Table 2). This matrix is typically very sparse, where
sparse means that most elements are zero, because each
item is only rated by a small subset of all users. Further-
more, many features appear infrequently or do not appear
at all throughout this matrix. However, features will only
affect the SVD if they appear at least twice. Therefore, we
apply a first preprocessing step and remove all features
that appear less than twice in our training data. The result
of this preprocessing step is a matrix A containing zeros
and ones, with at least two ones in every row. Using the
SVD, the initial matrix A with r rows, c columns and rank
m can be decomposed into the product of three matrices:

TVUA ∑=

where the columns of U and V are orthonormal vectors
that define the left and right singular vectors of A, and Σ is
a diagonal matrix containing corresponding singular
values. Since the derived vectors are orthonormal, no
vector can be reconstructed as a linear combination of the
others. U is an m × c matrix and the singular vectors cor-
respond to columns of the original matrix. V is an r × m
matrix and the singular vectors correspond to rows of the
original matrix. The singular values quantify the amount
of variance in the original data captured by the singular
vectors. This representation provides an ideal framework
for dimensionality reduction, because one can now quan-
tify the amount of information that is lost if singular val-

ues and their corresponding singular vector elements are
discarded. The smallest singular values are set to zero,
reducing the dimensionality of the new data representa-
tion. The underlying intuition is that the n largest singular
values together with their corresponding singular vector
elements capture the important "latent" structure of the
initial matrix, whereas random fluctuations are elimi-
nated. The usefulness of the SVD for our task can be fur-
ther explained by its geometric interpretation. If we
choose to retain the k largest singular values, we can in-
terpret the singular vectors, scaled by the singular values,
as coordinates of points representing the rows and col-
umns of the original matrix in k dimensions. In our con-
text, the goal of this transformation is to find a spatial
configuration such that items and user ratings are repre-
sented by points in k-dimensional space, where every item
is placed at the centroid of every user rating that it re-
ceived and every user rating is placed at the centroid of all
the items that it was assigned to. While the position of
vectors in this k-dimensional space is determined through
the assignment of ratings to items, items can still be close
in this space even without containing any common rat-
ings. Likewise, user ratings can be close to each other,
although they were never assigned to a common set of
items. Many different strategies for classification of items
are theoretically possible using this k-dimensional repre-
sentation. We will now describe the complete algorithm
for item classification that we used in our experiments.

3.3 USING SINGULAR VECTORS AS TRAINING
EXAMPLES

Our training data is a set of rated items, represented as
Boolean feature vectors (see Table 2). We compute the
SVD of the training data and discard the n smallest sin-
gular values, reducing the dimensionality to k. Currently,
we set k to 0.9 ⋅ m, where m is the rank of the initial ma-
trix. This value was chosen because it resulted in the best
classification performance (evaluated using a tuning set,
see Section 4). The singular vectors of matrix U scaled by
the remaining singular values represent rated items in k
dimensions. These vectors become our new training ex-
amples. Since we compute the SVD of the training data,
resulting in real-valued feature vectors of size k, we need
to specify how we transform examples to be classified
into this format. Based on the geometric interpretation of
the SVD, the solution to this problem is straightforward.
We compute a k-dimensional vector for an item, so that
with appropriate rescaling of the axes by the singular val-
ues, it is placed at the centroid of all the user ratings that it
contains. Mathematically, we can compute this vector as:

1−Σ= kk
T

k Uvv

where v is a Boolean feature vector containing user rat-
ings, Uk is a matrix of singular vectors with k elements in

each vector, and Σk is a diagonal matrix containing the k
largest singular values.

At this point we need to pick a suitable learning algorithm
that takes real-valued feature vectors as its input and
learns a function that either predicts class membership or
computes a score a user would assign to an item. Ideally,
we would like to use a learning paradigm that allows for
maximum flexibility in evaluating this task as either a
regression or classification problem. Therefore, we se-
lected artificial neural networks as the method of choice
for our purposes (Rumelhart and McLelland, 1986). It can
be shown that neural networks with linear output units
and a single hidden layer can approximate any continuous
function f by increasing the size of the hidden layer (Ri-
pley, 1996). This allows us to solve a regression problem.
Alternatively, if we replace the linear output units by lo-
gistic units, we can use the same framework to perform
logistic regression, or learn to discriminate between
classes. We ran various experiments on a tuning set of the
data available to us, to determine a network topology and
learning paradigm that resulted in good performance (see
Section 4 for details on the experimental evaluation). The
winning approach was a feed-forward neural network
with k input units, 2 hidden units and 1 output unit. The
hidden units use sigmoid functions, while the output unit
is linear. Weights are learned with backpropagation. Al-
though the task at hand might suggest using a user’s rat-
ing as the function value to predict, we found that a
slightly different approach resulted in better performance.
We determined the average rating for an item1 and trained
the network on the difference between a user's rating and
the average rating. This function appeared to be easier to
learn, presumably because the function values take on
extreme values less frequently and in these cases express
a user's individual taste. In order to predict scores for
items, the output of the network needs to be added to the
mean of the item. We then used a threshold t (depending
on the rating scale of the domain, see next section) to
convert the predicted rating to a binary class label. In
summary, our algorithm for collaborative filter induction
proceeds in the following steps:

Training:

• Convert the training data, a sparse matrix of user
ratings, to Boolean feature vectors, resulting in a ma-
trix filled with zeros (false) and ones (true).

• Compute the SVD of the training data.

• Select k, the number of dimensions to retain, and
reduce the extracted singular vectors accordingly.

• Train a neural network with singular vectors scaled
by singular values.

1 The average is computed using ratings from all users who rated
the item, except the user whose rating is to be predicted.

Predicting:

• Convert the item’s user ratings to a Boolean feature
vector.

• Scale the feature vector into the k-dimensional space.

• Feed the resulting real-valued vector to the trained
neural network to compute a prediction.

4 EXPERIMENTAL EVALUATION

In this section we report results of the experimental
evaluation of our proposed algorithm. We describe the
data set used, the experimental methodology, as well as
performance measures we consider appropriate for this
task.

4.1 THE EACHMOVIE DATABASE

We ran experiments using data from the EachMovie col-
laborative filtering service. The EachMovie service was
part of a research project at the Systems Research Center
of Digital Equipment Corporation. The service was avail-
able for a period of 18 months and was shut down in
September 1997. During that time the database grew to a
fairly large size, containing ratings from 72,916 users on
1,628 movies. User ratings were recorded on a numeric
six-point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The data set is
publicly available and can be obtained from Digital
Equipment Corporation (McJones, 1997).

Although data from 72,916 users is available, we restrict
our analysis to the first 2,000 users in the database. These
2,000 users provided ratings for 1,410 different movies.
We restricted the number of users considered, because we
are interested in the performance of the algorithm under
conditions where the ratio of users to items is low. This is
a situation that every collaborative filtering service has to
go through in its startup-phase, and in many domains we
cannot expect to have significantly more users than items.
We also believe that the deficiencies of correlation-based
approaches will be more noticeable under these condi-
tions, because it is less likely to find users with consider-
able overlap of rated items.

4.2 PERFORMANCE MEASURES

We are most interested in a system that can accurately
distinguish between movies a user would like and all
other movies rather than a method that accurately predicts
the numeric rating of every movie. Of course, a method
that predicts the actual ratings most exactly could also be
the best classifier for this classification task. To analyze
this, we defined two classes, hot and cold, that were used
to label movies. When transforming movies to training
examples for a particular user, we label movies as hot if

the rating for the movie was 0.8 or 1.0, or cold otherwise.
We decided to use this threshold since we are interested in
identifying movies the user would like and feel strongly
about. Since the correlation-based approaches as well as
the neural network predict numeric ratings, we base the
classification of movies on this numeric prediction, and
classify them as hot if the predicted rating exceeds the
threshold 0.7 (midpoint between the two possible user
ratings 0.6 and 0.8). At the same time, we can still use the
predicted score to rank-order classified movies. Not only
does assigning class labels allow us to measure classifica-
tion accuracy, we can also apply additional performance
measures, such as precision and recall, commonly used
for information retrieval tasks. In our domain, precision is
the percentage of movies classified as hot that are hot, and
recall is the percentage of hot movies that were classified
as hot. We believe that these measures are appropriate for
our study, because we would like to quantify performance
for a task that has the identification of relevant items as its
goal.

It is important to evaluate precision and recall in con-
junction, because it is easy to optimize either one sepa-
rately. However, for a classifier to be useful for our pur-
poses we demand that it be precise as well as have high
recall. In order to quantify this with a single measure,
(Lewis and Gale, 1994) proposed the F-measure, a
weighted combination of precision and recall that pro-
duces scores ranging from 0 to 1. Here we assign equal
importance to precision and recall:

recallprecision

recallprecision
F

+
⋅⋅= 2

In summary, we measure the overall performance of the
algorithms using classification accuracy and the
F-measure. Since we see the F-measure as a useful con-
struct to compare classifiers, but think that it is not an
intuitive measure to indicate a user's perception of the
usefulness of an actual system, we use an additional
measure: precision at the top n ranked items (here, we
report scores for n = 3 and n = 10).

4.3 EXPERIMENTAL METHODOLOGY

Since we are interested in the performance of the algo-
rithms with respect to the number of ratings provided by
users, we report learning curves where we vary the num-
ber of rated items from 10 to 50. For each user we ran a
total of 30 paired trials for each algorithm. For an indi-
vidual trial of an experiment, we randomly selected 50
rated items to use as a training set, and 30 as a test set. We
then started training with 10 examples out of the set of 50
and increased the training set incrementally in steps of 10,
measuring the algorithms' performance on the test set for
each training set size. Final results for one user are then
averaged over all trials. We repeated this for 20 users and

the final curves reported here are averaged over those 20
users.

The actual size of the feature vectors used to train the
neural network depends on the number of rated items in
the current training set, as well as the particular rated
items. Initially, every training example consists of 4000
Boolean values (2000 users * 2 features per user). Delet-
ing all features that appear less than twice reduces the
number of features approximately by a factor of 4 (see
section 3.2), i.e. if we start to train our algorithm with 10
examples, we have an initial 10 × 1000 matrix of training
data. After decomposing this matrix using the SVD, the
matrix U that represents rated items in a space of lower
dimensions is a 10 x 10 matrix (because the initial matrix
has 10 columns and this is also the rank of the matrix).
Since we keep only 90% of the singular values, the re-
sulting feature vectors consist of 9 real values. Likewise,
if we have 50 examples in the training set, the resulting
size of every training example after dimensionality re-
duction is 45.

We determined parameters for our algorithms using a
tuning set of 20 randomly selected users. The results re-
ported here are averaged over 20 different users. The
training data for these users is based on ratings from the
first 2000 users of the database, as described earlier. We

selected users randomly, but with the following con-
straints. First, only users whose prior probability of liking
a movie is below 0.75 are considered. Otherwise, scores
that indicate high precision of our algorithms might be
biased by the fact that there are some users in the database
who either like everything or just gave ratings for movies
they liked. Second, only users that rated at least 80 mov-
ies were selected, so that we could use the same number
of training and test examples for all users.

4.4 SUMMARY OF RESULTS

Figure 1 summarizes the performance of three different
algorithms. The algorithm labeled Correlation is the cor-
relation-based approach that performed best on this data
out of the strategies described in Section 2. This approach
uses the prediction formula as described in (Resnick et al
1994) and summarized in Section 2. We consider all cor-
relations, i.e. we do not require correlations to be above a
certain threshold. The algorithm labeled SVD/ANN is our
dimensionality reduction approach coupled with a neural
network as described in Section 3.3. Since this algorithm
is a combination of a feature extraction technique (SVD)
and a learning algorithm (ANN), the observed perform-
ance does not allow us to infer anything about the relative
importance of each technique individually. Therefore, we
report the performance of a third algorithm, labeled Info-

Precision at top 3

60

65

70

75

80

85

0 10 20 30 40 50 60

Training Examples (rated items)

P
re

ci
si

on
 a

t
to

p
3

Precision at top 10

60

65

70

75

0 10 20 30 40 50 60
Training Examples (rated items)

P
re

ci
si

o
n

 a
t

to
p

 1
0

Classification Accuracy

60

62

64

66

68

70

0 10 20 30 40 50 60

Training Examples (rated items)

A
cc

ur
ac

y

Correlation SVD / ANN InfoGain / ANN

F-Measure

50

55

60

65

70

0 10 20 30 40 50 60

Training Examples (rated items)

F
-M

ea
su

re

Figure 1: Learning Curves

Gain/ANN, in order to quantify the importance of our
proposed feature extraction technique. InfoGain/ANN uses
the same neural network setup as SVD/ANN, but applies a
different feature selection algorithm. Here, we compute
the expected information gain (Quinlan, 1986) of all the
initial features and then select the n most informative
features, where n is equivalent to the number of features
used by SVD/ANN for each training set size. Since ex-
pected information gain cannot detect interaction and de-
pendencies among features, the difference between
SVD/ANN and InfoGain/ANN allows us to quantify the
utility of the SVD for this task.

The results show that both SVD/ANN, as well as Info-
Gain/ANN, performed better than the correlation ap-
proach. In addition, SVD/ANN is more accurate and sub-
stantially more precise than InfoGain/ANN. At 50 training
examples Correlation reaches a classification accuracy of
64.4%, vs. 67.9% for SVD/ANN. While predictive accu-
racy below 70% might initially seem disappointing, we
need to keep in mind that our goal is not the perfect clas-
sification of all movies. We would like to have a system
that identifies many interesting items and does this with
high precision. This ability is measured by the F-measure
and we can see that SVD/ANN has a significant advantage
over the correlation approach (at 50 examples 54.2% for
Correlation vs. 68.8% for SVD/ANN). Finally, if we re-
strict our analysis to the top 3 or top 10 suggestions of
each algorithm, we can see that SVD/ANN is much more
precise than the other two algorithms. At 50 training ex-
amples Correlation reaches a precision of 72.6% at the
top 3 suggestions, InfoGain/ANN’s precision is 78.3% and
SVD/ANN reaches 83.9%. These results are encouraging
and provide empirical evidence that the use of theoreti-
cally well-founded learning algorithms can lead to im-
proved predictive performance on collaborative filtering
tasks. Furthermore, we have shown that an additional
performance increase can be obtained through the use of
appropriate dimensionality reduction techniques, such as
the SVD.

5 DISCUSSION AND FUTURE WORK

Our experiments illustrate the potential of dimensionality
reduction techniques that exploit the underlying “latent
structure” of user ratings. The key to success of this
method is that it can utilize information from users whose
ratings are not correlated, or who have not even rated
anything in common. However, since we are computing
the SVD of the training data, i.e. a matrix consisting only
of feature vectors for all items a user has rated, we might
not be exploiting the full potential of the method. Includ-
ing feature vectors of items that the user has not rated in
the matrix to decompose will affect the position of the
singular vectors corresponding to labeled training exam-
ples in k-dimensional space. Future experiments will re-

veal if further performance improvements can be
achieved through the addition of unlabeled training data.

We believe that additional knowledge about the similarity
of users and items can be gained through the analysis of
textual descriptions of items. Our long-term goal of this
work is to combine collaborative and content-based fil-
tering techniques. Similarity between users could then be
influenced by similarity between descriptions of rated
items. This is a very desirable characteristic, as it would
further reduce the need for ratings of common items. We
believe that content-based techniques will fit nicely into
the learning framework presented in this paper. Since
items correspond to feature vectors, one could extend
these feature vectors to contain content-based features.
We started to run initial experiments using textual de-
scriptions of movies, extending feature vectors with Boo-
lean features indicating the presence or absence of words.
These experiments have not yet led to significant per-
formance improvements. However, we assume that the
reason for this is the form of textual movie descriptions
available to us for these first experiments, rather than the
viability of the method itself.

While the proposed SVD/ANN approach leads to per-
formance gains, it is significantly more computationally
expensive than the other approaches discussed here. The
SVD implementation used in our experiments is a single-
vector Lanczos method which is part of the publicly
available software package SVDPACKC (Berry, 1992). Its
computational complexity is O(3Dz), where z is the num-
ber of non-zero elements in the matrix and D is the num-
ber of dimensions to be computed. In our experiments we
observed training times (SVD + network training) ranging
from 0.4 seconds for 10 training examples to 2.3 seconds
for 50 training examples2. While these times would allow
for the application of the algorithm as part of an intelli-
gent information agent operating under real-time condi-
tions, we need to keep in mind that we restricted our ex-
periments to 2000 users. Including more users leads to
larger matrices to be decomposed and the algorithm will
slow down. Therefore, it remains to be seen if similar
techniques could be applied to collaborative-filtering
services that have accumulated large amounts of data and
need to compute predictions under real-time conditions.
However, note that the SVD would not have to be recom-
puted for each user. The SVD of large portions of the
available data could be precomputed, and new items that
were not part of this analysis could be scaled into the k-
dimensional space as described in Section 3.3. The
viability, performance and complexity of this approach
will be the subject of future research.

2 Measured on a 200Mhz Pentium Pro system.

6 SUMMARY AND CONCLUSIONS

In this paper we have identified the shortcomings of cor-
relation-based collaborative filtering techniques and
shown how these problems can be addressed through the
application of classification algorithms. We believe that
the contributions of this paper are twofold. First, we have
presented a representation for collaborative filtering tasks
that allows the use of virtually any machine learning algo-
rithm. We hope that this will pave the way for further
analysis of the suitability of learning algorithms for this
task. Second, we have shown that exploiting latent struc-
ture in matrices of user ratings can lead to improved pre-
dictive performance. In a set of experiments with a data-
base of ratings for motion pictures, we used the singular
value decomposition to project user ratings and rated
items into a lower dimensional space. This allows users to
become predictors for one another’s preferences even
without any overlap of rated items. Since our society is
already being characterized as an information society that
suffers from steadily increasing information overload, we
regard the automated induction of personalized informa-
tion filters as an important research problem. The Internet
opens up new possibilities to collect enormous amounts of
information about users’ likes and dislikes. We hope this
paper will help develop new ideas for more effective use
of this information.

Acknowledgements

We would like to thank the System Research Center of
Digital Equipment Corporation for making the Each-
Movie database available for research.

References

Bellman, R. (1961). Adaptive Control Processes: A
Guided Tour. New Jersey: Princeton University Press.

Berry, M. W. (1992). Large scale singular value compu-
tations. International Journal of Supercomputer Applica-
tions, 6(1), 13-49.

Berry, M. W., Dumais, S. T., and O'Brien, G.W. (1995).
"Using linear algebra for intelligent information re-
trieval." SIAM Review, 37(4), 1995, 573-595.

Deerwester, D., Dumais, S. T., Landauer, T. K., Furnas,
G.W., and Harshman, R.A. (1990). "Indexing by latent
semantic analysis." Journal of the Society for Information
Science, 41(6), 391-407.

Hill, W., Stead, L., Rosenstein, M., and Furnas, G.
(1995). Recommending and Evaluating Choices in a Vir-
tual Community of Use. In Proceedings of the Conference
on Human Factors in Computing Systems (CHI95), 194-
201, Denver, CO, ACM Press.

Lewis, D. and Gale, W. A. (1994). A sequential algorithm
for training text classifiers. In Proceedings of the Seven-
teenth Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval, 3-
12, London, Springer-Verlag.

McJones, P. (1997). EachMovie collaborative filtering
data set. DEC Systems Research Center.
http://www.research.digital.com/SRC/eachmovie/.

Pazzani M., and Billsus, D. (1997). Learning and Revis-
ing User Profiles: The identification of interesting web
sites. Machine Learning 27, 313-331.

Quinlan, J.R. (1986). Induction of decision trees. Machine
Learning, 1:81–106.

Resnick, P., Neophytos, I., Mitesh, S. Bergstrom, P. and
Riedl, J. (1994) GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
CSCW94: Conference on Computer Supported Coopera-
tive Work, 175-186, Chapel Hill, Addison-Wesley.

Rumelhart, D. E. and McClelland, J. L. (eds) (1986) Par-
allel Distributed Processing: Explorations in the Micro-
structure of Cognition. Volume 1: Foundations. Cam-
bridge, MA: The MIT Press.

Ripley, B. D. (1996) Pattern Recognition and Neural
Networks. Cambridge: Cambridge University Press.

Shardanand, U. and Maes, P. Social Information Filtering:
Algorithms for Automating ’Word of Mouth’, In Pro-
ceedings of the Conference on Human Factors in Com-
puting Systems (CHI95), 210-217, Denver, CO, ACM
Press.

