
R-Tree

• An R-tree is a depth-balanced tree
– Each node corresponds to a disk page
– Leaf node: an array of leaf entries

• A leaf entry: (mbb, oid)
– Non-leaf node: an array of node entries

• A node entry: (dr, nodeid)

1

1 5

2
6

14

8

9

13

11

12

3

4

7
10

a c

b

d

R

a b c d

m=2, M=4

[1,2,5,6] [3,4,7,10] [8.9.14] [11,12,13]2

Properties
• The number of entries of a node (except for

the root) in the tree is between m and M
where m∈[0, M/2]
– M: the maximum number of entries in a node,

may differ for leaf and non-leaf nodes
P: disk page E: entry

– The root has at least 2 entries unless it is a leaf
• All leaf nodes are at the same level
• An R-tree of depth d indexes at least md+1

objects and at most Md+1 objects, in other
words,

⎣ ⎦)(/)(EsizePsizeM =

⎣ ⎦ ⎣ ⎦1log1log −≤≤− NdN mM
3

Search with R-tree

• Given a point q, find all mbbs containing q
• A recursive process starting from the root

result = ∅
For a node N

if N is a leaf node, then result = result ∪ {N}
else // N is a non-leaf node

for each child N’ of N
if the rectangle of N’ contains q
then recursively search N’

4

Time complexity of search

• If mbbs do not overlap on q, the
complexity is O(logmN).

• If mbbs overlap on q, it may not be
logarithmic, in the worst case when all
mbbs overlap on q, it is O(N).

5

Insertion – choose a leaf node
• Traverse the R-tree top-down, starting

from the root, at each level
– If there is a node whose directory rectangle

contains the mbb to be inserted, then search
the subtree

– Else choose a node such that the
enlargement of its directory rectangle is
minimal, then search the subtree

– If more than one node satisfy this, choose the
one with smallest area,

• Repeat until a leaf node is reached
6

Insertion – insert into the leaf node

• If the leaf node is not full, an entry
[mbb, oid] is inserted

• Else // the leaf node is full
– Split the leaf node
– Update the directory rectangles of the

ancestor nodes if necessary

7

1 5

2
6

14

8

9

13

11

12

3

4

7
10

a c

b

d

R

a b c d

15

Insert object 15

m=2, M=4

[1,2,5,6] [3,4,7,10] [8.9.14] [11,12,13,15]8

1 5

2
6

14

8

9

13

11

12

3

4

7
10

a c

b

d

m=2, M=4

15

Insert object 16

9

16e

[1,2,5,6]

R

a b c d
[3,4,7] [8.9.14][11,12,13,15]

e
[10,16]

f

R’

R’ f

Split - goal

• The leaf node has M entries, and one new
entry to be inserted, how to partition the
M+1 mbbs into two nodes, such that
– 1. The total area of the two nodes is minimized
– 2. The overlapping of the two nodes is

minimized
• Sometimes the two goals are conflicting

– Using 1 as the primary goal

10

11

Split - solution

• Optimal solution: check every possible
partition, complexity O(2M+1)

• A quadratic algorithm:
– Pick two “seed” entries e1 and e2 far from

each other, that is to maximize
area(mbb(e1,e2)) – area(e1) – area(e2)
here mbb(e1,e2) is the mbb containing both e1
and e2, complexity O((M+1)2)

– Insert the remaining (M-1) entries into the two
groups

12

Quadratic split cont.
• A greedy method
• At each time, find an entry e such that e

expands a group with the minimum area, if tie
– Choose the group of small area
– Choose the group of fewer elements

• Repeat until no entry left or one group has
(M-m+1) entries, all remaining entries go to
another group

• If the parent is also full, split the parent too. The
recursive adjustment happens bottom-up until
the tree satisfies the properties required. This
can be up to the root.

13

	R-Tree
	Properties
	Search with R-tree
	Time complexity of search
	Insertion – choose a leaf node
	Insertion – insert into the leaf node
	Split - goal
	Split - solution
	Quadratic split cont.

