
R-Tree

• An R-tree is a depth-balanced tree
– Each node corresponds to a disk page
– Leaf node: an array of leaf entries

• A leaf entry: (mbb, oid)
– Non-leaf node: an array of node entries

• A node entry: (dr, nodeid)
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Properties
• The number of entries of a node (except for 

the root) in the tree is between m and M
where m∈[0, M/2]
– M: the maximum number of entries in a node, 

may differ for leaf and non-leaf nodes
P: disk page   E: entry

– The root has at least 2 entries unless it is a leaf
• All leaf nodes are at the same level
• An R-tree of depth d indexes at least md+1

objects and at most Md+1 objects, in other 
words, 

⎣ ⎦)(/)( EsizePsizeM =

⎣ ⎦ ⎣ ⎦1log1log −≤≤− NdN mM
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Search with R-tree

• Given a point q, find all mbbs containing q
• A recursive process starting from the root

result = ∅
For a node N

if N is a leaf node, then result = result ∪ {N}
else // N is a non-leaf node

for each child N’ of N
if the rectangle of N’ contains q
then recursively search N’
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Time complexity of search

• If mbbs do not overlap on q, the 
complexity is O(logmN).

• If mbbs overlap on q, it may not be 
logarithmic, in the worst case when all 
mbbs overlap on q, it is O(N).
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Insertion – choose a leaf node
• Traverse the R-tree top-down, starting 

from the root, at each level
– If there is a node whose directory rectangle 

contains the mbb to be inserted, then search 
the subtree

– Else choose a node such that the 
enlargement of its directory rectangle is 
minimal, then search the subtree

– If more than one node satisfy this, choose the 
one with smallest area,

• Repeat until a leaf node is reached
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Insertion – insert into the leaf node

• If the leaf node is not full, an entry 
[mbb, oid] is inserted

• Else // the leaf node is full
– Split the leaf node
– Update the directory rectangles of the 

ancestor nodes if necessary
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Split - goal

• The leaf node has M entries, and one new 
entry to be inserted, how to partition the 
M+1 mbbs into two nodes, such that
– 1. The total area of the two nodes is minimized
– 2. The overlapping of the two nodes is 

minimized
• Sometimes the two goals are conflicting

– Using 1 as the primary goal
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Split - solution

• Optimal solution: check every possible 
partition, complexity O(2M+1)

• A quadratic algorithm:
– Pick two “seed” entries e1 and e2 far from 

each other, that is to maximize 
area(mbb(e1,e2)) – area(e1) – area(e2)
here mbb(e1,e2) is the mbb containing both e1
and e2, complexity O((M+1)2)

– Insert the remaining (M-1) entries into the two 
groups
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Quadratic split cont.
• A greedy method
• At each time, find an entry e such that e

expands a group with the minimum area, if tie
– Choose the group of small area
– Choose the group of fewer elements

• Repeat until no entry left or one group has 
(M-m+1) entries, all remaining entries go to 
another group

• If the parent is also full, split the parent too. The 
recursive adjustment happens bottom-up until 
the tree satisfies the properties required. This 
can be up to the root.
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