R-Tree

 An R-tree is a depth-balanced tree
— Each node corresponds to a disk page

— Leaf node: an array of leaf entries
* A leaf entry: (mbb, oid)

— Non-leaf node: an array of node entries
e A node entry: (dr, nodeid)

=4

2, M

m=

e e o e e - -

1
|
|
[
|
|
|
|
[
- —
I

9
10

[8.9.14] [11,12,13]

[3,4,7,10]

[1,2,5,0]

Properties

 The number of entries of a node (except for
the root) In the tree is between m and M
where me[0, M/2]

— M: the maximum number of entries in a node,
may differ for leaf and non-leaf nodes
M =|size(P)/size(E) | P: disk page E: entry
— The root has at least 2 entries unless it is a leaf
e All leaf nodes are at the same level

« An R-tree of depth d indexes at least md+1
objects and at most Md9*1 objects, in other
words, |log,, N-1|<d <|log, N -1]

3

Search with R-tree

« Given a point g, find all mbbs containing q

* A recursive process starting from the root
result =

For a node N
If N Is a leaf node, then result = result U {N}
else // N is a non-leaf node
for each child N’ of N
If the rectangle of N’ contains q
then recursively search N’

Time complexity of search

 If mbbs do not overlap on g, the
complexity i1s O(log,,N).
 If mbbs overlap on g, it may not be

logarithmic, in the worst case when all
mbbs overlap on g, it is O(N).

Insertion — choose a leaf node

* Traverse the R-tree top-down, starting
from the root, at each level
— If there Is a node whose directory rectangle

contains the mbb to be inserted, then search
the subtree

— Else choose a node such that the
enlargement of its directory rectangle is
minimal, then search the subtree

— If more than one node satisfy this, choose the
one with smallest area,

 Repeat until a leaf node Is reached

6

Insertion — Insert into the leaf node

 If the leaf node is not full, an entry
[mbb, oid] is inserted
« Else //the leaf node is full

— Split the leaf node

— Update the directory rectangles of the
ancestor nodes if necessary

=4

m=2, M

Insert object 15

e -

9
10

S

[3,4,7,10] [8.9.14] [11,12,13,15]

[1,2,5,0]

Insert object 16

e = -

[1,2,5,6][3,4,7][10,16] [8.9.14][11,12,13,15]

Split - goal

e The leaf node has M entries, and one new
entry to be inserted, how to partition the
M+1 mbbs into two nodes, such that

— 1. The total area of the two nodes is minimized

— 2. The overlapping of the two nodes is
minimized

Sometimes the two goals are conflicting

— Using 1 as the primary goal

10

11

Split - solution

e Optimal solution: check every possible
partition, complexity O(2M+1)

« A quadratic algorithm:

— Pick two “seed” entries e, and e, far from
each other, that is to maximize
area(mbb(e,,e,)) — area(e,) — area(e,)
here mbb(e,,e,) Is the mbb containing both e,
and e,, complexity O((M+1)?)

— Insert the remaining (M-1) entries into the two
groups

12

13

Quadratic split cont.

A greedy method

At each time, find an entry e such thate
expands a group with the minimum area, if tie

— Choose the group of small area
— Choose the group of fewer elements

Repeat until no entry left or one group has
(M-m+1) entries, all remaining entries go to
another group

If the parent is also full, split the parent too. The
recursive adjustment happens bottom-up until
the tree satisfies the properties required. This
can be up to the root.

	R-Tree
	Properties
	Search with R-tree
	Time complexity of search
	Insertion – choose a leaf node
	Insertion – insert into the leaf node
	Split - goal
	Split - solution
	Quadratic split cont.

