

 Introduction

▪ Storage

▪ Failure

▪ Recovery

▪ Logging

 Undo Logging
 Redo Logging
 ARIES

 Volatile storage

▪ Main memory

▪ Cache memory

 Nonvolatile storage

▪ Stable storage
▪ Online (e.g. hard disk, solid state disk)

▪ Transaction logs are written to stable storage, which is guaranteed
to survive system crashes and media failures

▪ Offline – optical, flash drives, removable hard drives etc.
▪ deprecated - floppy disk, zip drives, tape, punch cards …

 A small list of potential problems

▪ User tries to enter an incorrect msp

▪ A disk crashes

▪ Power goes out while transactions are

being entered

▪ An explosion destroys the site where the

DB is located

▪ Aliens destroy the planet to make way

for an interstellar bypass

prevented by primary key

recover with a RAID scheme

Use transaction log to recover

Use off-site backup to recover

???

 System crashes

▪ Results in data loss of all data in volatile storage

▪ Possible causes include power failures, operating system
failures, etc.

 Media failures (disk crash)

▪ Results in loss of online (non-volatile) data and volatile
data

▪ Possible causes include damages to the storage media and
human error (e.g. accidentally erasing the disk)

 A database is assumed to be in a consistent
state before a transaction is processed

▪ If a transaction executes in its entirety in isolation
then the DB is still consistent after its execution

 If a transaction is only partially executed the
DB may not be consistent

▪ Transactions should be atomic but

▪ May be interrupted by a system failure

 Transactions involve reading or writing a
database element (or both)

▪ Adding money to a bank account

▪ Altering a student's GPA

▪ Registering for a course

▪ Changing an address

 This occurs in main memory

▪ The element must be retrieved from disk and then

▪ Written back to disk so that the transaction is durable

Action Memory A Memory B Disk A Disk B

R(A) 250 250 500

A = A + 100 250 250 500

W(A) 350 250 500

R(B) 350 500 250 500

B = B - 100 350 500 250 500

W(B) 350 400 250 500

Output(A) 350 400 350 500

Output(B) 350 400 350 400

requests
and
releases
pages

locks and
unlocksTransaction Scheduler

DB Elements

Log Tail

Buffer Pool Stable Storage

Log

DB

reads and
writes

Buffer
Manager

 The recovery manager is responsibility for
ensuring atomicity and durability

▪ Atomicity – undo actions of aborted transactions

▪ Durability – ensure the actions of committed
transactions survive failures

 These tasks should be carried out efficiently

▪ Recovery time and overhead should be minimized

▪ Given that crashes do not occur frequently

▪ There is a trade-off between recovery time and
normal running time

 Log transactions to allow recovery

T1 T2

R(A)

W(A)

R(B)

R(C)

W(C)

W(B)

R(D)

Commit

CRASH!!

REDO UNDO

 The log is a history of executed transactions

▪ A file of records stored in stable storage

▪ The most recent part of the log is kept in main memory
and periodically forced to stable storage

 Each log record has a unique id, called
the log sequence number (LSN)

▪ LSNs are assigned in sequential order

▪ A record is written for each action of transaction

 Every DB page contains the LSN of the most recent
log record that described a change to that page

the log tail

 Transaction logs should be maintained in
nonvolatile storage (disk or tape)

▪ Data written to stable storage is safer
▪ It is impossible to guarantee safety but it is possible to make data

loss very unlikely

▪ RAID systems can ensure that a single disk failure will not
result in data loss

▪ Mirrored disks can also be used to minimize data loss
▪ If copies of the log are made, one disk can be stored remotely to

mitigate against the effects of fire or other disasters

 It is possible to write a transaction's changes to a DB
object to disk before the transaction commits

▪ If buffer manager chooses to replace the frame containing
the object
▪ Note that the frame must have been unpinned

▪ Referred to as stealing the frame
▪ From the uncommitted transaction

 When a transaction commits, its changes may need
to be immediately written to disk known as forcing

▪ Ensuring that the transaction is preserved

 Undo logging is a recovery scheme that undoes the
work of incomplete transactions after a crash

▪ It does not redo transactions

 The transaction log contains the following records

▪ <start T> indicates that the transaction, T, has begun

▪ <update T, X, v> records changes made by T

▪ <commitT> indicates that T has completed

▪ T will not make any more changes to the DB, and

▪ Any changes made by T should appear on disk

▪ <abort T> indicates that T could not complete

▪ Any changes made by T should not appear on disk

 An undo log's update records track DB changes, the
records are triples <T, X, v>, where

▪ Transaction T, has changed database element X, and the
previous value of X was v

 Changes reflected by update records normally occur
in memory, and may not yet be recorded on disk

▪ The log record is in response to a write action, not

▪ An output action, which outputs data to a disk

 The undo log does not record the new value written
by an update

Object A had value 123

T1 adds 100 to object A

<update T1, A, 123>

 U1 – If T modifies X

▪ The update record <T, X, v> must be written to
disk before the new value of X is written to disk

 U2 – If T commits

▪ The commit log record must be written to disk
after all the changes of T are written to disk

▪ As soon as possible after T's last change has been written to disk

 Both rules necessitate that pages are forced to disk

▪ The log manager must have a flush-log command that tells the
buffer manager to write the log to disk, and

▪ The transaction manager must be able to make the buffer
manager output pages to disk

i.e. T writes X T1 log

R(A)

W(A)

update(T1, a, …)

0utput(A)

commit

commit(t1)

 In the event of a system failure a transaction
may not have executed atomically

▪ Some changes made by the transaction have been
written to disk and others are not

▪ The DB may be in an inconsistent state

 The recovery manager uses the log to restore the
DB to a consistent state

▪ Assume the recovery manager considers the entire log
▪ This is not an efficient approach, and most systems use checkpoints

▪ All incomplete transactions are undone

T1

R(A)

W(A)

CRASH!!

R(B)

W(B)

 A transaction is incomplete if it has a start record on
the log but no matching commit record

▪ Any changes made by such transactions are reversed

▪ Transactions with a commit record on the log must have
been written to the disk (from rule U2)

 Update records are used to reverse transactions

▪ If a transaction made a change to the DB there must be an
update record on the log (from rule U1)

▪ Changes can be reversed by rewriting each data object X
with the value v recorded in the update record

 Review log to find incomplete transactions
 Proceed backwards through the log and for each

update record <T, X, v>

▪ IfT has a commit record, do nothing, otherwise

▪ T is incomplete so change the value of X to v

 Write an abort record to the log for each incomplete
transaction

 The process must go backwards through the log to
ensure that the DB is in the correct state

Effect of T must be on disk – U2

To record that the transaction needs to be processed again

Action MM(A) MM(B) DB(A) DB(B) Log

start T

READ (A) 12 12 4

WRITE (A) 24 12 4 T, A, 12

READ (B) 24 4 12 4

WRITE (B) 24 17 12 4 T, B, 4

FLUSH LOG

OUTPUT (A) 24 17 24 4

OUTPUT (B) 24 17 24 17

commit T

FLUSH LOG

U1 – write log updates before storing DB changes

U2 – write commit log records only after
changes are written

 Transacti0n

▪ Reads A, doubles it

▪ Reads B, adds 13 to it

 Key
▪ MM = main memory

▪ DB = stable storage

▪ Log records

 output actions write
main memory to disk

 flush log actions
writes log to disk

 If there is a crash after a transaction’s commit record
has been stored in the log no recovery is needed

▪ Because of rule U2, the changes to T must have been
written to the disk before the commit record was made

 If a crash occurred between a transaction’s start and
commit log records, it must be undone

▪ This is achieved by writing the previous values (v) in the
update records to the database objects

▪ As undo logging only undoes incomplete transactions it is
not necessary to record new values in the log

 The undo recovery scheme requires that the entire
log is read during recovery

▪ This gets increasingly inefficient as the log gets larger, and

▪ Reads older, committed, transactions to no purpose

 Once a commit log record is written to disk the log
records of the transaction are not needed

▪ However, it is not possible to delete the entire log
whenever a commit record is written

▪ Since there may be log records relating to other, active,
transactions which would be required for recovery

 To indicate that all preceding transaction have been
committed a checkpoint can be inserted in the log

▪ Only the recovery log records after the last checkpoint have to
be used

 The simplest way to insert a checkpoint is

▪ Stop accepting new transactions

▪ Wait until all active transactions commit or abort, and have
written their commit or abort records to the log

▪ Flush the log (write it to stable storage)

▪ Write a checkpoint record to the log

▪ Start accepting transactions again

But this has a negative
effect on throughput

 If the system is shut down to insert a checkpoint it may
appear stalled to users

▪ Non-quiescent checkpointing allows processing
to continue as a checkpoint is created

 To create a non-quiescent checkpoint

▪ Write a start checkpoint log record

▪ The log record includes a list (Ti, …, Tk) of active
transactions that have not yet committed

▪ Wait until Ti, …, Tk commit, while still allowing
other transactions to start

▪ Write an end checkpoint log record once
Ti, …, Tk have completed

LSN Trans ID Type

101 12 start

102 13 start

103 12 update

106 12 commit

107 begin checkpoint (13)

108 13 update

109 14 start

112 14 update

113 15 start

114 13 commit

115 end checkpoint

116 14 update

117 15 update

118 14 commit

 With a non-quiescent checkpoint system the log is
scanned backwards from its end

▪ Undoing incomplete transactions

 If an end checkpoint is found (1)

▪ All incomplete transactions must have begun
after the previous start checkpoint

▪ End scan when start checkpoint is reached

 If a start checkpoint is found first (2)

▪ The crash happened during the checkpoint

▪ Scan back to the first incomplete transaction
specified in the start checkpoint record

LSN Trans ID Type

101 12 start

102 13 start

103 12 update

106 12 commit

107 begin checkpoint(13)

108 13 update

109 14 start

112 14 update

113 15 start

114 13 commit

115 end checkpoint

116 14 update

117 15 update

118 14 commit

CRASH1

CRASH2

 Undo logging requires that changes are written to disk
before a transaction is committed

▪ Removing this requirement would reduce disk IOs

▪ The need for immediate stable storage of committed changes
can be avoided using redo logging

 Undo and redo logging have key differences

▪ Redo logging ignores incomplete transactions, and repeats
changes made by committed transactions

▪ Redo logging requires that commit log records are written to
disk before any changed values are written to the DB

▪ Redo update records store the new values of DB objects

 R1 Before changing any DB object on disk, all log records
relating to the change must appear on disk

▪ Including the update record and the commit record

▪ The transaction can only be written to disk when it is
complete

 Redo log update records appear the
same as undo log updates (<T, X, v>)

▪ However, the value, v, does not record the
value of X prior to the update

▪ It records the new value of X – after the update

T1 log

R(A)

W(A)

commit

update(T1, a, …)

commit(t1)

0utput(A)

 Unless the log contains a commit record, changes made
by a transaction have not been written to disk

▪ Therefore incomplete transactions can be ignored

▪ Transactions with a commit record may not have been written
to disk

 Recovery with a redo log is as follows

▪ Identify the committed transactions

▪ Scan the log forward from the start, for each update record

▪ If T is not a committed transaction, do nothing

▪ If T is committed, write the value v for DB object X

▪ Write an abort record for each incomplete transaction

 A commit log record does not guarantee that the
corresponding transactions are complete
▪ It is necessary to keep track of which main memory changes are dirty

(changed but not written), and

▪ Which transactions modified buffer pages

 The redo log checkpoint process is as follows
▪ Write a start checkpoint log record

▪ The log record includes a list (Ti, …, Tk) of active transactions that have not yet
committed

▪ Write all changes in buffers relating to committed transactions

▪ Wait for Ti, …, Tk to commit

▪ Write an end checkpoint log record

 Start and end checkpoints limit the examination of
the log during a recovery

 If the last checkpoint is an end checkpoint

▪ Redo transactions in the list (Ti, …, Tk), and

▪ Committed transactions started after the start checkpoint

 If the last checkpoint is a start checkpoint

▪ Scan back to the previous start checkpoint for that
checkpoint's list of transactions in the list and

▪ Redo all transactions in that list and other committed
transactions that started after the prior start checkpoint

 Algorithm for Recovery and Isolation Exploiting
Semantics (ARIES)

▪ ARIES is used by the recovery manager in many DBMS

 There are three principles behind ARIES

▪ Write-ahead logging

▪ Repeating history during redo

▪ Logging changes during undo

 ARIES has steal, no force buffer management

▪ Note that log records are forced to disk

 A log record for an update must be forced to disk before
the change is processed

▪ That is, before the dirty page is written to disk

▪ To ensure that the transaction can be properly undone in the
event that it is aborted

 All log records must be stored in stable storage before a
commit log record is written

▪ If they are not, they must be forced to the disk before (not at
the same time as) the commit log record

▪ This is necessary to ensure that it is possible to redo a
committed transaction after a crash

 Updating a page

▪ An update record is added to the log tail, page LSN set to LSN

 Transaction commit

▪ Force-write commit log record containing the transaction ID

 Transaction abort

▪ Write abort log record and commence undo

 Transaction end

▪ Add end log record once abort or commit process is complete

 Undoing an update

▪ Write a compensation log record (CLR) and undo update

 All log records have the following fields

▪ previous LSN – LSN of the transaction’s previous record

▪ transaction ID – the ID of the transaction being logged

▪ type – the type of the log record

 Update log records have additional fields

▪ page ID – the page being modified by the update

▪ length (in bytes) and offset – refers to the data page

▪ before-image – changed bytes before the change

▪ after-image – changed bytes after the change

▪ An update log record with both before and after images can be
used to redo or undo a change

 A Compensation Log Record (CLR) is written just prior
to undoing the change made in an update log record

▪ Either as part of the undo process of crash recovery, or

▪ When a transaction is aborted in normal operation

 A CLR describes the action taken to undo its update, and
includes

▪ An undo Next LSN field, which is the LSN of the next log record
to be undone to undo the entire transaction

▪ The LSN in the previous LSN field of the update log record

 CLRs contains information needed to redo the CLR

▪ Are used in the event of a crash during recovery

 The transaction table contains an entry for each active
transaction

▪ Transaction ID

▪ Status – in progress, committed, or aborted

▪ last LSN – the LSN of the transaction's most recent record

▪ Other information not related specifically to recovery

 The dirty page table (DPT) contains an entry for each dirty
page in the buffer pool
▪ first LSN – the first log record that made that page dirty

▪ The earliest log record that might have to be undone

 Each page in the DB includes a page LSN
▪ The log sequence number for the last update to that page

transaction ID Status last LSN

…

page ID first LSN

…

 A begin checkpoint shows the checkpoint start
 An end checkpoint contains the current contents of

transaction and dirty page tables

▪ Transaction processing continues while the end
checkpoint is being built

▪ Therefore the transaction and dirty page table are
accurate at the time of the begin checkpoint

 After the end checkpoint is written to stable
storage, a master record is also written

▪ Contains the LSN of the begin checkpoint

 After the system has crashed it is restarted

▪ No user program is allowed to execute

 The recovery manager executes a three phase recovery

▪ Analysis – determines the extent of the recovery, and which

transactions need to be redone or undone

▪ Redo – all changes to pages that may have been dirty at the

time of the crash are redone

▪ In the order in which they occurred

▪ Undo – undoes the change of all transactions that were active at

the time of the crash

▪ Starting with the most recent change

i.e. not committed

 The analysis phase performs three tasks

▪ Scans the log to find where to start the redo pass from

▪ Determines the pages in the buffer pool that were dirty at the

time of the crash

▪ Identifies the transactions that were active at the time of the

crash and that must be undone

 Starts at the most recent begin checkpoint log record

▪ The contents of the dirty page table and transaction table are

set to the copies in the end checkpoint

▪ The log is scanned forward from the begin checkpoint

 If an end log record for a transaction is found

▪ The transaction is removed from the transaction table

▪ Because it is no longer active

 If any other log record for a transaction is found

▪ The transaction is added to the transaction table if not there

▪ The lastLSN field is set to the LSN of the current log record

▪ If the log record is a commit record, the transaction's status is

set to commit, otherwise it is set to undo

 If a log record affects a page that is not in the dirty page

table, the page ID and LSN are inserted into it

LSN Trans ID Type Page ID Prev. LSN

begin checkpoint – empty

101 T1 update 500 -

102 T2 update 600 -

103 T2 update 700 102

104 T1 update 600 101

105 T3 update 550 -

106 T3 update 550 105

107 T2 update 500 103

108 T1 commit write log to disk

109 T1 end

110 T2 update 700 107

111 T4 update 800 -

CRASH

 DPT and transaction
tables are empty

▪ At last check point

 Analysis phase

▪ Build DPT and

▪ Transaction table

T ID Status
last
LSN

T1 commit 108

T2 undo 107

T3 undo 106

page
ID

first
LSN

500 101

600 102

700 103

550 105

not written to disk yet

 The redo phase starts with the log record with the
smallest first LSN of all pages in the DPT

▪ From that page redo scans forwards to the end of the log

 For each re-doable log record (update or CLR) the action
must be redone unless

▪ The affected page is not in the DPT

▪ Why would a page not be in the DPT?

▪ The affected page is in the DPT, but the first LSN for the entry is
greater than the LSN of the record being checked

▪ The page LSN is greater than or equal to the DPT record LSN

▪ This last case must be discovered by checking the disk

because the page has
been written to disk

already on disk

 The third redo condition compares the page LSN of
a dirty page to the LSN of the log record

▪ This entails fetching the page from disk

▪ This condition is checked last to avoid accessing the disk
where possible

 Assume that the log contains three records that
access the same page on the DPT

▪ The page's first LSN is 235, and the three records LSN's are
▪ 128 – don't need to check disk as 128 < 235, no redo required

▪ 235 – check the disk, assume its page LSN is 235, no redo is required

▪ 278 – check the disk, redo is required

 If an action has to be redone

▪ The logged action is reapplied

▪ The page LSN on the page is set to the LSN of the redo log
record, no additional log record is created

 At the end of the redo phase

▪ End records are written for all transactions with a commit
status, which are removed from the transaction table

 Redo reapplies updates of all transactions

▪ Including transactions which have not committed

▪ The undo process will undo the actions of all transactions that
were active when the crash occurred

LSN Trans ID Type Page ID Prev. LSN

begin checkpoint – empty

101 T1 update 500 -

102 T2 update 600 -

103 T2 update 700 102

104 T1 update 600 101

105 T3 update 550 -

106 T3 update 550 105

107 T2 update 500 103

108 T1 commit write log to disk

109 T1 end

110 T2 update 700 107

111 T4 update 800 -

CRASH

 Redo starts with 101
▪ And redoes all

transaction actions

▪ 101 to 107

▪ In that order

▪ Write end for T1
▪ And remove from T table

T ID Status
last
LSN

T1 commit 108

T2 undo 107

T3 undo 106

page
ID

first
LSN

500 101

600 102

700 103

550 105

not written to disk yet
T ID Status

last
LSN

T2 undo 107

T3 undo 106

 The undo phase scans backwards through the log
 The undo process starts with the transaction table

▪ The table shows all transactions that were active, and

▪ Includes the LSN of the most recent log record for each of
the transactions

▪ These transactions are referred to as loser transactions

 All the actions of losers need to be undone

▪ In the reverse order to which they appear in the log

 The undo process starts with the set of last LSN
fields from the transaction table

 Choose the largest LSN value in the set of last LSNs
 If the record is an update

▪ Write a CLR and undo the action

▪ Add the previous LSN in the update log record to the set

 If the log record is a CLR and the undo Next LSN
value is not null

▪ Add the undo Next LSN to the set

▪ Otherwise write an end record for the transaction

 When the set of actions is empty the undo phase
and the restart process are complete

LSN Trans ID Type Page ID Prev. LSN

begin checkpoint – empty

101 T1 update 500 -

102 T2 update 600 -

103 T2 update 700 102

104 T1 update 600 101

105 T3 update 550 -

106 T3 update 550 105

107 T2 update 500 103

108 T1 commit write log to disk

109 T1 end

110 T2 update 700 107

111 T4 update 800 -

CRASH

 Undo undoes
▪ 107

▪ 106

▪ 105

▪ 103

▪ 102
▪ In that order

page
ID

first
LSN

500 101

600 102

700 103

550 105

not written to disk yet
T ID Status

last
LSN

T2 undo 107

T3 undo 106

 CLRs ensure that no undo action is applied twice
▪ What happens if there is a crash during the undo phase?

 An action to be undone falls into three categories
▪ It has not been undone or the action must be undone as normal

▪ It has been undone, a CLR has been written, and an end log record has
been written (i.e. the entire transaction is undone)

▪ As an end record exists the transaction is not included in the
transaction table in the analysis phase

▪ It has been undone, a CLR has been written, but no end log record has
been written

▪ The CLR is redone during the redo phase

system
crash

latest begin
checkpoint

smallest first
LSN

oldest last
LSN

analysis

redo

undo

transaction table dirty page table

 During a system crash nothing is lost from disk

▪ Only temporary data in main memory is lost

▪ More serious failures result in the loss of one or more disks

 Theoretically it should be possible to reconstruct
the database from the log if

▪ The log was not on the damaged disk,

▪ The log is a redo (or ARIES) log, and

▪ The entire log is retained

 It is not practical to retain the log forever, so
archiving is used to protect against media failure

 A large OLTP DB changes considerably

▪ Even if there are a relatively small number of
changes each day

▪ The log has to record details for each transaction
that changes the DB

 If the log is used instead of an archive it will
become larger than the DB itself

▪ Google SQL Server Log size and browse the results

 There are different levels of archiving

▪ A full database backup is a copy of the entire database

▪ A differential backup copies only the database pages that
have been modified after the last full database backup

▪ A log backup copies only the log

 Restore Operation (cold restart)

▪ Use the latest full database backup
▪ Apply all the subsequent differential backups

▪ Apply the log backups to include all committed transactions

 Similar to non-quiescent checkpointing
 Makes a copy of the DB when the archive

process began

▪ But some data elements may change while the
archiving is n process

 The log can be used to determine which data
elements are incorrect

▪ To allow the state of the DB at the archive start to
be determined

 The log ensures that committed transactions
can be reconstructed if the system crashes

▪ It does not attempt to support serializability

 Similarly the concurrency manager is not
concerned with the rules of the log manager

▪ So could allow a write to the DB of a later aborted
transaction

▪ Unless prevented from doing so

 The transaction log has an important role in
performing rollbacks

▪ When a transaction is aborted its effects must be
reversed or rolled back

 If the transaction log contains Undo data it
may be used to reverse a transaction

▪ It may also be possible to use data from the disk
copy of an object

▪ If the data has not yet been written to disk

 The transactions that are considered to be
committed after recovery must be consistent

▪ If T1 is committed after recovery, and it used a value
written by T2 then T2 must also be committed

▪ A schedule is recoverable if each transaction only commits
after all transactions from which it has read have committed

 Recoverable schedules are not necessarily
serializable

▪ And vice versa

 S1: W1(A); W1(B); W2(A); R2(B); C1; C2

▪ T2 reads B that was written by T1 so must commit
after T1 for the schedule to be recoverable

▪ This schedule is serial(izable) and recoverable

 S2: W2(A); W1(B); W1(A); R2(B); C1; C2

▪ This schedule is not serializable but is recoverable

 S3: W1(A); W1(B); W2(A); R2(B); C2; C1

▪ This schedule is serializable but is not recoverable

C = commit

 A cascading rollback occurs when one
rollback necessitates additional rollbacks

▪ e.g. transactions that have read data written by
an aborted transaction must also be aborted

 Some recoverable schedules may involve
cascading rollbacks

▪ S1: W1(A); W1(B); W2(A); R2(B); C1; C2

▪ If T1 was aborted instead of committed (at the time of
C1) then C2 would also have to be rolled back

 It is desirable to avoid cascading rollbacks

▪ Such a schedule is referred to as an ACR schedule

▪ All ACR schedules are recoverable

 In an ACR schedule a transaction should not
read data of un-committed transactions

▪ S4: W1(A); W1(B); W2(A); C1 ; R2(B); C2

▪ T2 only reads B after T1 has committed, this schedule is
therefore ACR as well as recoverable

 Strict 2PL guarantees that schedules are
recoverable and serializable

▪ Transactions do not release exclusive locks until
committed or aborted

▪ 2PL guarantees
serializability

▪ Strict guarantees
that schedules are ACR
and revoverable

Recoverable

Strict 2PL

Serial

Serializable

ACR

 If main memory pages are lockable database
elements there is a simple rollback method

▪ That does not entail using the log

 Pages written by uncommitted transactions
are pinned in main memory

▪ i.e. they cannot be written to disk

▪ Aborted transaction can therefore be rolled back
by simply not writing the page to disk

An Example

 SQL Server supports a variety of concurrency
control levels and types

▪ Allowing for both pessimistic and optimistic
concurrency control

 Pessimistic locking scheme is a Strict 2PL variant
 Optimistic locking scheme is multi-version

concurrency control

▪ A variation of the timestamp method of optimistic
concurrency control

▪ That maintains old versions of database elements

 SQL Server maintains a transaction log

▪ Based on the ARIES logging system

LSN LOG

10 start T

20 update T, A 12

30 update T, B, 4

40 commit T

Undo log assuming no crash or
crash occurs after the commit
record has been written to disk

LSN LOG

10 start T

20 update T, A 12

30 update T, B, 4

40 abort T

Undo log, a crash occurs after
update records are written but
before commit record is written

