


 ACID Properties
 Concurrency Control

▪ Schedules

▪ Serial Schedules

▪ Serializability

▪ Invalid Schedules

▪ Conflict Serializability



 A transaction is a single execution of a user program 
in a DBMS

▪ e.g. Transferring money between two bank accounts

▪ If money is transferred between two bank accounts, both
accounts' records must be updated

 A single transaction may result in multiple actions

▪ For performance reasons, these actions may be 
interleaved with actions of another transaction

 Transactions should have the ACID properties





 Transactions should be atomic

▪ Either all or none of a transaction’s actions are carried out

 A transaction must preserve DB consistency

▪ The responsibility of the DB designers and the users

 A transaction should make sense in isolation

▪ Transactions should stand on their own and 

▪ Should be protected from the effects of other concurrently 
executing transactions

 Transactions should be durable

▪ Once a transaction is successfully completed, its effects should 
persist, even in the event of a system crash



 A transaction that is interrupted may leave the DB 
in an inconsistent state

▪ Transactions consist of multiple actions, and are 
consistent only when considered in their entirety

▪ Transactions must therefore be atomic

▪ All or Nothing!

 A DB will remain consistent if transactions are

▪ Consistent

▪ Processed as if they occur in some serial order

▪ Atomic, ensuring that no partial transactions occur



 A DB is in a consistent state if it satisfies all of the 
constraints of the DB schema

▪ For example key constraints, foreign key constraints

 A DBMS typically cannot detect all inconsistencies 

▪ Inconsistencies often relate to domain specific information

▪ And may be represented by triggers, or policies

 Users are responsible for transaction consistency

▪ This includes programs that access the DB

▪ Casual users should only interact with a DB via programs that are 
consistency preserving

▪ Expert users may interact directly with a DB



 Entering a new Patient record with a duplicate MSP

▪ Allowing this transaction would leave the DB in an inconsistent 
state so the DB rejects the transaction

 Customers are only allowed if they have an account, 
accounts are only allowed if they have a customer

▪ Entering a new customer who owns a new account is impossible 
if the DB attempts to maintain this constraint

▪ The constraint can be modeled by an application program

 Employees are not allowed to be customers, but SIN is 
not recorded for customers

▪ The constraint must be maintained by policy



 Consider transferring money between two accounts

▪ The database will only remain consistent if both sides of 
the transfer are processed

▪ If the transfer is interrupted there is a risk that one half is 
processed and the other is not

 Note that this principle applies to almost any 
accounting entry

▪ Most accounting systems use double-entry bookkeeping

 Many other DB transactions are composed of 
multiple actions



 Multiple transactions may be interleaved

▪ That is, processed concurrently

▪ The net effect of processing the transactions should be the 
same as executing them in some serial order
▪ There is no guarantee which serial order is chosen

 Consistency and isolation

▪ If transactions leave the DB in a consistent state, and 

▪ If transactions are executed serially then,

▪ The resulting DB should be in a consistent state



 Transactions are first processed in main memory

▪ And later written to disk 

▪ For example when the affected memory pages are replaced

▪ If the system crashes in between these two processes there is a 
possibility that the transaction is lost

 A DBMS maintains a log that records information about 
all writes to the database

▪ In the event of a system crash the log is used to restore 
transactions that were not written to disk

 To achieve durability it is also necessary to maintain 
backups of the database





 The scheduler is responsible for executing 
reads and writes

▪ Reads and writes take place in main-memory

▪ Not the disk

 The scheduler may need to call on the buffer 
manager to read a page into main memory

 A DB element in main memory may be acted 
on by more than one transaction

▪ These actions may interact



 A single transaction consists of a series of actions

▪ A list of reads and writes of objects in the DB

▪ Denote reads of object A as R(A), and

▪ Writes of object A as W(A)

 A transaction's last action is either to commit or abort

▪ If a transaction is aborted all of its actions must be undone

 Assumptions

▪ Transactions only interact with each other via reads and writes, 
and do not exchange messages

▪ A DB is a fixed collection of independent objects

▪ This assumption is not realistic, and will be discussed further



 A schedule is a list of the actions contained in a set 
of transactions

▪ An action can be a read, write, commit, or abort

▪ A schedule lists actions in the order in which they occur
▪ i.e. the order in which they are processed by the DB

 A complete schedule is one that contains either an 
abort or commit action for each of its transactions

 A serial schedule is one where actions from different 
transactions are not interleaved

▪ All serial schedules leave the DB in a consistent state



 This schedule contains 
two transactions

 The transactions do 
not interact
▪ T1 completes before T2 

begins
 Key

▪ R = Read

▪ W = Write

▪ A and B are data objects

T1 T2

R(A)

R(B)

A = A + 100

B = B - 100

W(A)

W(B)

Commit

R(A)

A = A*2

W(A)

Commit



 Transaction isolation could be guaranteed by never 
interleaving transactions

▪ However this would negatively impact performance

▪ Interleaving two transactions allows the CPU to process 
one while the other's data is being read from disk

 Interleaving transactions therefore increases system 
throughput

▪ i.e. the average number of transactions completed 

▪ It allows short transactions to be interleaved with long 
transactions rather than waiting for their completion



 A serializable schedule is guaranteed to be the same 
as some serial schedule

▪ i.e. where one transaction is processed in its entirety 
before processing the next

▪ Different serial orders of transactions may result in 
different results

 If a schedule is not serializable the DB may not be in 
a consistent state after processing the transactions

▪ A schedule containing two consistency preserving 
transactions may therefore result in an inconsistent DB



 The schedule contains 
two transactions

 The transactions do 
not access the same 
data objects

 Is it serializable?

▪ Yes!

▪ Though interleaved, the 
actions are unrelated

T1 T2

R(A)

A = A + 100

W(A)

R(C)

C = C * 2

W(C)

R(B)

B = B - 100

W(B)

Commit

R(D)

D = D * 2

W(D)

Commit



 This schedule also has 
two transactions

 These transactions do
access the same data 
objects

 Is it serializable?

▪ Yes!

▪ Note the order in which 
the objects are read and 
written

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B - 100

W(B)

Commit

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

250

100

200

250 200



 This schedule is similar 
to the previous one

 The two transactions 
also access the same 
data objects

 Is it serializable?

▪ Yes!

▪ Again, note the order

T1 T2

R(A)

A = A * 2

W(A)

R(A)

R(B)

B = B * 2

W(B)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

Commit

A B

25 200

50

400

150

300

150 300



 There are three ways in which transactions in a 
schedule can conflict

▪ So that even if the individual transactions are consistent 
the DB can be in an inconsistent state after the execution

 Two actions conflict if they act on the same data 
object and if one of them is a write

▪ write-read conflicts (WR)

▪ read-write conflicts (RW)

▪ write-write conflicts (WW)



 One transaction writes data, and a second 
transaction reads that data before it commits

▪ Referred to as a dirty read

▪ The first transaction may not be complete before the 
second transaction begins processing

 If the first transaction is not complete, the DB may 
be in an inconsistent state at that point

▪ Note – recall that during the processing of a transaction, 
the database may be temporarily inconsistent



 T1 – Transfer $100 from 
account B to account A

 T2 – Double amounts in 
both accounts A and B

 The diagram shows a 
serial schedule T1, T2

 A – 250
 B – 200

T1 T2

R(A)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

100

250

200

250 200



 T1 – Transfer $100 from 
account B to account A

 T2 – Double amounts in 
both accounts A and B

 The diagram shows a 
serial schedule T2, T1

 A – 150
 B – 300

T1 T2

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(A)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

A B

25 200

50

400

150

300

150 300



 T1 – Transfer $100 from 
account B to account A

 T2 – Double amounts in 
both accounts A and B

 The diagram shows an 
interleaved schedule 
with a dirty read of A

 Result is not the same 
as either serial schedule

 A – 250
 B – 300

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

250

400

300

250 300



T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B - 100

W(B)

Commit

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

250

100

200

250 200

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

250

400

300

250 300

SerializableWR Conflict



 One transaction reads data which is then written by 
a second transaction

▪ Referred to as an unrepeatable read

▪ Although the first transaction did not modify the data, if it 
tries to read it again it would obtain a different result

 What if the first transaction modifies the data based 
on the value it obtained from its initial read?

▪ This value is no longer correct, 

▪ Therefore an error or an inappropriate modification may 
result



 T1 – User1 considers 
purchasing 21 items

▪ Reads A

▪ Waits (contemplating)

▪ Reads A again

▪ Writes A

 T2 – User2 wants to 
purchase 13 items

 The diagram shows a 
serial schedule T1, T2

T1 T2

R(A) items = 25

R(A) items = 25

A = A - 21

W(A) items = 04

Commit

R(A) items = 04

no write*

Commit

*4 – 13 is negative so user program
will not remove the items



 T1 – User1 considers 
purchasing 21 items

▪ Reads A

▪ Waits (contemplating)

 T2 – User2 purchases 13 
items

 T1 – When user1 reads 
the data again the 
amount has changed
▪ making the purchase 

impossible

▪ user1 is upset!

T1 T2

R(A) items = 25

R(A) items = 25

A = A - 13

W(A) items = 12

Commit

R(A) items = 12

no write*

Commit

*12 – 21 is negative so user program  
will remove the widgets



 One transaction writes data that has already been 
read or written by a second, incomplete, transaction

▪ Referred to as a lost update, a special case of an 
unrepeatable read

▪ If the initial action of the first transaction was a read, a 
subsequent write is replaced by the second transaction

 Other WW conflicts exist that do not involve 
unrepeatable reads

▪ Blind writes to objects whose values should be related

▪ Lost updates caused by aborted transactions

A blind write is a write with no prior read



 T1 – Increase account A 
by $10,000

 T2 – Decrease account 
A by $7,000

T1 T2

R(A) 21,000

W(A) 31,000

Commit

R(A) 31,000

W(A) 24,000

Commit



 T1 – Increase account A 
by $10,000

 T2 – Decrease account 
A by $7,000

 The diagram shows an 
interleaved schedule 
with a lost update (T1)
▪ Caused by an 

unrepeatable read

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit



 A and B should always 
have the same value

 T1 and T2 both change 
the values of A and B
▪ In both cases the existing 

values are not read - blind 
writes

 In this serial schedule 
the relationship 
between A and B is 
maintained

T1 T2

W(A) 10,000

W(B) 10,000

Commit

W(A) 7,000

W(B) 7,000

Commit



 A and B should always 
have the same value

 A and B do not have the 
same values after both 
the transactions have 
committed

 Remember that 
transactions may be 
inconsistent during
processing

T1 T2

W(A) 10,000

W(B) 7,000

W(B) 10,000

Commit

W(A) 7,000

Commit



 The scheduler does not 
consider the details of 
calculations

▪ i.e. it does not know 
what a transaction is 
doing

▪ It assumes that if a 
transaction could result 
in the DB being 
inconsistent it will

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A + 200

W(A)

R(B)

B = B + 200

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

325

400

300

325 300

Is there a serial schedule equivalent to 
this schedule?



 When is a non-serial schedule guaranteed to 
leave a DB in a consistent state?

▪ If it is equivalent to some serial schedule

▪ That is, if the schedule is serializable

 We will look at two tests of serializability

▪ View equivalent 

▪ Conflict equivalent 



 Two schedules are view-equivalent if

▪ They contain the same transactions

▪ Each transaction reads the same value for each data 
object in each schedule
▪ Before modification

▪ And after modification by one of the transactions

▪ The same transaction must perform the final write of each 
data object

 A schedule is view-serializable if it is view-equivalent 
to some serial schedule



T1 T2

R(A) initial read - T1

W(A)

R(A) written by T1

W(A) final write - T2

R(B) initial read - T1

W(B)

Commit

R(B) written by T1

W(B) final write - T2

Commit

T1 T2

R(A) initial read - T1

W(A)

R(B) initial read - T1

W(B)

Commit

R(A) written by T1

W(A) final write - T2

R(B) written by T1

W(B) final write - T2

Commit

Serial Schedule View Equivalent



T1 T2

R(A) initial read - T1

W(A)

R(A) written by T1

W(A) final write - T2

R(B) initial read - T2

W(B)

R(B) written by T2

W(B) final write - T1

Commit

Commit

T1 T2

R(A) initial read - T1

W(A)

R(B) initial read - T1

W(B)

Commit

R(A) written by T1

W(A) final write - T2

R(B) written by T1

W(B) final write - T2

Commit

Serial Schedule Not Equivalent



 View-serializability is hard to prove and implement

▪ As it is necessary to find an equivalent serial schedule
▪ Which is an NP-hard problem

 Conflict-serializability is a practical alternative

▪ Two schedules that are conflict equivalent have the same 
effect on a DB

▪ A conflict-serializable schedule is always view-serializable

▪ In some (rare) cases a view-serializable schedule is not 
conflict-serializable
▪ This only occurs when the schedule contains blind writes



 Two actions conflict if they operate on the same DB 
object and one of them is a write

▪ Note that conflicts are often unavoidable and do not 
necessarily result in inconsistency

 The outcome of a schedule depends on the order of 
the conflicting operations

▪ Non-conflicting operations can be reordered with no 
impact on the final result

 If the conflicting actions of two schedules are in the 
same order the schedules are conflict equivalent



 Two schedules are conflict equivalent if

▪ They involve the same actions of the same transactions

▪ They order each pair of conflicting actions in the same way

 A schedule is conflict serializable if it is conflict 
equivalent to some serial schedule

▪ Some serializable schedules are not conflict serializable
▪ Such a schedule has conflicting actions that cannot be ordered in 

the same way as a serial schedule, but that

▪ Does not result in a different state from a serial schedule



 Two actions of the same transaction always conflict

▪ e.g. RT1(X), WT1(Y)

▪ Since the order of actions within a transaction cannot be 
changed

 Two writes of the same database object by different
transactions conflict

▪ e.g. WT1(X), WT2(X)

 A read and a write of the same database object by 
different transactions conflict

▪ e.g. RT1(X), WT2(X) or WT1(X), RT2(X)



 Transaction schedules can be written in 
shorthand, denote

▪ rt(O) – where r is a read, t is the transaction and O is 
the data object

▪ r1(A) – read of object A by transaction 1

▪ wt(O) – where w is a write, t is the transaction and O is 
the data object

▪ w2(B) – write of object B by transaction 2

▪ The order from left to right shows the order in which 
the actions take place



 Example schedule

▪ r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

 We can demonstrate that a schedule is or is 

not conflict equivalent by swapping actions

▪ Except that actions that conflict are not allowed 

to be swapped

▪ If actions can be swapped such that the schedule 

becomes a serial schedule it is conflict serializable



 r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)
 Goal – try to swap actions to create a serial schedule
 r1(A), w1(A), r2(A), r1(B), w2(A), w1(B), r2(B), w2(B)
 r1(A), w1(A), r1(B), r2(A), w2(A), w1(B), r2(B), w2(B)
 r1(A), w1(A), r1(B), r2(A), w1(B), w2(A), r2(B), w2(B)
 r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)
 This technique is not used by the scheduler to 

determine if a schedule is (conflict) serializable

▪ But it allows us to reason about schedules



 r1(A), w1(A), r2(A), w2(A), r2(B), w2(B), r1(B), w1(B)
 Goal – move T1’s read and write of B up to the front, 

just after T1’s read and write of A

▪ First swap r1(B) and w2(B)

▪ But they conflict, because they act on the same object

 r1(A), w1(A), r2(A), w2(A), r2(B), w2(B), r1(B), w1(B)
 The schedule cannot be rearranged into a serial 

schedule

▪ And is therefore not conflict serializable



T1 T2

R(A)1

W(A)1

R(A)2

W(A)2

R(B)1

W(B)1

Commit

R(B)2

W(B)2

Commit

T1 T2

R(A)1

W(A)1

R(B)1

W(B)1

Commit

R(A)2

W(A)2

R(B)2

W(B)2

Commit

Conflict EquivalentSerial Schedule



T1 T2

R(A)1

W(A)1

R(A)2

W(A)2

R(B)1

W(B)1

R(B)2

W(B)2

Commit

Commit

T1 T2

R(A)1

W(A)1

R(B)1

W(B)1

Commit

R(A)2

W(A)2

R(B)2

W(B)2

Commit

Not Conflict EquivalentSerial Schedule



 Conflicts between transactions can be shown 
in a precedence graph

▪ Also known as a serializability graph

 A precedence graph for a schedule contains

▪ Nodes for each committed transaction

▪ An arc from transaction Ti, to Tj if an action of Ti

precedes and conflicts with one of Tj's of actions

 A schedule is only conflict serializable if and 
only if its precedence graph is acyclic



T1 T2

R(A)

W(A)

R(B)

W(B)

Commit

R(A)

W(A)

R(B)

W(B)

Commit

T1 T2



T1 T2

R(A)

W(A)

R(A) 

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

T1 T2



T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

Commit

Commit

T1 T2

The cycle indicates
that the schedule is
not conflict serializable



T1 T2 T3

R(A)

W(A)

Commit

W(A)

Commit

W(A)

Commit

T1 T2

This schedule is view
serializable but not
conflict serializable

T3



 If a transaction is aborted all its actions have to be 
reversed as if the actions had never occurred

▪ To achieve this other transactions may also have to be aborted 
in a cascading abort

▪ This may be required when transactions have acted on the same 
objects as the transaction to be aborted

 A transaction that has already been committed cannot 
be aborted as part of a cascading abort

▪ If an aborted transaction is interleaved with a committed 
transaction the schedule may be unrecoverable

▪ In a recoverable schedule transactions only commit after all 
transactions that they read have committed



 T1 adds $2,000 to A
 T2 adds $3,000 to A
 In this serial schedule A 

is aborted
▪ Any changes made by A 

are reversed

 The value of A would be 
the same regardless of 
the order

▪ T1, T2 or T2, T1

T1 T2

R(A) 10,000

W(A) 12,000

Abort

R(A) 10,000 

W(A) 13,000

Commit



 T1 adds $2,000 to A
 T2 adds $3,000 to A
 T2 commits after A has 

aborted so the results of 
both transactions are lost
▪ Since A's value is reset to 

10,000

 This schedule is another 
example of an 
unrepeatable read

T1 T2

R(A) 10,000

W(A) 12,000

R(A) 12,000 

W(A) 15,000

Abort

Commit



T1 T2

R(A) 10,000

W(A)  7,000

R(A)  7,000

W(A)  7,700

Commit

Abort

 T1 – Deduct $3,000 from 
account 

 T2 – Add interest of 10% 
to account

 To reverse T1 it would 
also be necessary to 
reverse T2

 But T2 has already 
committed





 A DBMS must ensure that schedules are

▪ Equivalent to some serial schedule (serializable) and

▪ Recoverable

 Often achieved by using a locking protocol

▪ A lock is associated with a particular DB object and

▪ Restricts access to that object

 The most widely used locking protocol is Strict Two-
Phase Locking (Strict 2PL)

▪ A variant of the Two-Phase Locking (2PL) protocol



 There are two kinds of lock

▪ If a transaction wants to read an object it first has to 
request a shared lock on that object

▪ If a transaction wants to modify an object it first has to 
request an exclusive lock on that object
▪ Which also allows the transaction to read the object

 When a transaction requests a lock either

▪ The lock is granted, the transaction becomes the owner of 
that lock, and the transaction continues, or

▪ The transaction is suspended until it is able to be granted 
the requested lock



 Shared locks allow transactions to read objects

▪ Multiple shared locks can be granted to different 
transactions on the same database object

▪ Allowing all of the transactions with shared locks to read 
the object

 Exclusive locks allow transactions to write objects

▪ Exclusive locks are only granted on objects with no other 
locks
▪ Shared or exclusive

▪ No other locks are granted on objects that are already 
exclusively locked



 When should a transaction issue a lock?

▪ It must ensure that a schedule is both serializable 
and recoverable

 When should a transaction release a lock?
 What are the side effects of locking, and how 

are they dealt with?

▪ Deadlock prevention and detection

 How is locking implemented?



 Shared or exclusive locks are requested before each 

read or write respectively, and

▪ A transaction’s lock requests must precede its unlocks

▪ Once it has released any locks it cannot request additional locks 

▪ 2PL transactions therefore have growing and shrinking phases

 2PL ensures that precedence graphs are acyclic

▪ Resulting in conflict-serializable schedules

▪ When a conflict occurs, the transaction causing the 

conflict waits until the other transaction finishes



 This schedule 
includes an 
unrepeatable read

 Can this schedule 
occur with 2PL?

▪ No!

T1 T2

R(A) items = 25

R(A) items  = 25

W(A) items  = 12

Commit

R(A) items  = 12

no write*

Commit

*intending to purchase 21 items, 
since 12 – 21 is negative user 
program will not remove them



 This schedule 
includes a dirty read

 Can this schedule 
occur with 2PL?

▪ No!

T1 T2

R(A) 10,000

W(A)  7,000

R(A)  7,000

W(A)  7,700

R(B) 12,000

W(B) 13,200

Commit

R(B) 13,200

W(B) 16,200

Commit



 This schedule 
includes a lost 
update

 Can this schedule 
occur with 2PL?

▪ No!

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit



T1 T2

X(A)

R(A) 21,000

T2 suspended

W(A) 31,000 …

Commit …

X(A)

R(A) 31,000

W(A) 24,000

Commit

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit

Schedule with 2PLWrite Write Conflict



 A transaction in this 
schedule is aborted 

 The schedule is 
unrecoverable

 Can this schedule 
occur with 2PL?

▪ Yes!

T1 T2

R(A) 10,000

W(A)  7,000

R(A)  7,000

W(A)  7,700

Commit

Abort



Schedule with 2PLUnrecoverable Schedule

T1 T2

R(A) 10,000

W(A)  7,000

R(A)  7,000

W(A)  7,700

Commit

Abort

T1 T2

X(A)

R(A) 10,000

W(A)  7,000

release lock

X(A)

R(A)  7,000

W(A)  7,700

Commit

Abort
The 2PL protocol can be modified to 
prevent unrecoverable schedules



 Strict 2PL is similar to 2PL

▪ Write and read operations request shared and exclusive 
locks respectively

 Strict 2PL differs on when locks are released

▪ All locks held by a transaction are released only when the 
transaction is completed (committed or aborted)

 This prevents transactions from reading DB objects 
which were modified by uncommitted transactions



 Only safe interleaving of transactions is allowed

▪ If two transactions access different DB objects they are 
allowed concurrent access, so interleaving is possible

▪ If two transactions require access to the same object, and 
one wants to modify it, their actions are ordered serially

 Strict 2PL prevents unrecoverable schedules from 
occurring

▪ The protocol only releases locks when a transaction ends

▪ Which prevents a transaction from accessing a DB object 
that was modified by a prior transaction that aborts



 A schedule is conflict serializable if and only if its 
precedence graph is acyclic

 The precedence graph for any Strict 2PL schedule is 
acyclic

▪ If T2 writes an object written by T1, then T1 must have 
released its lock on that object before T2 obtained its lock

▪ Under Strict 2PL, transactions only unlock data objects 
when they commit (or abort)

▪ Therefore, two transactions cannot precede each other, 
forming a cycle in the precedence graph



 The lock manager keeps track of which locks have 
been issued to transactions

▪ It maintains a lock table, a hash table with the data object 
ID as the key, each lock table entry contains
▪ The number of transactions holding a lock on the object

▪ Type of lock (shared or exclusive)

▪ A pointer to a queue of lock requests

 The DBMS also maintains an entry for each 
transaction in a transaction table

▪ Including a pointer to a list of locks held by the transaction



 A transaction that needs a lock issues a lock request
 Shared lock requests are only granted if

▪ The request queue is empty, and

▪ The object is not locked in exclusive mode

 Exclusive lock requests are only granted if

▪ There is no lock on the object and the request queue is 
empty

 In any other case the lock is not granted

▪ The request is added to the request queue, and

▪ The transaction is suspended



 When a transaction aborts or commits it releases its 
locks

▪ The lock table is updated for the object 

▪ The request at the head of the queue is considered and if it can 
be granted it is unsuspended and given the lock

▪ If several requests for a shared lock are at the head of the queue they 
can all be granted

 If T1 has a shared lock on an object and T2 requests an 
exclusive lock T2 is suspended

▪ If T3 then requests a shared lock on the same object, T3 is also 
suspended even though it is compatible with T1

▪ This rule ensures that T2 does not starve



 Update locks

▪ An update lock allows a transaction to read a record

▪ But can be later upgraded to an exclusive lock

▪ Update locks can be granted when another transaction 

has a shared lock

▪ And prevent any other locks being taken on the object

 Increment locks allow objects to be incremented or 

decremented

▪ Multiple increment locks are allowed on the same object

▪ Other locks are not granted on objects with increment locks



T1 T2

X(A)

R(A)

W(A)

X(B)

R(B)

W(B)

X(B) - denied

… suspended

X(A) - denied

… suspended

T1: R(A), W(A), R(B), W(B)

T2: R(B), W(B), R(A), W(A)

 Deadlock – when two or more 
transactions are suspended

 Waiting for each other to 
complete and unlock an object

 Deadlock is not prevented by 
Strict 2PL

 Deadlock can be detected and 
dealt with

 Or avoided





 Initially we assumed that a database is a fixed collection 
of independent objects 

▪ In practice, database transactions may include insertions, 
violating the first part of this assumption

 Insertions may result in unrepeatable reads

▪ Locks only apply to DB objects that exist

▪ Using the 2PL protocol, all records that meet some criteria can 
be locked

▪ This does not prevent additional records (that meet the criteria) 
being inserted during the lock

▪ Such records are referred to as phantoms



 T1 reads the Patient table to find the ages of the oldest 
patients suffering from scurvy and leprosy

▪ T1 locks all pages for patients with scurvy, and finds the oldest 
such patient (who is 77)

 T2 inserts a new patient, aged 93, with scurvy

▪ The page that the patient is inserted on is not locked by T1

▪ T2 now locks the page containing the oldest patient with 
leprosy (who is 89) and deletes the record

▪ T2 commits and releases its locks

 T1 finds the oldest patient with leprosy, who is 88

▪ T1’s result would not be possible from any serial schedule



T1 T2

S(scurvy pages)

R(scurvy)age 77

X(new scurvy)

W(new scurvy)add 93

X(leprosy)

W(leprosy)del 89

Commit

S(leprosy)

R(leprosy)age 88

Commit

 Query T1 returns the two 
ages as
▪ Scurvy – 77

▪ Leprosy – 88

 This is not equivalent to any 
serial schedule

 Serial schedules would 
either return
▪ 77, and 89, or

▪ 93, and 88

 This occurred because T1 
locked specific pages 
▪ Rather than the set of patients



 The phantom problem can lead to schedules that 
are not equivalent to any serial schedule

▪ Conflict serializability does not guarantee serializability if 
items are added to the DB

 This can be solved by using predicate locking

▪ All records that fall within a range of values are locked

▪ General predicate locking is expensive to implement
▪ Key-range locking (locking a range of key values) is more common

▪ Index locking can be used if the DB file has B+ tree index on 
the attribute used in a transaction's condition



 The size of DB object that can be locked varies

▪ Largest lock unit – the entire DB

▪ Smallest lock unit – single record (table row)

▪ Or: a table, or page

 The size of the locking unit affects performance

▪ Smaller lock units generally allow more concurrency, but

▪ Complex transactions may need access to many such 
objects, leading to high overhead and large lock queues

 The solution is to allow multiple lock granularity

▪ With a separate lock table for objects of each type



 Multiple lock granularity results in a problem

▪ If T2 holds a lock on a record, and T1 wants a lock on the 
same page, how is T1 prevented from overriding T2's lock?

 Introduce two new lock types to indicate that a lock 
is held at a finer granularity

▪ Intention shared (IS) – conflicts only with X locks, and

▪ Intention exclusive (IX) – conflicts with S and X locks

▪ Intent locks are applied to all ancestors of a locked object

 IS and IX locks can co-exist with other IS and IX 
locks at the same lock table



 Consider the DB as a tree
 Each node represents a lock unit
 Each level represents a different granularity

▪ The entire DB is the root

▪ Individual records are leaf nodes

 To lock a target lock unit (a node)

▪ Request a lock on every node on the path from  the root to 
the target lock unit

▪ All locks are IS (or IX), except the target, which is S (or X)



 Shared
▪ Implies locks on all nodes below the current one

 eXclusive
▪ Implies locks on all nodes below the current one

 Intention Shared
▪ Intent to set an S lock at a finer granularity

 Intention eXclusive
▪ Intent to set an X lock at a finer granularity

 SIX (S and IX)
▪ Commonly used where a transaction needs read an entire 

file and modify some of the records



 Acquire locks from root to leaf
 Release locks from leaf to root

▪ This is necessary to prevent another transaction acquiring 
a (higher level) conflicting lock

 To acquire an S or IS mode on a non-root node, all 
ancestors must be held in IS mode

 To acquire an X, SIX or IX mode on a non-root node, 
all ancestors must be held in IX mode

 Use Strict 2PL locking protocol



 SIX locks are used to search a file to find the desired 
record to update

SIX lock the table
for each record in the table

if (condition is true) //record is the target
upgrade the S lock to X to lock the record
update the record
release the X lock

end if
end for
release SIX lock



 What granularity of locking is appropriate for a 
given transaction?

▪ First obtain fine granularity locks (at the record level)

▪ When the number of locks granted reaches a threshold

▪ Obtain locks at the next higher granularity

 An alternative approach is to start with coarser 
granularity locks

▪ Break the locks into multiple finer granularity locks when 
contention occurs

▪ i.e. Lock de-escalation





 Problem: How can a leaf node in a B+ tree be locked 
efficiently?
▪ The naive solution is to ignore the tree structure and treat 

each page as a data object

▪ This has very poor performance as the root (and other high 
level nodes) become bottlenecks

 Two useful observations
▪ Higher levels of the tree only direct searches

▪ All of the data is in the leaf levels

▪ For inserts, a node must be (exclusively) locked only if a 
split can propagate to it from the leaf



 Searches

▪ Obtain shared locks on nodes on the path from root to the leaf

▪ As each child is locked, unlock its parent

 Inserts and deletes

▪ Start at the root and obtain exclusive locks on the nodes on the 
path to the desired leaf

▪ Check each child to see if it is safe, a node is safe if changes will 
not propagate up the tree

▪ For inserts, the node is not full

▪ For deletes, the node is not half-empty

▪ If a node is safe, release all the locks on its ancestors



 If there is an available index, a transaction can 
request a lock on the appropriate index page

▪ i.e. the leaf page (or bucket) of the B+ tree

▪ This prevents any records with key values on that index 
page being inserted

 An index bucket should be S locked to scan the rows 
pointed to by data entries in that bucket

 An index bucket should be X locked to modify any of 
the rows pointed to by the bucket

▪ Or to insert a value in the bucket



Optimistic Concurrency Control



 Locking protocols are pessimistic as they aim to abort or 
block conflicts

▪ This requires overhead when there is little contention

▪ In optimistic concurrency control assume that conflicts are rare

 There are two main versions of optimistic CC

▪ Timestamps – maintain timestamps of transactions and reads 
and writes of database objects

▪ Validation – similar to the timestamp system except that data is 
recorded about the actions of transactions

▪ Rather than data about database objects

▪ Not discussed (appendix)



 Transactions are issued timestamps

▪ Given in ascending order when transactions begin

▪ Referred to as TS(T) in this presentation

 Timestamps can be generated

▪ By using the system clock

▪ By maintaining a counter within the scheduler

 The scheduler maintains a table of active 
transactions and their timestamps

1 2 … n



 For each database element record

▪ RT(X) – the read time of the object X

▪ The highest timestamp of a transaction that has read X

▪ WT(X) – the write time of the object X

▪ The highest timestamp of a transaction that has written X

▪ C(X) – the commit bit

▪ True iff the most recent transaction to write X has committed

▪ Maintained to avoid one transaction reading data by another 
transaction that later aborts

▪ i.e. a dirty read x

RT = 7: last read by transaction T with TS 7

WT = 4: last written by T with TS 4

C = 0: T that wrote object not committed



 Optimistic concurrency control supposes that 
transactions are instantaneous

▪ That is, all the actions take place at the same time

▪ In reality this is, of course, not the case

▪ As actions are performed one at a time

▪ Possibly interleaved with actions of other transactions

 If the results of transactions could not have 
occurred if transactions were instantaneous

▪ The behaviour is said to be  physically unrealizable

So must be atomic



 There are two kinds of possible problems that can 

result in physically unrealizable behaviour 

 Read too late

▪ Transaction T tries to read X but TS(T) < WT(X)

▪ Which means that X has been written to by another transaction 

after T began

▪ Transactions are supposed to be instantaneous

▪ If so, T would have read X before the later transaction wrote it

T started before X written

T1 start T2 start T2 writes X T1 reads X



 The second type of physically unrealizable 

schedule is referred to as write too late

▪ T tries to write X but WT(X) < TS (T) < RT (X)

▪ Or RT(X) > TS(T)

▪ This means that X has been read by another 

transaction after T began

Another transaction read X 
before it was written by T

T1 start T2 start T2 reads X T1 writes X

i.e. TS(T) < RT(X)



 The commit bit solves problems 

with dirty reads

▪ When T1 reads data after it is written 

by T2, but before T2 commits

▪ If T2 aborts the read by T1 will be incorrect

▪ In this case the Thomas Write Rule should 

not be applied

▪ Since T2’s actions should not occur

Thomas Write Rule

If TS(T1) < TS(T2) and T1

and T2 write to the

same object then T1's

write should be ignored

Since T2's timestamp is

later than T1's meaning

that T1 would have been

over-written

T1 start T2 start T2 writes X T1 writes X

If T2 commits T1’s write can be ignored



 The scheduler has three options when it 
receives a read or write request from T

▪ Grant the request

▪ Abort T and restart it with a new timestamp

▪ Referred to as a rollback

▪ Delay T

▪ Decide later whether to grant T's request or abort T

▪ Usually when T is waiting for some other transaction to 
commit



 The scheduler receives a read request RT(X)
 If TS(T) ≥ WT(X) the read is physically realizable

▪ If C(X) is true, grant the request and update RT(X)

▪ If TS(T) > RT(X), set RT(X) to TS(T)

▪ Otherwise delay T until C(X) becomes true, or the 
transaction that wrote X aborts

 If TS(T) < WT(X) rollback T

▪ X has been written by another transaction after T 
started

T1 start T2 start T1 writes X T2 reads X

T1 start T2 start T2 writes X T1 reads X

Wait for T2 to commit

T1 is rolled back



 The scheduler receives a write request WT(X)

▪ There are three possible outcomes

 If TS(T) ≥ RT(X) and TS(T) ≥ WT(X) the write is 

physically realizable

▪ Write new value for X, set WT(X) to TS(T) and C(X) to false

▪ Set C(X) to true when T commits

 If TS(T) < RT(X) the write is not physically realizable 

and T must be rolled back

T1 start T1 reads X T1 writes XOK OK

T1 start T2 start T2 reads X T1 writes X

T1 is rolled back



 The third possible outcome of a write request 
involves the Thomas Write Rule

 If TS(T) ≥ RT(X) but TS(T) < WT(X) there is a later 
value in X

▪ If C(X) is true ignore T's write – Thomas Write Rule

▪ Otherwise delay T until C(X) is true

▪ Or proceed with write if C(X) becomes false

 What if T1 also reads X?

▪ or

T1 start T2 start T2 writes X T1 writes X

T1 start T2 start T1 reads X T2 writes X T1 writes X

ignored

T1 start T2 start T2 writes X T1 reads X T1 writes X

as above

read too late



 If there is request to commit T

▪ Find all elements written by T and set each C(Xi) to 
true

▪ A list of such elements should be maintained by the scheduler

▪ If any transactions are waiting for Xi to commit, those 
transactions can proceed

 If there is a request to abort T, or T is rolled back

▪ Any transaction waiting for an element written by T 
repeats its attempt to read or write the element



 Timestamps are superior to locks where most 
transactions are read-only

▪ Or when it is rare for concurrent transactions to 
read and write the same element

 Locking performs better when there are 
many conflicts

▪ Locking delays transactions

▪ But rollbacks will be more frequent, leading to 
even more delay





 Multiversion concurrency conctr0l (MVCC) is 

another concurrency control technique

▪ Where several versions of data items are maintained

 Allowing transactions to read the appropriate 

version of an item that has been modified

▪ Where the read would be rejected in other 

concurrency control systems

 The obvious drawback with MVCC is that it 

requires additional storage



 For each version of a data item

▪ Record the value and

▪ The read timestamp (RT) – the largest timestamp of 
transactions that have read the item

▪ The write timestamp (WT) – the timestamp of the 
transaction that wrote the version

 When a data item is written a new version is created

▪ With RT and WT set to the timestamp of the transaction

▪ If a transaction reads the item RT is set to the larger of its 
current value and the transactions timestamp



 If transaction T writes data item X

▪ If the highest WT(X) <= TS(T) and RT(X) > TS (T)

▪ Abort and roll back T

▪ Otherwise create a new version of X

▪ Where RT(X) = WT(X) = TS(T)

 If transaction T reads data item X

▪ Find the version of X with highest WT(X) <= TS(T)

▪ Return value of X to T and set the value of RT(X) to the 
greater of its current value and TS(T)

▪ Note that reads are always successful

Another transaction read X after T



 Multiversion two-phase locking allows for 
increased concurrency

▪ It allows reads of a data item to continue while a 
single transaction has a write lock on the item

▪ By allowing two versions of data items, a committed 
version and a local version 

 The technique adds a certify lock mode

▪ Write locks must be upgraded to certify locks 
when a write is ready to commit





 SQL allows programmers to specify three 
characteristics of transactions
▪ Access mode

▪ Diagnostics size – determines the number of error 
conditions that can be recorded

▪ Isolation level – affects the level of concurrency
 The access mode can be either

▪ READ ONLY – transaction is not allowed to modify the DB
▪ Increases concurrency as only shared locks are required

▪ READ WRITE – this mode is required for INSERT, 
DELETE, UPDATE, or CREATE commands



 SERIALIZABLE is the highest degree of isolation
▪ Obtains locks on sets of objects (index locking), and
▪ Obtains and holds locks according to Strict 2PL

 REPEATABLE READ is similar to SERIALIZABLE
▪ Obtains and holds locks according to Strict 2PL, but
▪ Does not lock sets of objects

 READ COMMITTED
▪ Obtains X locks before writing and holds until committed
▪ Obtains S locks before reading, but releases them 

immediately
 READ UNCOMMITTED does not obtain any locks

▪ And is required to be READ ONLY



Level Dirty Read Unrepeatable Read Phantom

Read Uncommitted Possible Possible Possible

Read Committed No Possible Possible

Repeatable Read No No Possible

Serializable No No No





 A deadlock occurs when two transactions require 
access to data objects locked by each other

▪ e.g. T1 has locked A and requires B, and T2 requires B, and 
has locked A
▪ Both transactions must wait for the other to unlock so neither 

transaction can proceed, and to make matters worse

▪ They may hold locks required by other transactions

 Deadlocks must be either detected and avoided or 
resolved

▪ A simple method for identifying deadlocks is to use a 
timeout mechanism



 In practice deadlocks are rare and usually only involve a 
few transactions

 The lock manager maintains and periodically checks a 
waits-for graph to detect deadlocks

▪ The nodes correspond to active transactions

▪ An arc from T1 to T2 represents that T1 is waiting for T2 to 
release a lock

 A waits-for graph can be used to detect cycles, which 
indicate deadlocks

▪ Deadlocks are resolved by aborting one of the transactions



T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

T1 T2

waits-for graph
for schedule

T4 T3

no deadlock



T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

T1 T2

T4 T3

waits-for graph
for schedule

deadlock

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

X(A)



 A deadlock is resolved by aborting one of the 
transactions

 Several criteria can be considered when choosing the 
transaction to be aborted

▪ The transaction with the fewest locks

▪ The transaction that has performed the least work to date

▪ The one that is furthest from completion

▪ …

 Transactions may be repeatedly aborted

▪ If so, at some point, they should be given precedence and 
allowed to complete



 Deadlocks can be prevented by not allowing 
transactions to wait

▪ Each transaction is given a priority

▪ The transactions timestamp can be used as the priority, the lower the 
timestamp, the higher the priority

▪ Lower priority transactions are not allowed to wait for higher 
priority transactions

 When a transaction requests a lock which is already held 
one of two policies can be used

▪ Wait-die

▪ Wound-wait



 A transaction with a higher priority than an existing and 
conflicting transaction is allowed to wait

 A transaction with a lower priority dies
 Assume that T1 has requested a lock and that T2 holds a 

conflicting lock

▪ If T1 has the higher priority, it waits, otherwise it is aborted

▪ For a deadlock to occur T1 must be waiting for a lock held by T2 
while T2 is waiting for a (different) lock held by T1

▪ But T2, waiting for T1, must have a lower priority so T2 dies and 
the deadlock is prevented

▪ In general more transactions could be involved



T1 T2

X(A)

R(A)

W(A)

X(B)

R(B) 

W(B)

X(B)- waiting

R(B)

W(B)

X(A)- waiting

R(A)

W(A)

T1 T2

T1 requests a lock on B, if it has the higher
priority, then T2 is aborted, allowing T1 to
proceed

Otherwise T2 must have the higher
priority so T1 is aborted, and T2 proceeds



 Assume that T1 has requested a lock and that T2 
holds a conflicting lock

 If T1 has the higher priority, abort T2, otherwise wait

▪ Wounding refers to the process of aborting a transaction

▪ If the wounded transaction is already releasing its locks 
when the wound takes effect it is allowed to complete

 How does this prevent deadlock?

▪ If T1 has a lower priority, it waits, however, if T2 is waiting 
for T1 it must have a higher priority so T1 is aborted



T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)1

S(C)

R(C)

X(C)2

X(B)3

X(A)4

T2

T3

T1

T4

1 - T1 requests a lock that conflicts with T2 so waits

2 - T2 requests a lock that conflicts with T3 so waits

3 - T4 requests a lock that conflicts with T2 so dies
but the conflict is not resolved

4 - T3 requests a lock that conflicts with T1 so dies
resolving the conflict

Priority is T1, T2, T3, T4



T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)1

S(C)

R(C)

X(C)2

X(B)3

X(A)4

T2

T3

T1

T4

Priority is T1, T2, T3, T4

1 - T1 requests a lock that conflicts with T2 so 
wounds T2, aborting it and resolving the conflict

2 - T1 commits, releasing its locks

3 - T3 proceeds without conflict

4 - T4 proceeds without conflict



 Wait-die is non-preemptive

▪ Only transactions that request locks are aborted

 In contrast, wound-wait is preemptive

▪ A transaction may abort a second transaction that 
has all the locks that it needs



 Locking schemes use two basic mechanisms

▪ Blocking, and

▪ Aborting

 Blocked transactions may hold locks that force other 
transactions to wait

▪ A deadlock is an extreme instance of blocking where a set of 
transactions is blocked forever

 Aborting a transaction wastes the work performed by 
the transaction before being aborted

 In practice, there are usually few deadlocks

▪ The cost of locking comes primarily from blocking



 Delays due to blocking increase with the number of 
active transactions

▪ As more transactions execute concurrently the probability 
that they block each other increases

 Throughput therefore increases more slowly than 
the increase in the number of transactions

▪ At some point adding another transaction actually reduces 
throughput
▪ The new transaction is blocked, and competes with existing 

transactions

▪ This is referred to as thrashing



 When thrashing occurs 
the number of 
transactions allowed to 
run concurrently should 
be reduced

 Thrashing usually occurs 
when 30% of active 
transactions are blocked

 The percentage of 
blocked transactions 
should be monitored

active transactions
th

ro
u

g
h

p
u

t

thrashing



 Always lock the smallest sized database 
object

▪ e.g. a set of rows, rather than an entire table

▪ This reduces the chance that two transactions 
need the same lock

 Reduce the time that transactions hold locks
 Reduce hot spots

▪ A hot spot is a DB object that requires frequent 
access (and modification)





 Lock-based locking schemes adopt a pessimistic 
approach to concurrency control 

▪ However they are very effective and have low overhead

 Index locking for B+ trees can be much more efficient 
than predicate locking for data pages. 

 In real-life DBMS systems

▪ Transaction dependency is rare

▪ Users are allowed to balance the demands of performance and 
serializability

▪ Transactions with different isolation levels may run concurrently 
inside a DBMS





 A transaction that validates is treated as if it 
executed at the moment of validation

▪ Each transaction has a read set RS(T) and write set WS(T)

 Transactions have three phases

▪ Read – the transaction reads all of its elements in its read 
set

▪ Validate – the transaction is validated by comparing its 
read and write set to other transactions' sets
▪ If validation fails the transaction is rolled back

▪ Write – if there is no conflict ,changes are written 



 The scheduler maintains three sets of data

▪ Start – transactions that have started but not finished

▪ Records the start time, START(T), for each transaction

▪ Val – transactions that have been validated but not 
finished writing

▪ Records START(T) and validation time, VAL(T), for each 
transaction

▪ Finish – transactions that have completed writing

▪ Records START(T), VAL(T) and FIN(T) for each transaction

▪ Transactions with FIN(T1) less than START(T2) are removed



 There are two situations in which a write by a 

transaction T1 could be physically unrealizable

▪ T2 writes to a data object after it was read by T1

▪ T2 has validated (T2 is in VAL or FIN)

▪ FIN(T2) > START(T1) – T2 did not finish before T1 started

▪ RS(T1) WS(T2) is non empty

▪ T1 and T2 write to a data object in the wrong order

▪ T2 is in VAL

▪ FIN(T2) > VAL(T1) – T2 did not finish before T1 entered validation

▪ WS(T1) WS(T2) is non empty



 Check that RS(T1) WS(T2) = 0

▪ For any validated T2 where FIN(T2) > START(T1)

▪ If not, then rollback T1

 Check that WS(T1) WS(T2) = 0

▪ For any validated T2 where FIN(T2) > VAL(T1)

▪ If not, then rollback T1


