

 ACID Properties
 Concurrency Control

▪ Schedules

▪ Serial Schedules

▪ Serializability

▪ Invalid Schedules

▪ Conflict Serializability

 A transaction is a single execution of a user program
in a DBMS

▪ e.g. Transferring money between two bank accounts

▪ If money is transferred between two bank accounts, both
accounts' records must be updated

 A single transaction may result in multiple actions

▪ For performance reasons, these actions may be
interleaved with actions of another transaction

 Transactions should have the ACID properties

 Transactions should be atomic

▪ Either all or none of a transaction’s actions are carried out

 A transaction must preserve DB consistency

▪ The responsibility of the DB designers and the users

 A transaction should make sense in isolation

▪ Transactions should stand on their own and

▪ Should be protected from the effects of other concurrently
executing transactions

 Transactions should be durable

▪ Once a transaction is successfully completed, its effects should
persist, even in the event of a system crash

 A transaction that is interrupted may leave the DB
in an inconsistent state

▪ Transactions consist of multiple actions, and are
consistent only when considered in their entirety

▪ Transactions must therefore be atomic

▪ All or Nothing!

 A DB will remain consistent if transactions are

▪ Consistent

▪ Processed as if they occur in some serial order

▪ Atomic, ensuring that no partial transactions occur

 A DB is in a consistent state if it satisfies all of the
constraints of the DB schema

▪ For example key constraints, foreign key constraints

 A DBMS typically cannot detect all inconsistencies

▪ Inconsistencies often relate to domain specific information

▪ And may be represented by triggers, or policies

 Users are responsible for transaction consistency

▪ This includes programs that access the DB

▪ Casual users should only interact with a DB via programs that are
consistency preserving

▪ Expert users may interact directly with a DB

 Entering a new Patient record with a duplicate MSP

▪ Allowing this transaction would leave the DB in an inconsistent
state so the DB rejects the transaction

 Customers are only allowed if they have an account,
accounts are only allowed if they have a customer

▪ Entering a new customer who owns a new account is impossible
if the DB attempts to maintain this constraint

▪ The constraint can be modeled by an application program

 Employees are not allowed to be customers, but SIN is
not recorded for customers

▪ The constraint must be maintained by policy

 Consider transferring money between two accounts

▪ The database will only remain consistent if both sides of
the transfer are processed

▪ If the transfer is interrupted there is a risk that one half is
processed and the other is not

 Note that this principle applies to almost any
accounting entry

▪ Most accounting systems use double-entry bookkeeping

 Many other DB transactions are composed of
multiple actions

 Multiple transactions may be interleaved

▪ That is, processed concurrently

▪ The net effect of processing the transactions should be the
same as executing them in some serial order
▪ There is no guarantee which serial order is chosen

 Consistency and isolation

▪ If transactions leave the DB in a consistent state, and

▪ If transactions are executed serially then,

▪ The resulting DB should be in a consistent state

 Transactions are first processed in main memory

▪ And later written to disk

▪ For example when the affected memory pages are replaced

▪ If the system crashes in between these two processes there is a
possibility that the transaction is lost

 A DBMS maintains a log that records information about
all writes to the database

▪ In the event of a system crash the log is used to restore
transactions that were not written to disk

 To achieve durability it is also necessary to maintain
backups of the database

 The scheduler is responsible for executing
reads and writes

▪ Reads and writes take place in main-memory

▪ Not the disk

 The scheduler may need to call on the buffer
manager to read a page into main memory

 A DB element in main memory may be acted
on by more than one transaction

▪ These actions may interact

 A single transaction consists of a series of actions

▪ A list of reads and writes of objects in the DB

▪ Denote reads of object A as R(A), and

▪ Writes of object A as W(A)

 A transaction's last action is either to commit or abort

▪ If a transaction is aborted all of its actions must be undone

 Assumptions

▪ Transactions only interact with each other via reads and writes,
and do not exchange messages

▪ A DB is a fixed collection of independent objects

▪ This assumption is not realistic, and will be discussed further

 A schedule is a list of the actions contained in a set
of transactions

▪ An action can be a read, write, commit, or abort

▪ A schedule lists actions in the order in which they occur
▪ i.e. the order in which they are processed by the DB

 A complete schedule is one that contains either an
abort or commit action for each of its transactions

 A serial schedule is one where actions from different
transactions are not interleaved

▪ All serial schedules leave the DB in a consistent state

 This schedule contains
two transactions

 The transactions do
not interact
▪ T1 completes before T2

begins
 Key

▪ R = Read

▪ W = Write

▪ A and B are data objects

T1 T2

R(A)

R(B)

A = A + 100

B = B - 100

W(A)

W(B)

Commit

R(A)

A = A*2

W(A)

Commit

 Transaction isolation could be guaranteed by never
interleaving transactions

▪ However this would negatively impact performance

▪ Interleaving two transactions allows the CPU to process
one while the other's data is being read from disk

 Interleaving transactions therefore increases system
throughput

▪ i.e. the average number of transactions completed

▪ It allows short transactions to be interleaved with long
transactions rather than waiting for their completion

 A serializable schedule is guaranteed to be the same
as some serial schedule

▪ i.e. where one transaction is processed in its entirety
before processing the next

▪ Different serial orders of transactions may result in
different results

 If a schedule is not serializable the DB may not be in
a consistent state after processing the transactions

▪ A schedule containing two consistency preserving
transactions may therefore result in an inconsistent DB

 The schedule contains
two transactions

 The transactions do
not access the same
data objects

 Is it serializable?

▪ Yes!

▪ Though interleaved, the
actions are unrelated

T1 T2

R(A)

A = A + 100

W(A)

R(C)

C = C * 2

W(C)

R(B)

B = B - 100

W(B)

Commit

R(D)

D = D * 2

W(D)

Commit

 This schedule also has
two transactions

 These transactions do
access the same data
objects

 Is it serializable?

▪ Yes!

▪ Note the order in which
the objects are read and
written

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B - 100

W(B)

Commit

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

250

100

200

250 200

 This schedule is similar
to the previous one

 The two transactions
also access the same
data objects

 Is it serializable?

▪ Yes!

▪ Again, note the order

T1 T2

R(A)

A = A * 2

W(A)

R(A)

R(B)

B = B * 2

W(B)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

Commit

A B

25 200

50

400

150

300

150 300

 There are three ways in which transactions in a
schedule can conflict

▪ So that even if the individual transactions are consistent
the DB can be in an inconsistent state after the execution

 Two actions conflict if they act on the same data
object and if one of them is a write

▪ write-read conflicts (WR)

▪ read-write conflicts (RW)

▪ write-write conflicts (WW)

 One transaction writes data, and a second
transaction reads that data before it commits

▪ Referred to as a dirty read

▪ The first transaction may not be complete before the
second transaction begins processing

 If the first transaction is not complete, the DB may
be in an inconsistent state at that point

▪ Note – recall that during the processing of a transaction,
the database may be temporarily inconsistent

 T1 – Transfer $100 from
account B to account A

 T2 – Double amounts in
both accounts A and B

 The diagram shows a
serial schedule T1, T2

 A – 250
 B – 200

T1 T2

R(A)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

100

250

200

250 200

 T1 – Transfer $100 from
account B to account A

 T2 – Double amounts in
both accounts A and B

 The diagram shows a
serial schedule T2, T1

 A – 150
 B – 300

T1 T2

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(A)

A = A + 100

W(A)

R(B)

B = B - 100

W(B)

Commit

A B

25 200

50

400

150

300

150 300

 T1 – Transfer $100 from
account B to account A

 T2 – Double amounts in
both accounts A and B

 The diagram shows an
interleaved schedule
with a dirty read of A

 Result is not the same
as either serial schedule

 A – 250
 B – 300

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

250

400

300

250 300

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B - 100

W(B)

Commit

R(B)

B = B * 2

W(B)

Commit

A B

25 200

125

250

100

200

250 200

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A * 2

W(A)

R(B)

B = B * 2

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

250

400

300

250 300

SerializableWR Conflict

 One transaction reads data which is then written by
a second transaction

▪ Referred to as an unrepeatable read

▪ Although the first transaction did not modify the data, if it
tries to read it again it would obtain a different result

 What if the first transaction modifies the data based
on the value it obtained from its initial read?

▪ This value is no longer correct,

▪ Therefore an error or an inappropriate modification may
result

 T1 – User1 considers
purchasing 21 items

▪ Reads A

▪ Waits (contemplating)

▪ Reads A again

▪ Writes A

 T2 – User2 wants to
purchase 13 items

 The diagram shows a
serial schedule T1, T2

T1 T2

R(A) items = 25

R(A) items = 25

A = A - 21

W(A) items = 04

Commit

R(A) items = 04

no write*

Commit

*4 – 13 is negative so user program
will not remove the items

 T1 – User1 considers
purchasing 21 items

▪ Reads A

▪ Waits (contemplating)

 T2 – User2 purchases 13
items

 T1 – When user1 reads
the data again the
amount has changed
▪ making the purchase

impossible

▪ user1 is upset!

T1 T2

R(A) items = 25

R(A) items = 25

A = A - 13

W(A) items = 12

Commit

R(A) items = 12

no write*

Commit

*12 – 21 is negative so user program
will remove the widgets

 One transaction writes data that has already been
read or written by a second, incomplete, transaction

▪ Referred to as a lost update, a special case of an
unrepeatable read

▪ If the initial action of the first transaction was a read, a
subsequent write is replaced by the second transaction

 Other WW conflicts exist that do not involve
unrepeatable reads

▪ Blind writes to objects whose values should be related

▪ Lost updates caused by aborted transactions

A blind write is a write with no prior read

 T1 – Increase account A
by $10,000

 T2 – Decrease account
A by $7,000

T1 T2

R(A) 21,000

W(A) 31,000

Commit

R(A) 31,000

W(A) 24,000

Commit

 T1 – Increase account A
by $10,000

 T2 – Decrease account
A by $7,000

 The diagram shows an
interleaved schedule
with a lost update (T1)
▪ Caused by an

unrepeatable read

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit

 A and B should always
have the same value

 T1 and T2 both change
the values of A and B
▪ In both cases the existing

values are not read - blind
writes

 In this serial schedule
the relationship
between A and B is
maintained

T1 T2

W(A) 10,000

W(B) 10,000

Commit

W(A) 7,000

W(B) 7,000

Commit

 A and B should always
have the same value

 A and B do not have the
same values after both
the transactions have
committed

 Remember that
transactions may be
inconsistent during
processing

T1 T2

W(A) 10,000

W(B) 7,000

W(B) 10,000

Commit

W(A) 7,000

Commit

 The scheduler does not
consider the details of
calculations

▪ i.e. it does not know
what a transaction is
doing

▪ It assumes that if a
transaction could result
in the DB being
inconsistent it will

T1 T2

R(A)

A = A + 100

W(A)

R(A)

A = A + 200

W(A)

R(B)

B = B + 200

W(B)

Commit

R(B)

B = B - 100

W(B)

Commit

A B

25 200

125

325

400

300

325 300

Is there a serial schedule equivalent to
this schedule?

 When is a non-serial schedule guaranteed to
leave a DB in a consistent state?

▪ If it is equivalent to some serial schedule

▪ That is, if the schedule is serializable

 We will look at two tests of serializability

▪ View equivalent

▪ Conflict equivalent

 Two schedules are view-equivalent if

▪ They contain the same transactions

▪ Each transaction reads the same value for each data
object in each schedule
▪ Before modification

▪ And after modification by one of the transactions

▪ The same transaction must perform the final write of each
data object

 A schedule is view-serializable if it is view-equivalent
to some serial schedule

T1 T2

R(A) initial read - T1

W(A)

R(A) written by T1

W(A) final write - T2

R(B) initial read - T1

W(B)

Commit

R(B) written by T1

W(B) final write - T2

Commit

T1 T2

R(A) initial read - T1

W(A)

R(B) initial read - T1

W(B)

Commit

R(A) written by T1

W(A) final write - T2

R(B) written by T1

W(B) final write - T2

Commit

Serial Schedule View Equivalent

T1 T2

R(A) initial read - T1

W(A)

R(A) written by T1

W(A) final write - T2

R(B) initial read - T2

W(B)

R(B) written by T2

W(B) final write - T1

Commit

Commit

T1 T2

R(A) initial read - T1

W(A)

R(B) initial read - T1

W(B)

Commit

R(A) written by T1

W(A) final write - T2

R(B) written by T1

W(B) final write - T2

Commit

Serial Schedule Not Equivalent

 View-serializability is hard to prove and implement

▪ As it is necessary to find an equivalent serial schedule
▪ Which is an NP-hard problem

 Conflict-serializability is a practical alternative

▪ Two schedules that are conflict equivalent have the same
effect on a DB

▪ A conflict-serializable schedule is always view-serializable

▪ In some (rare) cases a view-serializable schedule is not
conflict-serializable
▪ This only occurs when the schedule contains blind writes

 Two actions conflict if they operate on the same DB
object and one of them is a write

▪ Note that conflicts are often unavoidable and do not
necessarily result in inconsistency

 The outcome of a schedule depends on the order of
the conflicting operations

▪ Non-conflicting operations can be reordered with no
impact on the final result

 If the conflicting actions of two schedules are in the
same order the schedules are conflict equivalent

 Two schedules are conflict equivalent if

▪ They involve the same actions of the same transactions

▪ They order each pair of conflicting actions in the same way

 A schedule is conflict serializable if it is conflict
equivalent to some serial schedule

▪ Some serializable schedules are not conflict serializable
▪ Such a schedule has conflicting actions that cannot be ordered in

the same way as a serial schedule, but that

▪ Does not result in a different state from a serial schedule

 Two actions of the same transaction always conflict

▪ e.g. RT1(X), WT1(Y)

▪ Since the order of actions within a transaction cannot be
changed

 Two writes of the same database object by different
transactions conflict

▪ e.g. WT1(X), WT2(X)

 A read and a write of the same database object by
different transactions conflict

▪ e.g. RT1(X), WT2(X) or WT1(X), RT2(X)

 Transaction schedules can be written in
shorthand, denote

▪ rt(O) – where r is a read, t is the transaction and O is
the data object

▪ r1(A) – read of object A by transaction 1

▪ wt(O) – where w is a write, t is the transaction and O is
the data object

▪ w2(B) – write of object B by transaction 2

▪ The order from left to right shows the order in which
the actions take place

 Example schedule

▪ r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

 We can demonstrate that a schedule is or is

not conflict equivalent by swapping actions

▪ Except that actions that conflict are not allowed

to be swapped

▪ If actions can be swapped such that the schedule

becomes a serial schedule it is conflict serializable

 r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)
 Goal – try to swap actions to create a serial schedule
 r1(A), w1(A), r2(A), r1(B), w2(A), w1(B), r2(B), w2(B)
 r1(A), w1(A), r1(B), r2(A), w2(A), w1(B), r2(B), w2(B)
 r1(A), w1(A), r1(B), r2(A), w1(B), w2(A), r2(B), w2(B)
 r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)
 This technique is not used by the scheduler to

determine if a schedule is (conflict) serializable

▪ But it allows us to reason about schedules

 r1(A), w1(A), r2(A), w2(A), r2(B), w2(B), r1(B), w1(B)
 Goal – move T1’s read and write of B up to the front,

just after T1’s read and write of A

▪ First swap r1(B) and w2(B)

▪ But they conflict, because they act on the same object

 r1(A), w1(A), r2(A), w2(A), r2(B), w2(B), r1(B), w1(B)
 The schedule cannot be rearranged into a serial

schedule

▪ And is therefore not conflict serializable

T1 T2

R(A)1

W(A)1

R(A)2

W(A)2

R(B)1

W(B)1

Commit

R(B)2

W(B)2

Commit

T1 T2

R(A)1

W(A)1

R(B)1

W(B)1

Commit

R(A)2

W(A)2

R(B)2

W(B)2

Commit

Conflict EquivalentSerial Schedule

T1 T2

R(A)1

W(A)1

R(A)2

W(A)2

R(B)1

W(B)1

R(B)2

W(B)2

Commit

Commit

T1 T2

R(A)1

W(A)1

R(B)1

W(B)1

Commit

R(A)2

W(A)2

R(B)2

W(B)2

Commit

Not Conflict EquivalentSerial Schedule

 Conflicts between transactions can be shown
in a precedence graph

▪ Also known as a serializability graph

 A precedence graph for a schedule contains

▪ Nodes for each committed transaction

▪ An arc from transaction Ti, to Tj if an action of Ti

precedes and conflicts with one of Tj's of actions

 A schedule is only conflict serializable if and
only if its precedence graph is acyclic

T1 T2

R(A)

W(A)

R(B)

W(B)

Commit

R(A)

W(A)

R(B)

W(B)

Commit

T1 T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

T1 T2

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

Commit

Commit

T1 T2

The cycle indicates
that the schedule is
not conflict serializable

T1 T2 T3

R(A)

W(A)

Commit

W(A)

Commit

W(A)

Commit

T1 T2

This schedule is view
serializable but not
conflict serializable

T3

 If a transaction is aborted all its actions have to be
reversed as if the actions had never occurred

▪ To achieve this other transactions may also have to be aborted
in a cascading abort

▪ This may be required when transactions have acted on the same
objects as the transaction to be aborted

 A transaction that has already been committed cannot
be aborted as part of a cascading abort

▪ If an aborted transaction is interleaved with a committed
transaction the schedule may be unrecoverable

▪ In a recoverable schedule transactions only commit after all
transactions that they read have committed

 T1 adds $2,000 to A
 T2 adds $3,000 to A
 In this serial schedule A

is aborted
▪ Any changes made by A

are reversed

 The value of A would be
the same regardless of
the order

▪ T1, T2 or T2, T1

T1 T2

R(A) 10,000

W(A) 12,000

Abort

R(A) 10,000

W(A) 13,000

Commit

 T1 adds $2,000 to A
 T2 adds $3,000 to A
 T2 commits after A has

aborted so the results of
both transactions are lost
▪ Since A's value is reset to

10,000

 This schedule is another
example of an
unrepeatable read

T1 T2

R(A) 10,000

W(A) 12,000

R(A) 12,000

W(A) 15,000

Abort

Commit

T1 T2

R(A) 10,000

W(A) 7,000

R(A) 7,000

W(A) 7,700

Commit

Abort

 T1 – Deduct $3,000 from
account

 T2 – Add interest of 10%
to account

 To reverse T1 it would
also be necessary to
reverse T2

 But T2 has already
committed

 A DBMS must ensure that schedules are

▪ Equivalent to some serial schedule (serializable) and

▪ Recoverable

 Often achieved by using a locking protocol

▪ A lock is associated with a particular DB object and

▪ Restricts access to that object

 The most widely used locking protocol is Strict Two-
Phase Locking (Strict 2PL)

▪ A variant of the Two-Phase Locking (2PL) protocol

 There are two kinds of lock

▪ If a transaction wants to read an object it first has to
request a shared lock on that object

▪ If a transaction wants to modify an object it first has to
request an exclusive lock on that object
▪ Which also allows the transaction to read the object

 When a transaction requests a lock either

▪ The lock is granted, the transaction becomes the owner of
that lock, and the transaction continues, or

▪ The transaction is suspended until it is able to be granted
the requested lock

 Shared locks allow transactions to read objects

▪ Multiple shared locks can be granted to different
transactions on the same database object

▪ Allowing all of the transactions with shared locks to read
the object

 Exclusive locks allow transactions to write objects

▪ Exclusive locks are only granted on objects with no other
locks
▪ Shared or exclusive

▪ No other locks are granted on objects that are already
exclusively locked

 When should a transaction issue a lock?

▪ It must ensure that a schedule is both serializable
and recoverable

 When should a transaction release a lock?
 What are the side effects of locking, and how

are they dealt with?

▪ Deadlock prevention and detection

 How is locking implemented?

 Shared or exclusive locks are requested before each

read or write respectively, and

▪ A transaction’s lock requests must precede its unlocks

▪ Once it has released any locks it cannot request additional locks

▪ 2PL transactions therefore have growing and shrinking phases

 2PL ensures that precedence graphs are acyclic

▪ Resulting in conflict-serializable schedules

▪ When a conflict occurs, the transaction causing the

conflict waits until the other transaction finishes

 This schedule
includes an
unrepeatable read

 Can this schedule
occur with 2PL?

▪ No!

T1 T2

R(A) items = 25

R(A) items = 25

W(A) items = 12

Commit

R(A) items = 12

no write*

Commit

*intending to purchase 21 items,
since 12 – 21 is negative user
program will not remove them

 This schedule
includes a dirty read

 Can this schedule
occur with 2PL?

▪ No!

T1 T2

R(A) 10,000

W(A) 7,000

R(A) 7,000

W(A) 7,700

R(B) 12,000

W(B) 13,200

Commit

R(B) 13,200

W(B) 16,200

Commit

 This schedule
includes a lost
update

 Can this schedule
occur with 2PL?

▪ No!

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit

T1 T2

X(A)

R(A) 21,000

T2 suspended

W(A) 31,000 …

Commit …

X(A)

R(A) 31,000

W(A) 24,000

Commit

T1 T2

R(A) 21,000

R(A) 21,000

W(A) 31,000

Commit

W(A) 14,000

Commit

Schedule with 2PLWrite Write Conflict

 A transaction in this
schedule is aborted

 The schedule is
unrecoverable

 Can this schedule
occur with 2PL?

▪ Yes!

T1 T2

R(A) 10,000

W(A) 7,000

R(A) 7,000

W(A) 7,700

Commit

Abort

Schedule with 2PLUnrecoverable Schedule

T1 T2

R(A) 10,000

W(A) 7,000

R(A) 7,000

W(A) 7,700

Commit

Abort

T1 T2

X(A)

R(A) 10,000

W(A) 7,000

release lock

X(A)

R(A) 7,000

W(A) 7,700

Commit

Abort
The 2PL protocol can be modified to
prevent unrecoverable schedules

 Strict 2PL is similar to 2PL

▪ Write and read operations request shared and exclusive
locks respectively

 Strict 2PL differs on when locks are released

▪ All locks held by a transaction are released only when the
transaction is completed (committed or aborted)

 This prevents transactions from reading DB objects
which were modified by uncommitted transactions

 Only safe interleaving of transactions is allowed

▪ If two transactions access different DB objects they are
allowed concurrent access, so interleaving is possible

▪ If two transactions require access to the same object, and
one wants to modify it, their actions are ordered serially

 Strict 2PL prevents unrecoverable schedules from
occurring

▪ The protocol only releases locks when a transaction ends

▪ Which prevents a transaction from accessing a DB object
that was modified by a prior transaction that aborts

 A schedule is conflict serializable if and only if its
precedence graph is acyclic

 The precedence graph for any Strict 2PL schedule is
acyclic

▪ If T2 writes an object written by T1, then T1 must have
released its lock on that object before T2 obtained its lock

▪ Under Strict 2PL, transactions only unlock data objects
when they commit (or abort)

▪ Therefore, two transactions cannot precede each other,
forming a cycle in the precedence graph

 The lock manager keeps track of which locks have
been issued to transactions

▪ It maintains a lock table, a hash table with the data object
ID as the key, each lock table entry contains
▪ The number of transactions holding a lock on the object

▪ Type of lock (shared or exclusive)

▪ A pointer to a queue of lock requests

 The DBMS also maintains an entry for each
transaction in a transaction table

▪ Including a pointer to a list of locks held by the transaction

 A transaction that needs a lock issues a lock request
 Shared lock requests are only granted if

▪ The request queue is empty, and

▪ The object is not locked in exclusive mode

 Exclusive lock requests are only granted if

▪ There is no lock on the object and the request queue is
empty

 In any other case the lock is not granted

▪ The request is added to the request queue, and

▪ The transaction is suspended

 When a transaction aborts or commits it releases its
locks

▪ The lock table is updated for the object

▪ The request at the head of the queue is considered and if it can
be granted it is unsuspended and given the lock

▪ If several requests for a shared lock are at the head of the queue they
can all be granted

 If T1 has a shared lock on an object and T2 requests an
exclusive lock T2 is suspended

▪ If T3 then requests a shared lock on the same object, T3 is also
suspended even though it is compatible with T1

▪ This rule ensures that T2 does not starve

 Update locks

▪ An update lock allows a transaction to read a record

▪ But can be later upgraded to an exclusive lock

▪ Update locks can be granted when another transaction

has a shared lock

▪ And prevent any other locks being taken on the object

 Increment locks allow objects to be incremented or

decremented

▪ Multiple increment locks are allowed on the same object

▪ Other locks are not granted on objects with increment locks

T1 T2

X(A)

R(A)

W(A)

X(B)

R(B)

W(B)

X(B) - denied

… suspended

X(A) - denied

… suspended

T1: R(A), W(A), R(B), W(B)

T2: R(B), W(B), R(A), W(A)

 Deadlock – when two or more
transactions are suspended

 Waiting for each other to
complete and unlock an object

 Deadlock is not prevented by
Strict 2PL

 Deadlock can be detected and
dealt with

 Or avoided

 Initially we assumed that a database is a fixed collection
of independent objects

▪ In practice, database transactions may include insertions,
violating the first part of this assumption

 Insertions may result in unrepeatable reads

▪ Locks only apply to DB objects that exist

▪ Using the 2PL protocol, all records that meet some criteria can
be locked

▪ This does not prevent additional records (that meet the criteria)
being inserted during the lock

▪ Such records are referred to as phantoms

 T1 reads the Patient table to find the ages of the oldest
patients suffering from scurvy and leprosy

▪ T1 locks all pages for patients with scurvy, and finds the oldest
such patient (who is 77)

 T2 inserts a new patient, aged 93, with scurvy

▪ The page that the patient is inserted on is not locked by T1

▪ T2 now locks the page containing the oldest patient with
leprosy (who is 89) and deletes the record

▪ T2 commits and releases its locks

 T1 finds the oldest patient with leprosy, who is 88

▪ T1’s result would not be possible from any serial schedule

T1 T2

S(scurvy pages)

R(scurvy)age 77

X(new scurvy)

W(new scurvy)add 93

X(leprosy)

W(leprosy)del 89

Commit

S(leprosy)

R(leprosy)age 88

Commit

 Query T1 returns the two
ages as
▪ Scurvy – 77

▪ Leprosy – 88

 This is not equivalent to any
serial schedule

 Serial schedules would
either return
▪ 77, and 89, or

▪ 93, and 88

 This occurred because T1
locked specific pages
▪ Rather than the set of patients

 The phantom problem can lead to schedules that
are not equivalent to any serial schedule

▪ Conflict serializability does not guarantee serializability if
items are added to the DB

 This can be solved by using predicate locking

▪ All records that fall within a range of values are locked

▪ General predicate locking is expensive to implement
▪ Key-range locking (locking a range of key values) is more common

▪ Index locking can be used if the DB file has B+ tree index on
the attribute used in a transaction's condition

 The size of DB object that can be locked varies

▪ Largest lock unit – the entire DB

▪ Smallest lock unit – single record (table row)

▪ Or: a table, or page

 The size of the locking unit affects performance

▪ Smaller lock units generally allow more concurrency, but

▪ Complex transactions may need access to many such
objects, leading to high overhead and large lock queues

 The solution is to allow multiple lock granularity

▪ With a separate lock table for objects of each type

 Multiple lock granularity results in a problem

▪ If T2 holds a lock on a record, and T1 wants a lock on the
same page, how is T1 prevented from overriding T2's lock?

 Introduce two new lock types to indicate that a lock
is held at a finer granularity

▪ Intention shared (IS) – conflicts only with X locks, and

▪ Intention exclusive (IX) – conflicts with S and X locks

▪ Intent locks are applied to all ancestors of a locked object

 IS and IX locks can co-exist with other IS and IX
locks at the same lock table

 Consider the DB as a tree
 Each node represents a lock unit
 Each level represents a different granularity

▪ The entire DB is the root

▪ Individual records are leaf nodes

 To lock a target lock unit (a node)

▪ Request a lock on every node on the path from the root to
the target lock unit

▪ All locks are IS (or IX), except the target, which is S (or X)

 Shared
▪ Implies locks on all nodes below the current one

 eXclusive
▪ Implies locks on all nodes below the current one

 Intention Shared
▪ Intent to set an S lock at a finer granularity

 Intention eXclusive
▪ Intent to set an X lock at a finer granularity

 SIX (S and IX)
▪ Commonly used where a transaction needs read an entire

file and modify some of the records

 Acquire locks from root to leaf
 Release locks from leaf to root

▪ This is necessary to prevent another transaction acquiring
a (higher level) conflicting lock

 To acquire an S or IS mode on a non-root node, all
ancestors must be held in IS mode

 To acquire an X, SIX or IX mode on a non-root node,
all ancestors must be held in IX mode

 Use Strict 2PL locking protocol

 SIX locks are used to search a file to find the desired
record to update

SIX lock the table
for each record in the table

if (condition is true) //record is the target
upgrade the S lock to X to lock the record
update the record
release the X lock

end if
end for
release SIX lock

 What granularity of locking is appropriate for a
given transaction?

▪ First obtain fine granularity locks (at the record level)

▪ When the number of locks granted reaches a threshold

▪ Obtain locks at the next higher granularity

 An alternative approach is to start with coarser
granularity locks

▪ Break the locks into multiple finer granularity locks when
contention occurs

▪ i.e. Lock de-escalation

 Problem: How can a leaf node in a B+ tree be locked
efficiently?
▪ The naive solution is to ignore the tree structure and treat

each page as a data object

▪ This has very poor performance as the root (and other high
level nodes) become bottlenecks

 Two useful observations
▪ Higher levels of the tree only direct searches

▪ All of the data is in the leaf levels

▪ For inserts, a node must be (exclusively) locked only if a
split can propagate to it from the leaf

 Searches

▪ Obtain shared locks on nodes on the path from root to the leaf

▪ As each child is locked, unlock its parent

 Inserts and deletes

▪ Start at the root and obtain exclusive locks on the nodes on the
path to the desired leaf

▪ Check each child to see if it is safe, a node is safe if changes will
not propagate up the tree

▪ For inserts, the node is not full

▪ For deletes, the node is not half-empty

▪ If a node is safe, release all the locks on its ancestors

 If there is an available index, a transaction can
request a lock on the appropriate index page

▪ i.e. the leaf page (or bucket) of the B+ tree

▪ This prevents any records with key values on that index
page being inserted

 An index bucket should be S locked to scan the rows
pointed to by data entries in that bucket

 An index bucket should be X locked to modify any of
the rows pointed to by the bucket

▪ Or to insert a value in the bucket

Optimistic Concurrency Control

 Locking protocols are pessimistic as they aim to abort or
block conflicts

▪ This requires overhead when there is little contention

▪ In optimistic concurrency control assume that conflicts are rare

 There are two main versions of optimistic CC

▪ Timestamps – maintain timestamps of transactions and reads
and writes of database objects

▪ Validation – similar to the timestamp system except that data is
recorded about the actions of transactions

▪ Rather than data about database objects

▪ Not discussed (appendix)

 Transactions are issued timestamps

▪ Given in ascending order when transactions begin

▪ Referred to as TS(T) in this presentation

 Timestamps can be generated

▪ By using the system clock

▪ By maintaining a counter within the scheduler

 The scheduler maintains a table of active
transactions and their timestamps

1 2 … n

 For each database element record

▪ RT(X) – the read time of the object X

▪ The highest timestamp of a transaction that has read X

▪ WT(X) – the write time of the object X

▪ The highest timestamp of a transaction that has written X

▪ C(X) – the commit bit

▪ True iff the most recent transaction to write X has committed

▪ Maintained to avoid one transaction reading data by another
transaction that later aborts

▪ i.e. a dirty read x

RT = 7: last read by transaction T with TS 7

WT = 4: last written by T with TS 4

C = 0: T that wrote object not committed

 Optimistic concurrency control supposes that
transactions are instantaneous

▪ That is, all the actions take place at the same time

▪ In reality this is, of course, not the case

▪ As actions are performed one at a time

▪ Possibly interleaved with actions of other transactions

 If the results of transactions could not have
occurred if transactions were instantaneous

▪ The behaviour is said to be physically unrealizable

So must be atomic

 There are two kinds of possible problems that can

result in physically unrealizable behaviour

 Read too late

▪ Transaction T tries to read X but TS(T) < WT(X)

▪ Which means that X has been written to by another transaction

after T began

▪ Transactions are supposed to be instantaneous

▪ If so, T would have read X before the later transaction wrote it

T started before X written

T1 start T2 start T2 writes X T1 reads X

 The second type of physically unrealizable

schedule is referred to as write too late

▪ T tries to write X but WT(X) < TS (T) < RT (X)

▪ Or RT(X) > TS(T)

▪ This means that X has been read by another

transaction after T began

Another transaction read X
before it was written by T

T1 start T2 start T2 reads X T1 writes X

i.e. TS(T) < RT(X)

 The commit bit solves problems

with dirty reads

▪ When T1 reads data after it is written

by T2, but before T2 commits

▪ If T2 aborts the read by T1 will be incorrect

▪ In this case the Thomas Write Rule should

not be applied

▪ Since T2’s actions should not occur

Thomas Write Rule

If TS(T1) < TS(T2) and T1

and T2 write to the

same object then T1's

write should be ignored

Since T2's timestamp is

later than T1's meaning

that T1 would have been

over-written

T1 start T2 start T2 writes X T1 writes X

If T2 commits T1’s write can be ignored

 The scheduler has three options when it
receives a read or write request from T

▪ Grant the request

▪ Abort T and restart it with a new timestamp

▪ Referred to as a rollback

▪ Delay T

▪ Decide later whether to grant T's request or abort T

▪ Usually when T is waiting for some other transaction to
commit

 The scheduler receives a read request RT(X)
 If TS(T) ≥ WT(X) the read is physically realizable

▪ If C(X) is true, grant the request and update RT(X)

▪ If TS(T) > RT(X), set RT(X) to TS(T)

▪ Otherwise delay T until C(X) becomes true, or the
transaction that wrote X aborts

 If TS(T) < WT(X) rollback T

▪ X has been written by another transaction after T
started

T1 start T2 start T1 writes X T2 reads X

T1 start T2 start T2 writes X T1 reads X

Wait for T2 to commit

T1 is rolled back

 The scheduler receives a write request WT(X)

▪ There are three possible outcomes

 If TS(T) ≥ RT(X) and TS(T) ≥ WT(X) the write is

physically realizable

▪ Write new value for X, set WT(X) to TS(T) and C(X) to false

▪ Set C(X) to true when T commits

 If TS(T) < RT(X) the write is not physically realizable

and T must be rolled back

T1 start T1 reads X T1 writes XOK OK

T1 start T2 start T2 reads X T1 writes X

T1 is rolled back

 The third possible outcome of a write request
involves the Thomas Write Rule

 If TS(T) ≥ RT(X) but TS(T) < WT(X) there is a later
value in X

▪ If C(X) is true ignore T's write – Thomas Write Rule

▪ Otherwise delay T until C(X) is true

▪ Or proceed with write if C(X) becomes false

 What if T1 also reads X?

▪ or

T1 start T2 start T2 writes X T1 writes X

T1 start T2 start T1 reads X T2 writes X T1 writes X

ignored

T1 start T2 start T2 writes X T1 reads X T1 writes X

as above

read too late

 If there is request to commit T

▪ Find all elements written by T and set each C(Xi) to
true

▪ A list of such elements should be maintained by the scheduler

▪ If any transactions are waiting for Xi to commit, those
transactions can proceed

 If there is a request to abort T, or T is rolled back

▪ Any transaction waiting for an element written by T
repeats its attempt to read or write the element

 Timestamps are superior to locks where most
transactions are read-only

▪ Or when it is rare for concurrent transactions to
read and write the same element

 Locking performs better when there are
many conflicts

▪ Locking delays transactions

▪ But rollbacks will be more frequent, leading to
even more delay

 Multiversion concurrency conctr0l (MVCC) is

another concurrency control technique

▪ Where several versions of data items are maintained

 Allowing transactions to read the appropriate

version of an item that has been modified

▪ Where the read would be rejected in other

concurrency control systems

 The obvious drawback with MVCC is that it

requires additional storage

 For each version of a data item

▪ Record the value and

▪ The read timestamp (RT) – the largest timestamp of
transactions that have read the item

▪ The write timestamp (WT) – the timestamp of the
transaction that wrote the version

 When a data item is written a new version is created

▪ With RT and WT set to the timestamp of the transaction

▪ If a transaction reads the item RT is set to the larger of its
current value and the transactions timestamp

 If transaction T writes data item X

▪ If the highest WT(X) <= TS(T) and RT(X) > TS (T)

▪ Abort and roll back T

▪ Otherwise create a new version of X

▪ Where RT(X) = WT(X) = TS(T)

 If transaction T reads data item X

▪ Find the version of X with highest WT(X) <= TS(T)

▪ Return value of X to T and set the value of RT(X) to the
greater of its current value and TS(T)

▪ Note that reads are always successful

Another transaction read X after T

 Multiversion two-phase locking allows for
increased concurrency

▪ It allows reads of a data item to continue while a
single transaction has a write lock on the item

▪ By allowing two versions of data items, a committed
version and a local version

 The technique adds a certify lock mode

▪ Write locks must be upgraded to certify locks
when a write is ready to commit

 SQL allows programmers to specify three
characteristics of transactions
▪ Access mode

▪ Diagnostics size – determines the number of error
conditions that can be recorded

▪ Isolation level – affects the level of concurrency
 The access mode can be either

▪ READ ONLY – transaction is not allowed to modify the DB
▪ Increases concurrency as only shared locks are required

▪ READ WRITE – this mode is required for INSERT,
DELETE, UPDATE, or CREATE commands

 SERIALIZABLE is the highest degree of isolation
▪ Obtains locks on sets of objects (index locking), and
▪ Obtains and holds locks according to Strict 2PL

 REPEATABLE READ is similar to SERIALIZABLE
▪ Obtains and holds locks according to Strict 2PL, but
▪ Does not lock sets of objects

 READ COMMITTED
▪ Obtains X locks before writing and holds until committed
▪ Obtains S locks before reading, but releases them

immediately
 READ UNCOMMITTED does not obtain any locks

▪ And is required to be READ ONLY

Level Dirty Read Unrepeatable Read Phantom

Read Uncommitted Possible Possible Possible

Read Committed No Possible Possible

Repeatable Read No No Possible

Serializable No No No

 A deadlock occurs when two transactions require
access to data objects locked by each other

▪ e.g. T1 has locked A and requires B, and T2 requires B, and
has locked A
▪ Both transactions must wait for the other to unlock so neither

transaction can proceed, and to make matters worse

▪ They may hold locks required by other transactions

 Deadlocks must be either detected and avoided or
resolved

▪ A simple method for identifying deadlocks is to use a
timeout mechanism

 In practice deadlocks are rare and usually only involve a
few transactions

 The lock manager maintains and periodically checks a
waits-for graph to detect deadlocks

▪ The nodes correspond to active transactions

▪ An arc from T1 to T2 represents that T1 is waiting for T2 to
release a lock

 A waits-for graph can be used to detect cycles, which
indicate deadlocks

▪ Deadlocks are resolved by aborting one of the transactions

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

T1 T2

waits-for graph
for schedule

T4 T3

no deadlock

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

T1 T2

T4 T3

waits-for graph
for schedule

deadlock

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

X(A)

 A deadlock is resolved by aborting one of the
transactions

 Several criteria can be considered when choosing the
transaction to be aborted

▪ The transaction with the fewest locks

▪ The transaction that has performed the least work to date

▪ The one that is furthest from completion

▪ …

 Transactions may be repeatedly aborted

▪ If so, at some point, they should be given precedence and
allowed to complete

 Deadlocks can be prevented by not allowing
transactions to wait

▪ Each transaction is given a priority

▪ The transactions timestamp can be used as the priority, the lower the
timestamp, the higher the priority

▪ Lower priority transactions are not allowed to wait for higher
priority transactions

 When a transaction requests a lock which is already held
one of two policies can be used

▪ Wait-die

▪ Wound-wait

 A transaction with a higher priority than an existing and
conflicting transaction is allowed to wait

 A transaction with a lower priority dies
 Assume that T1 has requested a lock and that T2 holds a

conflicting lock

▪ If T1 has the higher priority, it waits, otherwise it is aborted

▪ For a deadlock to occur T1 must be waiting for a lock held by T2
while T2 is waiting for a (different) lock held by T1

▪ But T2, waiting for T1, must have a lower priority so T2 dies and
the deadlock is prevented

▪ In general more transactions could be involved

T1 T2

X(A)

R(A)

W(A)

X(B)

R(B)

W(B)

X(B)- waiting

R(B)

W(B)

X(A)- waiting

R(A)

W(A)

T1 T2

T1 requests a lock on B, if it has the higher
priority, then T2 is aborted, allowing T1 to
proceed

Otherwise T2 must have the higher
priority so T1 is aborted, and T2 proceeds

 Assume that T1 has requested a lock and that T2
holds a conflicting lock

 If T1 has the higher priority, abort T2, otherwise wait

▪ Wounding refers to the process of aborting a transaction

▪ If the wounded transaction is already releasing its locks
when the wound takes effect it is allowed to complete

 How does this prevent deadlock?

▪ If T1 has a lower priority, it waits, however, if T2 is waiting
for T1 it must have a higher priority so T1 is aborted

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)1

S(C)

R(C)

X(C)2

X(B)3

X(A)4

T2

T3

T1

T4

1 - T1 requests a lock that conflicts with T2 so waits

2 - T2 requests a lock that conflicts with T3 so waits

3 - T4 requests a lock that conflicts with T2 so dies
but the conflict is not resolved

4 - T3 requests a lock that conflicts with T1 so dies
resolving the conflict

Priority is T1, T2, T3, T4

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)1

S(C)

R(C)

X(C)2

X(B)3

X(A)4

T2

T3

T1

T4

Priority is T1, T2, T3, T4

1 - T1 requests a lock that conflicts with T2 so
wounds T2, aborting it and resolving the conflict

2 - T1 commits, releasing its locks

3 - T3 proceeds without conflict

4 - T4 proceeds without conflict

 Wait-die is non-preemptive

▪ Only transactions that request locks are aborted

 In contrast, wound-wait is preemptive

▪ A transaction may abort a second transaction that
has all the locks that it needs

 Locking schemes use two basic mechanisms

▪ Blocking, and

▪ Aborting

 Blocked transactions may hold locks that force other
transactions to wait

▪ A deadlock is an extreme instance of blocking where a set of
transactions is blocked forever

 Aborting a transaction wastes the work performed by
the transaction before being aborted

 In practice, there are usually few deadlocks

▪ The cost of locking comes primarily from blocking

 Delays due to blocking increase with the number of
active transactions

▪ As more transactions execute concurrently the probability
that they block each other increases

 Throughput therefore increases more slowly than
the increase in the number of transactions

▪ At some point adding another transaction actually reduces
throughput
▪ The new transaction is blocked, and competes with existing

transactions

▪ This is referred to as thrashing

 When thrashing occurs
the number of
transactions allowed to
run concurrently should
be reduced

 Thrashing usually occurs
when 30% of active
transactions are blocked

 The percentage of
blocked transactions
should be monitored

active transactions
th

ro
u

g
h

p
u

t

thrashing

 Always lock the smallest sized database
object

▪ e.g. a set of rows, rather than an entire table

▪ This reduces the chance that two transactions
need the same lock

 Reduce the time that transactions hold locks
 Reduce hot spots

▪ A hot spot is a DB object that requires frequent
access (and modification)

 Lock-based locking schemes adopt a pessimistic
approach to concurrency control

▪ However they are very effective and have low overhead

 Index locking for B+ trees can be much more efficient
than predicate locking for data pages.

 In real-life DBMS systems

▪ Transaction dependency is rare

▪ Users are allowed to balance the demands of performance and
serializability

▪ Transactions with different isolation levels may run concurrently
inside a DBMS

 A transaction that validates is treated as if it
executed at the moment of validation

▪ Each transaction has a read set RS(T) and write set WS(T)

 Transactions have three phases

▪ Read – the transaction reads all of its elements in its read
set

▪ Validate – the transaction is validated by comparing its
read and write set to other transactions' sets
▪ If validation fails the transaction is rolled back

▪ Write – if there is no conflict ,changes are written

 The scheduler maintains three sets of data

▪ Start – transactions that have started but not finished

▪ Records the start time, START(T), for each transaction

▪ Val – transactions that have been validated but not
finished writing

▪ Records START(T) and validation time, VAL(T), for each
transaction

▪ Finish – transactions that have completed writing

▪ Records START(T), VAL(T) and FIN(T) for each transaction

▪ Transactions with FIN(T1) less than START(T2) are removed

 There are two situations in which a write by a

transaction T1 could be physically unrealizable

▪ T2 writes to a data object after it was read by T1

▪ T2 has validated (T2 is in VAL or FIN)

▪ FIN(T2) > START(T1) – T2 did not finish before T1 started

▪ RS(T1) WS(T2) is non empty

▪ T1 and T2 write to a data object in the wrong order

▪ T2 is in VAL

▪ FIN(T2) > VAL(T1) – T2 did not finish before T1 entered validation

▪ WS(T1) WS(T2) is non empty

 Check that RS(T1) WS(T2) = 0

▪ For any validated T2 where FIN(T2) > START(T1)

▪ If not, then rollback T1

 Check that WS(T1) WS(T2) = 0

▪ For any validated T2 where FIN(T2) > VAL(T1)

▪ If not, then rollback T1

