
CMPT 454

 Parsing Queries
 Relational algebra review
 Relational algebra equivalencies
 Estimating relation size
 Cost based plan selection
 Join order

2John Edgar

 Generating equivalent logical plans and their
physical plans is known as query optimization

 Selecting a good query plan entails decisions

▪ Which equivalent plan?

▪ Which algorithm for plan operations?

▪ How is data passed from one operation to the next?

 These choices depend on database metadata

▪ Size of relations

▪ Number and frequency of attributes

▪ Indexing and data file organization

3John Edgar

Parser

query

Logical plan
generator

Logical plan

Preprocessor

Rewriter

4John Edgar

select … from … where …

R S …

x

…

…

 ((...))

 ((...))1 ((...))2 ((...))3

 ((...))2

semantic checking

 Parsing

▪ Construct a parse tree for a query

▪ Translate SQL to a relational algebra tree

 Generate equivalent logical query plans

▪ Convert the parse tree to a query plan in relational algebra

▪ Transform the plan into more efficient equivalents

 Generate a physical plan

▪ Select algorithms for each of the operators in the query
▪ Including details about how tables are to be accessed or sorted

5John Edgar

1.1

 Selection ()

▪ salary > 50000(Employee) – removes rows

 Projection ()

▪ sin, salary(Employee) – removes columns

 Set Operations

▪ Union () – all rows from both tables

▪ Intersection () – rows in common between tables

▪ Set Difference (−) – rows in LH table not in RH table

▪ Cartesian Product () – combines all rows in both tables

▪ Division () – not usually implemented in SQL

 Joins (⋈)
▪ Cartesian product followed by join selection

7John Edgar

Often used to combine two tables that relate to each other

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

Doctor Patient

8John Edgar

Error! – not union compatible

sin,fName,lName(Doctor)
sin,fName,lName(Patient)

sin fName lName

555 Tom Baker

499 Jon Pertwee

sin,fName,lName(Doctor)
sin,fName,lName(Patient)

sin fName lName

555 Tom Baker

123 William Hartnell

499 Jon Pertwee

674 David Tennant

321 Lalla Ward

674 Billie Piper

9John Edgar

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

sin fName lName

123 William Hartnell

674 David Tennant

10John Edgar

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

sin,fName,lName(Doctor) −
sin,fName,lName(Patient)

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor Patient

(1) (2) (3) speciality office msp (6) (7) (8) age

555 Tom Baker Cardiology 168 34456 555 Tom Baker 20/01/1934

555 Tom Baker Cardiology 168 77321 321 Lalla Ward 28/06/1951

555 Tom Baker Cardiology 168 11387 499 Jon Pertwee 07/07/1919

555 Tom Baker Cardiology 168 12121 674 Billie Piper 22/09/1982

123 William Hartnell GP 743 34456 555 Tom Baker 20/01/1934

123 William Hartnell GP 743 77321 321 Lalla Ward 28/06/1951

123 William Hartnell GP 743 11387 499 Jon Pertwee 07/07/1919

123 William Hartnell GP 743 12121 674 Billie Piper 22/09/1982

499 Jon Pertwee Oncology 291 34456 555 Tom Baker 20/01/1934

499 Jon Pertwee Oncology 291 77321 321 Lalla Ward 28/06/1951

499 Jon Pertwee Oncology 291 11387 499 Jon Pertwee 07/07/1919

499 Jon Pertwee Oncology 291 12121 674 Billie Piper 22/09/1982

674 David Tennant Neurology 445 34456 555 Tom Baker 20/01/1934

674 David Tennant Neurology 445 77321 321 Lalla Ward 28/06/1951

674 David Tennant Neurology 445 11387 499 Jon Pertwee 07/07/1919

674 David Tennant Neurology 445 12121 674 Billie Piper 22/09/1982

11John Edgar

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

12John Edgar

fName,lName,description(Patient.msp = Operation.msp dob.year 1920(Patient Operation))

fName lName description

Jon Pertwee vasectomy

(1) sin fName lName dob opID description date (9)

34456 555 Tom Baker 20/01/1934 12 appendectomy 01-01-05 34456

34456 555 Tom Baker 20/01/1934 13 vasectomy 02-01-05 11387

34456 555 Tom Baker 20/01/1934 14 appendectomy 03-01-05 34456

34456 555 Tom Baker 20/01/1934 15 kidney transplant 05-01-05 34456

77321 321 Lalla Ward 28/06/1951 12 appendectomy 01-01-05 34456

77321 321 Lalla Ward 28/06/1951 13 vasectomy 02-01-05 11387

77321 321 Lalla Ward 28/06/1951 14 appendectomy 03-01-05 34456

77321 321 Lalla Ward 28/06/1951 15 kidney transplant 05-01-05 34456

11387 499 Jon Pertwee 07/07/1919 12 appendectomy 01-01-05 34456

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387

11387 499 Jon Pertwee 07/07/1919 14 appendectomy 03-01-05 34456

11387 499 Jon Pertwee 07/07/1919 15 kidney transplant 05-01-05 34456

12121 674 Billie Piper 22/09/1982 12 appendectomy 01-01-05 34456

12121 674 Billie Piper 22/09/1982 13 vasectomy 02-01-05 11387

12121 674 Billie Piper 22/09/1982 14 appendectomy 03-01-05 34456

12121 674 Billie Piper 22/09/1982 15 kidney transplant 05-01-05 34456

Operation

opID description date msp

12 appendectomy 01-01-05 34456

13 vasectomy 02-01-05 11387

14 appendectomy 03-01-05 34456

15 kidney transplant 05-01-05 34456

(1) sin fName lName age opID description date (9)

11387 499 Jon Pertwee 07/07/1919 12 appendectomy 01-01-05 34456

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387

11387 499 Jon Pertwee 07/07/1919 14 appendectomy 03-01-05 34456

11387 499 Jon Pertwee 07/07/1919 15 kidney transplant 05-01-05 34456

msp sin fName lName dob

11387 499 Jon Pertwee 07/07/1919

fName lName description

Jon Pertwee vasectomy

(1) sin fName lName age opID description date (9)

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387

13John Edgar

fName,lName,description(Patient.msp = Operation.msp(dob.year 1920(Patient) Operation))

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Operation

opID description date msp

12 appendectomy 01-01-05 34456

13 vasectomy 02-01-05 11387

14 appendectomy 03-01-05 34456

15 kidney transplant 05-01-05 34456

1.2

 The parser takes an SQL query and converts it to
a parse tree

 A parse tree is a tree whose nodes are

▪ Atoms – keywords, attribute names,
relations, constants, operators

▪ Syntactic categories – families of
query subparts such as a query or a condition

 An atom is a node with no children

▪ If a node is a syntactic category it is described by one
of the rules of the grammar

15John Edgar

<Attribute>

balance

= 1000000

<Condition>

 We will look at a simplified version of SQL

▪ … very simplified …

 The grammar only has rules for

▪ Queries, select, from and where clauses

▪ Rules for select, from and where are also simplified

 We will give examples of how the grammar
can be used to convert queries to parse trees

John Edgar 16

 The syntactic category <Query> represents
SQL queries

 Just one rule for queries

▪ The symbol ::= means “can be expressed as”

▪ The query rule omits GROUP BY, HAVING and
(many) other optional clauses

<Query> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>

17John Edgar

 Select Lists

▪ Comma separated list of
attributes
▪ Single attributes, or

▪ An attribute, a comma and
a select list

▪ No expressions, aliases
and aggregations

 From Lists

▪ Comma separated list of
relations

▪ No joins, sub-queries or
tuple variables

John Edgar 18

<SelList> ::= <Attribute>, <SelList>

<SelList> ::= <Attribute>

<FromList> ::= <Relation>, <FromList>

<FromList> ::= < Relation>

 This abbreviated set of rules does not include

▪ OR, NOT and EXISTS

▪ Comparisons not on equality or LIKE

▪ Parentheses

▪ ...
<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Attribute> IN <Query>

<Condition> ::= <Attribute> = <Attribute>

<Condition> ::= <Attribute> LIKE <Pattern>

19John Edgar

 There are three base syntactic categories

▪ <Attribute>, <Relation> and <Pattern>

▪ These categories are not defined by rules but by
which atoms they can contain

 An <Attribute> can be any string of
characters that identifies a legal attribute

 A <Relation> can be any string of characters
that identifies a legal relation

20John Edgar

 Consider two relations

▪ Account = {accID, balance, ownerID}

▪ Transaction = {transID, amount, date, trans_accID}

 And a query
SELECT trans_accID, amount
FROM Transaction
WHERE trans_accID IN(

SELECT accID
FROM Account
WHERE balance = 1000000)

21John Edgar

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Query>

<Attribute>

trans_accID

IN<RelName>

Transaction

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<SelList> FROM <FromList> WHERE <Condition>

<Attribute>

accID

<RelName>

Account

<Attribute>

balance

=

SELECT

1000000

22John Edgar

SELECT trans_accID, amount FROM Transaction
WHERE trans_accID IN(SELECT accID

FROM Account WHERE balance = 1000000)

 Consider the same two relations

▪ Account = {accID, balance, ownerSIN}

▪ Transaction = {transID, amount, date, trans_accID}

 And a query that is equivalent to the query in
the previous example

SELECT trans_accID, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID

23John Edgar

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute>

<Attribute> <SelList>,

trans_accID

amount

<Attribute>

balance

= 1000000 <Attribute>

trans_accID

= <Attribute>

accID

<RelName>

Transaction

<FromList>,

<RelName>

Account AND

<Condition> <Condition>

24John Edgar

SELECT trans_accID, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID

 The pre-processor has two main tasks
 Relations that are virtual views are replaced by a parse

tree that describes the view
 Names in the query are checked for validity

▪ Each relation name in the FROM clause

▪ Attributes
▪ In a relation in a FROM clause of the query

▪ All attributes must be in the correct scope

▪ Check types
▪ Attribute types must be appropriate for their uses

▪ Operands must be appropriate and compatible types

25John Edgar

Semantic checking

1.3

 Once a parse tree has been constructed for a
query it is converted to a logical query plan

▪ A logical query plan consists of relational algebra
operators and relations

▪ Nodes and components of the parse tree are
replaced by relational algebra operators

 The relational algebra plan is then modified

▪ To an expression that is expected to result in an
efficient physical query plan

27John Edgar

 A set of rules allow parse trees to be transformed into
relational algebra

▪ Replace a <Query> with a <Condition> but no sub-queries
by a relational algebra expression

 The relational algebra expression consists of

▪ The product of all the relations in the <FromList>, which is
an argument to

▪ A selection c where C is the <Condition>, which is an
argument to

▪ A projection L where L consists of the attributes in the
<SelList>

28John Edgar

For our simplified SQL subset

r1 r2 r3

 (c (r1 r2 r3))

a1,a2 (c (r1 r2 r3))

SELECT ownerAcc, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID

29John Edgar

<Attribute>

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID

<SelList>,

<RelName>

Account

30John Edgar

SELECT ownerAcc, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID

<SelList>,

<RelName>

Account

31John Edgar

,<RelName>

FROM <FromList>

Transaction

<SelList>

<RelName>

Account

Transaction Account

<Query>

SELECT <SelList>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

WHERE <Condition>

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID

32John Edgar

balance = 1000000 AND trans_accID= accID

ownerAcc, amount

ownerAcc, amount

balance = 1000000 AND trans_accID= accID

Transaction Account

33John Edgar

 Some parse trees include a <Condition> with

a sub-query

▪ Sub-queries add complexity to the translation

 Sub-queries are replaced by a selection and

other relational algebra operators

▪ Different types of sub-query require different

rules to replace them

▪ IN, EXISTS, ANY, ALL, …

34John Edgar

 Consider sub-queries of the form t IN S

▪ Where t is a tuple made up of some attributes of R

▪ And S is a sub-query

 Sub-queries with IN are usually uncorrelated

▪ They can be replaced by the expression tree for S

▪ If S might contain duplicates they are removed ()

▪ A selection where the condition equates t to the
corresponding attribute of S, and

▪ The Cartesian product of R and S

35John Edgar

SELECT trans_accID, amount
FROM Transaction
WHERE trans_accID IN(

SELECT accID
FROM Account
WHERE balance = 1000000)

36John Edgar

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

<Attribute>

trans_accID

IN

<Query>

<SelList> FROM <FromList> WHERE <Condition>

<Attribute>

accID

<RelName>

Account

<Attribute>

balance

=

SELECT

1000000

37John Edgar

trans_accID, amount

Transaction <Condition>

38John Edgar

<Attribute>

trans_accID

IN

Account

accID

balance = 1000000

Replace IN with the product of the two
relations and an equality selection
comparing the attributes

39John Edgar

trans_accID= accID

trans_accID, amount

Transaction

Account

accID

balance = 1000000

Replace IN with the product of the two
relations and an equality selection
comparing the attributes

 A correlated sub-query contains a reference
to the outer query in the sub-query

▪ The sub-query cannot be translated in isolation

▪ It must be processed once for each outer query row

▪ The sub-query is usually replaced with a query
that joins the sub-query and outer query relations

▪ The process is otherwise similar to that of
uncorrelated queries

40John Edgar

SELECT msp, email FROM Patient P
WHERE EXISTS (

SELECT * FROM Operation O
WHERE P.msp = O.msp AND …)

 Once an expression tree has been created the
plan can be rewritten

▪ Using the algebraic laws

▪ The initial plan could differ based on the SQL to
relational algebra conversion

▪ This will not be considered except for the issues relating
to the order of joins

 There are a number of transformations that
commonly improve plans

41John Edgar

Next section …

 Selections are pushed down as far as possible

▪ Selections with AND clauses can be split and the
components pushed down the tree

▪ This may reduce the size of intermediate relations

 Projections should also be pushed down

▪ Additional projections may be added

 Duplicate eliminations may be moved
 Selections can be combined with Cartesian

products to create equijoins

42John Edgar

43John Edgar

V

R

⋈

W X

S T

⋈

⋈

R

V X

TS

W

⋈

 It may be possible to group a

sub-tree into a single node

▪ If it consists of nodes with the

same associative and

commutative operators

▪ Group the nodes into a single

node with multiple children

 Then consider which order to

perform the operation in later

 If an operator is commutative the order of its

arguments do not matter

▪ e.g. + (x + y = y + x), but not – (x – y ≠ y – x)

 If an operator is associative then two uses of it may

be grouped from the left or the right

▪ e.g. + (x + y) + z = x + (y + z)

 If an operator is associative and commutative its

operands may be grouped and ordered in any way

45John Edgar

 SQL queries result in bags,
not sets
▪ A bag may contain duplicates

but sets cannot

▪ Some set-theoretic laws apply
to sets but not to bags

 The distributive law of
intersection over union
▪ A (B C) (A B) (A C)

▪ Does not apply to bags

46John Edgar

Set

A 123 B 234 C 345

B C 2345

A (B C) 23

A B 23 A C 3

(A B) (A C) 23

Bag

A 123 B 234 C 345

B C 233445

A (B C) 23

A B 23 A C 3

(A B) (A C) 233

 Unions are both commutative and associative

▪ R S S R

▪ R (S T) (R S) T

 Intersections are both commutative and associative

▪ R S S R

▪ R (S T) (R S) T

 Set difference is neither commutative nor associative

▪ R − S S − R

▪ R − (S −T) (R − S) −T

47John Edgar

order does not matter

order does not matter

order does matter

 Cartesian product and joins are commutative

▪ e.g. R ⋈ S S ⋈ R

 Cartesian products and joins are associative

▪ e.g. R (S T) (R S) T

 Relations may therefore be joined in any order

48John Edgar

 A selection and Cartesian product can be combined
to form a join

▪ c(R S) R ⋈c S
▪ e.g. P.msp = O.msp(Patient Operation) Patient⋈Operation

 This may have an impact on the cost of a query

▪ Some join algorithms are much more efficient than
computing a Cartesian product

49John Edgar

 The order in which joins and Cartesian products are
made affects the size of intermediate relations

▪ Which, in turn, affects the time taken to process a query

 Consider these three relations:

▪ Customer = {sin, fn, ln, age} – 1,000 records

▪ Account = {acc, type, balance} – 1,200 records

▪ Owns = {sinfkCustomer, accfkAccount} – 1,400 records

 Owns ⋈ (Customer⋈ Account)

▪ Intermediate relation – 1,000 * 1,200 = 1,200,000 records

 (Owns⋈ Customer) ⋈ Account

▪ Intermediate relation – 1,400 records

50John Edgar

 Pushing selections down the query plan tree

reduces the size of intermediate relations
 Conjunctions can be split into a cascading selection

▪ c1 c2 … cn(R) c1(c2(… (cn(R))))

▪ dob<1970 name="Abe"(Patient) dob<1970 (name="Abe"(Patient))

 Selections are commutative

▪ c1(c2(R)) c2(c1(R))

▪ dob<1970(name="Abe"(Patient)) name="Abe" (dob<1970(Patient))

 Disjunctive selections can be replaced by unions

▪ c1 c2(R) c1(R) c2(R)

51John Edgar

But only if R is a set – not a bag

 Conjunctions can be split into a cascading selection

▪ c1 c2 … cn(R) c1(c2(… (cn(R))))

▪ dob<1970 name="Abe"(Patient) dob<1970 name="Abe"(Patient))

 Selections are commutative

▪ c1(c2(R)) c2(c1(R))

▪ dob<1970(name="Abe"(Patient)) name="Abe" (dob<1970(Patient))

 Disjunctive selections can be replaced by unions

▪ c1 c2(R) c1(R) c2(R)

▪ This only works if R is a set (not a bag)

52John Edgar

 A selection can be pushed through a union, and
must be applied to both arguments

▪ c(R S) c(S) c(R)

 A selection can be pushed through an intersection,
and need only be applied to one argument

▪ c(R S) c(S) (R)

 A selection can be pushed through a set difference,
and must be applied to the first argument

▪ c(R − S) c(R) − (S)

53John Edgar

 A selection can be pushed through a Cartesian
product, and is only required in one argument

▪ c(R S) c(R) S

▪ If the selection involves attributes of only one relation

 This relationship can be stated more generally

▪ Replace c with: cRS (with attributes of both R and S), cR

(with attributes just of R) and cS (with attributes just of S):

▪ c(R S) cRS(cR(R) cS(S))

▪ dob<1970 P.msp=O.msp desc="lobotomy"(Patient Operation)
P.msp=O.msp(dob<1970(Patient) desc="lobotomy"(Operation))

54John Edgar

Pushing selections as far down as possible

age>50 P.msp=O.msp desc="lobotomy"(Patient Operation)

age>50 P.msp=O.msp desc="lobotomy"

Patient Operation

55John Edgar

result

age>50 description = "lobotomy"

Patient Operation

⋈

 Only the final projection in a series of projections is
required

▪ a1 (R) a1(a2((an(R))))

▪ where ai ai+1

 For example:

▪ city(Patient) city(city,fName(city,fName,lName(Patient)))

56John Edgar

 Projections can be pushed through unions, and
must be applied to both arguments

▪ a(R S) a(R) a(S)

 Projections can not be pushed through intersections
or set difference

▪ a(R S) a(R) a(S)
▪ lname(Patient Doctor) lname(Patient) lname(Doctor)

▪ a(R − S) a(R) − a(S)
▪ lname(Patient − Doctor) lname(Patient) − lname(Doctor)

57John Edgar

Imagine both tables have sin as primary key

Last names of patients
who are not doctors

Patient last names that are
not the last names of doctors

 Projections can be pushed through Cartesian
products

▪ a(R S) aR(R) aS(S)

▪ Let the attribute list a be made up of aR (attributes of R),
and aS (attributes of S)

▪ e.g. P.msp,fName,lName,description,O.msp(Patient Operation)
msp,fName,lname(Patient) description,msp(Operation)

▪ In this example a selection could then be made to extract
patient and operations records that relate to each other

58John Edgar

 Projections can be pushed through joins

▪ If the join condition attributes are all in the projection
▪ e.g. msp,dob,description(Patient⋈Operation)

▪ msp,age(Patient) ⋈ msp,description(Operation)

 More generally

▪ Let aR contains the attributes of R that appear in c or a,
and aS contains the attributes of S that appear in c or a:

▪ a(R ⋈c S) a(aR
(R) ⋈c aS

(S))

▪ e.g. fName,lName,acc(Acccount⋈C.sin = A.sin balance > income Customer)

▪ fName,lName,acc(acc,balance,sin(Account)⋈C.sin = A.sin balance > income

sin,fName,lName,income(Customer))

59John Edgar

 Selections and Projections are commutative if the
selection only involves attributes of the projection

▪ a(c(R)) c(a(R))

▪ e.g. msp,fName,lName(age > 50(Patient))

▪ is not equivalent to

▪ age > 50(msp,fName,lName(Patient))

 In other words, don't project out attributes that are
required for downstream selections!

60John Edgar

 Duplicate removal may be pushed through
several operators

▪ Selections, Cartesian products and joins

 Duplicate removal can be moved to either or
both the arguments of an intersection

 But cannot generally be pushed through
unions, set difference or projections

61John Edgar

 There are a number of transformations that
may be applied to queries with aggregates

 Some of the transformations depend on the
aggregation

▪ The projection of attributes not included in the
aggregation may be pushed down the tree

▪ Duplicate removal may be pushed through MIN
and MAX, but not SUM, or COUNT, or AVG

62John Edgar

 For each physical plan derived from a logical
plan we record

▪ An order and grouping for operations such as
joins, unions and intersections

▪ An algorithm for each operator in the logical plan

▪ Additional operators needed for the physical plan

▪ The way in which arguments are passed from one
operator to the next

64John Edgar

 Individual operations can be processed using a
number of different algorithms

▪ Each with an associated cost, and

▪ Different possible orderings of the resulting relation

 When evaluating queries it is important to be able
to assess the size of intermediate relations

▪ That is, the size of the result of a particular operation

 Information required for estimating the size of a
result is stored in the system catalog

65John Edgar

 Rules for estimating relation size should be

▪ Accurate

▪ Easy to compute

▪ Logically consistent

 There are different methods of attempting to
meet these requirements

▪ Consistency is important

▪ It doesn’t matter if size estimations are inaccurate as
long as the least cost is assigned to the best plan

66John Edgar

 The size of a relation after a projection can be
estimated from information about the relation

▪ Which includes the number and types of attributes

▪ The size of the result of a projection is:

▪ (column sizes) * estimated number of records

67John Edgar

 A selection reduces the size of the result, but
not the size of each record

 Where an attribute is equal to a constant a
simple estimate is possible

▪ T(S) = T(R) / V(R,A)

▪ Where S is the result of the selection, T(R) is the number
of records, and V(R,A) is the value count of attribute A

▪ e.g. age = 50

68John Edgar

 In practice it may not be correct to assume that
values of an attribute appear equally often

 The values of many attributes follow a Zipfian
distribution

▪ The frequency of the ith most common item is
proportional to 1/i

▪ For example, if the most common value occurs 1,000 times
the second most common appears 1,000/ 2 = 707 times

▪ Applies to words in English sentences, population ranks of
cities, corporation sizes, income rankings, …

69John Edgar

 Inequality selections are harder to estimate
▪ A simple rule is to estimate that, on average, half the

records satisfy a selection

▪ Alternatively estimate that an inequality returns one
third of the records
▪ As there is an intuition that we usually query for an inequality

that retrieves a smaller fraction of records

 Not equals comparisons are relatively rare
▪ It is easiest to assume that all records meet the

selection

▪ Alternatively assume T(R) * (V(R,A) – 1 / V(R,A))

70John Edgar

 For an AND clause treat the selection as a
cascade of selections

▪ Apply the selectivity factor for each selection

 OR clauses are harder to estimate

▪ Assume no record satisfies both conditions

▪ The size of the result is the sum of the results for each
separate condition

▪ Or assume that the selections are independent

▪ result = n*(1 – (1 – m1/n)*(1 – m2/n)), where R has n tuples and
m1 and m2 are the fractions that meet each condition

71John Edgar

 Assume that a natural join is on the equality
of one attribute in common, call it x

 How do the join values relate?

▪ The two relations could have disjoint sets of x

▪ The join is empty and T(R ⋈ S) = 0

▪ x might be a key of S and a foreign key in R

▪ T(R⋈ S) = T(R)

▪ x could be the same in most records of R and S

▪ T(R⋈ S) ≈ T(R) * T(S)

72John Edgar

 Containment of value sets

▪ If x appears in several relations then its values are
in a fixed list x 1, x 2, x 3, ...

▪ Relations take values from the front of the list and
have all values in the prefix

▪ If R and S contain x, and V(R, x) ≤ V(S, x) then
every value for x of R will also be in S

 Preservation of value sets

73John Edgar

 Containment of value sets
 Preservation of value sets

▪ If R is joined to another relation and y is not a join
attribute, y does not lose values

▪ That is, if y is an attribute of R but not of S then
V(R⋈ S, y) = V(R, y)

74John Edgar

 What is the probability that records (r) of R and (s)
of S agree on some x value?

▪ Assume that V(R,x) V(S,x)

▪ The x value of S must appear in R by the containment
assumption

▪ The chance that the x value is the same is 1/ V(R,x)

▪ Similarly if V(R,x) V(S,x) then the Y value of r must be in
s, so the chance is 1/ V(S,x)

▪ In general the probability is 1 / max(V(R,x), V(S,x))

 So T(R⋈ S) = T(R)*T(S) / max(V(R,x), V(S,x))

75John Edgar

R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

So, for example, there are 2,000 records
in S with 50 different values of b and 100
different values of c

76John Edgar

R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

Compute R⋈ S⋈ U

Assume (R⋈ S) ⋈ U

The join attribute for R
and S is b

By the containment
assumption all the values
of b in R are also in S

The estimate for (R⋈ S) is 1,000 * 2,000 / max(20, 50) =
40,000

There are 1,000 values in R each of which joins to 40
records in S

77John Edgar

R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

Compute R⋈ S⋈ U

Assume (R⋈ S) ⋈ U

The final result is the same if the
relations are joined in a different order

T(R⋈ S) = 40,000

V(R⋈ S, c) = 100

The estimate for (R⋈ S) ⋈U is 40,000 *
5,000 / max(100, 500) = 400,000

What is the estimate for R⋈ (S⋈U) ?

78John Edgar

 A natural join consisting of multiple attributes
is an equijoin with an AND clause

▪ As the values of both attribute must be the same
for records to qualify

 Use the same reduction factor

▪ max(V(R,x), V(S,x))

▪ And apply for each attribute

79John Edgar

R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

What is the estimate for ((R⋈ U) ⋈ S) ?

Note that R and U have no attributes in
common, so the result is a Cartesian product

T(R⋈U) = 1,000 * 5,000 = 5,000,000

R⋈ U contains both b and c attributes

T(R⋈U⋈ S) = 5,000,000 * 2,000 ...

... divided by max(V(R,b), V(S,b)) and ...

... divided by max(V(S,c), V(U,c)) =

(10,000,000,000 / 50) / 500 = 400,000

80John Edgar

 The number of records in an equijoin can be
computed as for a natural join

▪ Except for the difference in variable names

 Other theta-joins can be estimated as a
selection followed by a Cartesian product

▪ The product of the number of records in the
relations involved

81John Edgar

 The same calculations can be performed for
joins of many relations

 It is important to note that the number of
values of join attributes changes in joins

▪ The preservation assumption applies only to non-
join attributes

 After R and S are joined on x

▪ V(R⋈ S) = min (V(R,x), V(S,x))

82John Edgar

R(a,b,c) S(b,c,d) U(b,e)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,a) = 100

V(R,b) = 20 V(S,b) = 50 V(U,b) = 200

V(R,c) = 200 V(S,c) = 100

V(S,d) = 400

V(U,e) = 500

What is the estimate for T(R⋈ U⋈ S) ?

10,000,000,000 * 1/2001 * 1/502* 1/2003 = 5,000

1 – first join on b, 2 – second join on b, 3 – join on c

And how many values of
each attribute remain
after the join?

RSU(b,c,d,e)

T(RSU) = 5,000

V(RSU,a) = 100

V(RSU,b) = 20

V(RSU,c) = 100

V(RSU,d) = 400

V(RSU,e) = 500

83John Edgar

 Union

▪ Bag – the sum of the sizes of the arguments

▪ Set – in between the sum of the sizes and the size
of the larger of the arguments

 Intersection

▪ From zero to the size of the smaller argument

 Set difference

▪ For R – S, between T(R) and T(R) – T(S)

84John Edgar

 Duplicate elimination

▪ Between T(R) (no duplicates) and 1 (all duplicates)

▪ An upper limit is the product of all V(r, ai)

 Grouping and aggregation

▪ The number of records is equal to the number of
groups

▪ Like duplicate removal the product of all V(r, ai) is
the upper limit

85John Edgar

 Queries that require joins or Cartesian products can
be expensive

▪ Regardless of the join order the final result’s size can be
estimated (using available statistics)

▪ However, intermediate relations may vary widely in size
depending on the order in which relations are joined

 If a query involves more than two tables there may
be many ways in which they can be joined

▪ Many query optimizers only consider left-deep join trees

87John Edgar

 Many join algorithms are asymmetric

▪ The cost of these joins is dependent on which
table plays which role in the join

▪ This applies to hash join, block nested loop join, index
nested loop join

 We can make assumptions about the right
and left arguments

▪ Nested loop joins – left is the outer relation

▪ Index nested loop joins – right has the index

88John Edgar

A B

C

DA B

C

D

By convention, the left child of a (nested
loop) join node is always the outer table

A B C D
left-deep tree

linear tree

non-linear or
bushy tree

A B C D

89John Edgar

 How many ways can this relation be joined?

▪ For each possible tree shape there are n! possible ways

 If Tr(n) is the number of possible tree shapes, then:

▪ Tr(1) = 1, Tr(2) = 1, Tr(3) = 2, Tr(4) = 5, Tr(5) = 14 , Tr(6) = 42

▪ This then has to be multiplied by the number of ways that the
relations can be distributed over the tree

▪ 4 relations means 5 possible shapes so 5 * 4! = 120 possible trees

▪ If n = 6, there are 42 * 6! = 30,240 possible trees, of which 720
are left-deep trees

A B C D

90John Edgar

 A binary tree is left-deep if all the right
children are leaves

 The number of left-deep trees is large but not
as large as the number of all trees

▪ We can therefore significantly limit searches for
larger queries by only considering left-deep trees

 Left-deep trees work well with common
algorithms

▪ Nested-loop joins, and hash joins

91John Edgar

 In a left deep tree right nodes are leaves

▪ Implying that right nodes are always base tables

▪ Or the results of other, non-join, operations

 Left deep trees often produce efficient plans

▪ The smaller relation in a join should be on the left

▪ Left deep join trees result in holding fewer
relations in main memory

▪ And result in greater opportunities for pipelining

92John Edgar

R S

T

U

Assume that there is a small relation, R

left-deep tree

Need B(R) + B(R⋈ S) to keep all of R and
the result in main memory

Join with T but can re-use the memory
allocated to R to hold (R⋈ S⋈ T)

Joining with U is similar in that (R⋈ S) is
no longer needed

Only two of the temporary relations must
be in main memory at one time

93John Edgar

T U

T

R

The left relation is always the outer (build)
relation

right-deep tree

First load R into main memory

Then compute S⋈ (T⋈ U) to join with R

Which requires first constructing T⋈U

So R, S and T must all be in main memory
requiring B(R) + B(S) + B(T) to perform in
one pass

94John Edgar

 When multiple tables are joined there may be many

different resulting join orders

 To pick a join order there are three choices

▪ Consider all join orders

▪ Consider a subset of join orders

▪ Use some heuristic to select the join order

 One approach is using dynamic programming

▪ Record a table of the costs

▪ Retaining only the minimum data to come to a conclusion

95John Edgar

 To select a join order record

▪ The estimated size of the joined relation

▪ The least cost of computing the join

▪ The expression that gives the least cost

▪ The expressions can be limited to left-deep plans

 The process starts with single table

▪ And works up to n tables (where n is the number
of tables to be joined)

96John Edgar

R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

First compute single relation plans (in this simple example
there are no prior operations on the tables)

R S T U

size 1,000 1,000 1,000 1,000

cost 0 0 0 0

best plan R S T U

97John Edgar

In this example we will only consider the
cost related to the size of intermediate
relations and ignore the cost of actually
computing the join – focusing on the
cost related to the join order

Now compute the estimated results for pairs of tables, the cost
is still 0 since there are no intermediate tables

R,S R,T R,U S,T S,U T,U

size 5,000 1,000,000 10,000 2,000 1,000,000 1,000

cost 0 0 0 0 0 0

best plan R ⋈ S R ⋈T R ⋈U S ⋈T S ⋈U T ⋈U

98John Edgar

R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

Note that results of joins
of the same tables in
different orders are the
same size

R,S,T R,S,U R,T,U S,T,U

size 10,000 50,000 10,000 2,000

cost 2,000 5,000 1,000 1,000

best plan (S ⋈T) ⋈ R (R ⋈ S) ⋈U (T ⋈U) ⋈ R (T ⋈U) ⋈ S

R,S R,T R,U S,T S,U T,U

size 5,000 1,000,000 10,000 2,000 1,000,000 1,000

cost 0 0 0 0 0 0

best plan R ⋈ S R ⋈T R ⋈U S ⋈T S ⋈U T ⋈U

99John Edgar

In this example we only considered left deep join trees

Join Order Cost

((S ⋈T) ⋈ R) ⋈U 12,000

((R ⋈ S) ⋈U) ⋈T 55,000

((T ⋈U) ⋈ R) ⋈ S 11,000

((T ⋈U) ⋈ S) ⋈ R 3,000

And would select
((T ⋈U) ⋈ S) ⋈ R

100John Edgar

R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

R,S,T R,S,U R,T,U S,T,U

size 10,000 50,000 10,000 2,000

cost 2,000 5,000 1,000 1,000

best plan (S ⋈T) ⋈ R (R ⋈ S) ⋈U (T ⋈U) ⋈ R (T ⋈U) ⋈ S

 The cost estimate used was relation size

▪ This simplification that ignores the cost of actually
performing the joins

 The dynamic programming algorithm can be
modified to include the join cost

 In addition multiple costs can be maintained
for each join order

▪ Where the lowest cost for each interesting order of
the result is retained

101John Edgar

 An alternative to approaches like dynamic

programming is a greedy algorithm

▪ Make one decision at a time about join order and never

backtrack

 For example, select only left-deep trees

▪ And always select the pair of relations that have the

smallest join

 Greedy algorithms may fail to find the best solutions

▪ But consider smaller subsets

102John Edgar

 Parse the query
 Convert it to a logical plan

▪ A relational algebra expression tree

 Improve the plan

▪ Apply heuristics, e.g. push selection down the tree

▪ Select join order and join algorithm

 There are a few stages left

▪ Select algorithms for other operations

▪ Decide whether to pipeline or materialize results

▪ Record the completed plan

103John Edgar

 If no index, table scan at a cost of B(R)
 Using an index to satisfy an equality selection on the index search

key, a, has a cost of

▪ B(R) / V(R, a) if the index is primary, otherwise

▪ T(R) / V(R, a)

▪ Cost estimation can be improved by maintaining statistical data in
histograms

 Using an index to satisfy an inequality selection on the index
search key, a, has a cost of

▪ B(R) / 3 if the index is primary, otherwise

▪ T(R) / 3

▪ Cost estimations can be improved by using data maintained in
histograms to estimate the size of a range of values

104John Edgar

 The choice of join algorithm is sensitive to the amount of
main memory

 In the absence of this information

▪ Use a block nested loop join using the smaller relation as the
outer relation

▪ Use sort-join

▪ If one or both operands are already sorted on the join attribute or

▪ There are multiple joins on the same attribute

▪ Use an index-join if there is an index on the join attribute in S,
and R is expected to be small

▪ Use hashing if multiple passes are expected and none of the
above apply

105John Edgar

 It may be possible to pipeline an operation’s result

▪ Perform the next operation without first writing out, or
materializing, the results of the first

 There are often opportunities for pipelining

▪ The results of one selection can be pipelined into another,
and most operations can be pipelined into projections
▪ When the input to a unary operator is pipelined into it, the operator

is performed on-the-fly

▪ In some cases one join can be pipelined into another join
▪ Depending on the join algorithm being used

106John Edgar

 Some join algorithms are more suitable for pipelining
than others

▪ Note that pipelining will reduce the amount of main memory
available for operations

 Nested loop joins can easily be pipelined
 Both hash join and sort-merge join require the entire

relation to be sorted or partitioned, and written out

▪ Although, if a table is ordered on the join attribute it may be
pipelined into a merge join

 One reason why it is important to record orderings is
the possible impact on pipelining

107John Edgar

 Assume that nested loop joins
will be performed

 Node 2 (the root) requests
records from node 1
▪ Node 1 is to provide the outer

table for node 2

 A page (or multiple pages) of
join 1 is produced, and

 Matching records are retrieved
from table T
▪ And joined with the join 1 records

 The process then repeats

R S

T

⋈2

108John Edgar

⋈1

 Pipelining adds complexity

▪ Separate input and output buffers are required for each
pipelined operation

▪ Increasing main memory requirements

 Records have to be available from previous
operations, this process is either

▪ Demand driven (pulling data), or

▪ Producer driven (pushing data)

 In a parallel processing system pipelined operations
may be run concurrently

109John Edgar

 The number of disk I/Os required for a query
is affected by a number of factors

▪ The logical operators chosen for the query

▪ Determined when the logical plan was chosen

▪ The size of intermediate results

▪ The physical operators used

▪ The ordering of similar operations

▪ The method of passing arguments from one
operator to the next

111John Edgar

 When estimating sizes we assumed that
values for T(R) and V(R, a) are known

 Such statistics are recorded in a DBMS

▪ By scanning a table and counting the records and
number of distinct values

 B(R) can also be determined

▪ By either counting the blocks

▪ Or estimating based on how many records can fit
in a block

112John Edgar

 A DBMS may keep more detailed information about
values in relations

▪ The frequency of values can be recorded in histograms
▪ Used by both MS SQL Server and Oracle

 Attributes’ high and low values are recorded

▪ This information is easily obtainable from an index

▪ These values can be used to estimate the number of
records in a range, column > value
▪ The reduction factor (high(A) - value) / (high(A) - low(A))

▪ This assumes that the distribution of values is uniform

113John Edgar

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

2

3

1

5

4

2

3

6

5

2

1

2

value

Actual distribution of values of
some attribute

114John Edgar

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

3 3 3 3 3 3 3 3 3 3 3 3 value

Uniform approximation of actual
distribution

115John Edgar

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

2

3

1

5

4

2

3

6

5

2

1

2

value

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

3 3 3 3 3 3 3 3 3 3 3 3 value

Uniform approximation of actual
distribution

116John Edgar

Not very accurate

 Storing only the high and low values of an attribute
may not provide accurate estimations

 Histograms can be stored in a DBMS to give a better
approximation of a data distribution

▪ The range is divided into sub-ranges

▪ The number of values in each sub-range is stored

▪ The high and low values of each sub-range are stored

 Values are assumed to be uniformly distributed
within sub-ranges

 Histograms can be either equiwidth or equidepth

117John Edgar

 An equiwidth histogram

divides a range into sub-

ranges of equal size

▪ e.g. in a histogram on

income each sub-range

might contain a range (or

band) of incomes of

$10,000

▪ Each sub-range may

contain a different count

of values

118John Edgar

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

2

3

1

2

4

5

3

6

5

2

1

2

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

2

3

1

2

4

5

3

6

5

2

1

2

 In an equidepth histogram

the sub-ranges contain

the same count of values

▪ e.g. each sub-range might

contain incomes of 5,000

customers, and

▪ One sub-range might

contain incomes from

$51,000 to $52,000

another from $150,000 to

$200,000

119John Edgar

 Equiwidth histograms are better for values that occur
less frequently

 Equidepth histograms are better for values that occur
with more frequency

▪ A frequently occurring value may constitute an entire sub-range
in an equidepth histogram

▪ Frequent values are generally considered more important

 Many commercial DBMS use equidepth or compressed
histograms

▪ A compressed histogram keeps separate counts of very frequent
values, and another histogram for other values

120John Edgar

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100 110 12

2

3

1

2

4

6

3

4

3

2

3 3
Consider selecting the
attribute on equality:
A=60

6 6 6 7 5 6

121John Edgar

The estimate of the
size is very accurate

 Histograms can be used to improve the
estimates of join and selection sizes

 For joins, only records in corresponding
bands of the histogram can join

▪ Assuming both tables have histograms on the join
attribute

▪ The containment assumption can be applied to
histogram bands rather than to all values

122John Edgar

 Statistics are only computed infrequently

▪ Significant changes only happen over time

▪ Even inaccurate statistics are useful

▪ Writing changes often would reduce efficiency

 Computing statistics for an entire table can
be expensive

▪ Particularly if V(R,a) is computed for all attributes

▪ One approach is to use sampling to compute
statistics

123John Edgar

 Cost estimates can be used to derive better logical
plans

▪ Note that these estimates do not include differences in
cost as a result of using different physical operators

▪ And only include estimates of intermediate relation size

 Some common heuristics

▪ Push selections down the expression tree

▪ Push projections down the expression tree

▪ Move duplicate removal

▪ Combine selections and Cartesian products into joins

124John Edgar

 Once a logical plan is formed it must be
converted into a physical plan

▪ There are many different physical plans which
vary based on which physical operator is used

 The basic approach for finding a physical plan
is an exhaustive approach

▪ Consider all combinations of choices

▪ Evaluate the estimated cost of each, and

▪ Select the one with the least cost

125John Edgar

 The exhaustive approach has one drawback - there
may be many different possible plans

▪ Other approaches exist

▪ There are two basic methods to explore the space of
possible physical plans

 Top-down, work down the tree from the root

▪ For each implementation of the root operation compute
each way to produce the arguments

 Bottom-up

▪ Compute the costs for each sub-expression

126John Edgar

 Make choices based on heuristics, such as

▪ Join ordering – see later

▪ Use available indexes for selections
▪ If there is an index on only one attribute use that index and then

select on the result

▪ If an argument to a join has an index on the join attribute
use an index nested loop join

▪ If an argument to a join is sorted on the join attribute then
prefer sort-join to hash-join

▪ When computing union or intersection on three or more
tables group the smallest relations first

127John Edgar

 Use heuristics to find a good physical plan for the
logical plan

▪ Denote the cost of this plan as C

 Consider other plans for sub-queries

▪ Eliminate any plan for a sub-query with cost > C
▪ The complete plan cannot be better than the initial plan

 If a plan for the complete query has a cost less than C
replace C with this cost

 One advantage is that if C is good enough the search
for a better plan can be curtailed

128John Edgar

 Use heuristics to find a good plan
 Make small changes to the plan

▪ Such as replacing one physical operator with a
different one

▪ Look for similar plans (with different join orders
for example) with lower costs

 If none of these small changes result in a
decreased cost use the current plan

129John Edgar

 A bottom-up process that retains only the
lowest cost for each sub-expression

 For higher sub-expressions different
implementations are considered

▪ Assuming that the previously determined best
plans for its sub-expressions are used

130John Edgar

 Similar to dynamic programming except that
multiple sub-expressions plans are retained

 For each sub-expression retain the least cost
for each interesting sort order, i.e. on

▪ The attributes specified in a sort operator at the
root (corresponding to an ORDER BY clause)

▪ The grouping attributes of a late operator

▪ The join attributes of a later join

131John Edgar

