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 Parsing Queries
 Relational algebra review
 Relational algebra equivalencies
 Estimating relation size
 Cost based plan selection
 Join order
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 Generating equivalent logical plans and their 
physical plans is known as query optimization

 Selecting a good query plan entails decisions

▪ Which equivalent plan?

▪ Which algorithm for plan operations?

▪ How is data passed from one operation to the next?

 These choices depend on database metadata

▪ Size of relations

▪ Number and frequency of attributes

▪ Indexing and data file organization
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query

Logical plan 
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 Parsing

▪ Construct a parse tree for a query

▪ Translate SQL to a relational algebra tree

 Generate equivalent logical query plans

▪ Convert the parse tree to a query plan in relational algebra

▪ Transform the plan into more efficient equivalents

 Generate a physical plan

▪ Select algorithms for each of the operators in the query
▪ Including details about how tables are to be accessed or sorted
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1.1



 Selection () 

▪ salary > 50000(Employee) – removes rows

 Projection ()

▪ sin, salary(Employee) – removes columns

 Set Operations

▪ Union () – all rows from both tables

▪ Intersection () – rows in common between tables

▪ Set Difference (−) – rows in LH table not in RH table

▪ Cartesian Product () – combines all rows in both tables

▪ Division () – not usually implemented in SQL

 Joins (⋈) 
▪ Cartesian product followed by join selection
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Often used to combine two tables that relate to each other



Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

Doctor  Patient
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Error! – not union compatible

sin,fName,lName(Doctor) 
sin,fName,lName(Patient)

sin fName lName

555 Tom Baker

499 Jon Pertwee



sin,fName,lName(Doctor) 
sin,fName,lName(Patient)

sin fName lName

555 Tom Baker

123 William Hartnell

499 Jon Pertwee

674 David Tennant

321 Lalla Ward

674 Billie Piper
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Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445



sin fName lName

123 William Hartnell

674 David Tennant
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Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445

sin,fName,lName(Doctor) −
sin,fName,lName(Patient)



Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Doctor  Patient

(1) (2) (3) speciality office msp (6) (7) (8) age

555 Tom Baker Cardiology 168 34456 555 Tom Baker 20/01/1934

555 Tom Baker Cardiology 168 77321 321 Lalla Ward 28/06/1951

555 Tom Baker Cardiology 168 11387 499 Jon Pertwee 07/07/1919

555 Tom Baker Cardiology 168 12121 674 Billie Piper 22/09/1982

123 William Hartnell GP 743 34456 555 Tom Baker 20/01/1934

123 William Hartnell GP 743 77321 321 Lalla Ward 28/06/1951

123 William Hartnell GP 743 11387 499 Jon Pertwee 07/07/1919

123 William Hartnell GP 743 12121 674 Billie Piper 22/09/1982

499 Jon Pertwee Oncology 291 34456 555 Tom Baker 20/01/1934

499 Jon Pertwee Oncology 291 77321 321 Lalla Ward 28/06/1951

499 Jon Pertwee Oncology 291 11387 499 Jon Pertwee 07/07/1919

499 Jon Pertwee Oncology 291 12121 674 Billie Piper 22/09/1982

674 David Tennant Neurology 445 34456 555 Tom Baker 20/01/1934

674 David Tennant Neurology 445 77321 321 Lalla Ward 28/06/1951

674 David Tennant Neurology 445 11387 499 Jon Pertwee 07/07/1919

674 David Tennant Neurology 445 12121 674 Billie Piper 22/09/1982
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Doctor

sin fName lName speciality office

555 Tom Baker Cardiology 168

123 William Hartnell GP 743

499 Jon Pertwee Oncology 291

674 David Tennant Neurology 445



Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982
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fName,lName,description(Patient.msp = Operation.msp  dob.year 1920(Patient Operation))

fName lName description

Jon Pertwee vasectomy

(1) sin fName lName dob opID description date (9)

34456 555 Tom Baker 20/01/1934 12 appendectomy 01-01-05 34456

34456 555 Tom Baker 20/01/1934 13 vasectomy 02-01-05 11387

34456 555 Tom Baker 20/01/1934 14 appendectomy 03-01-05 34456

34456 555 Tom Baker 20/01/1934 15 kidney transplant 05-01-05 34456

77321 321 Lalla Ward 28/06/1951 12 appendectomy 01-01-05 34456

77321 321 Lalla Ward 28/06/1951 13 vasectomy 02-01-05 11387

77321 321 Lalla Ward 28/06/1951 14 appendectomy 03-01-05 34456

77321 321 Lalla Ward 28/06/1951 15 kidney transplant 05-01-05 34456

11387 499 Jon Pertwee 07/07/1919 12 appendectomy 01-01-05 34456

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387

11387 499 Jon Pertwee 07/07/1919 14 appendectomy 03-01-05 34456

11387 499 Jon Pertwee 07/07/1919 15 kidney transplant 05-01-05 34456

12121 674 Billie Piper 22/09/1982 12 appendectomy 01-01-05 34456

12121 674 Billie Piper 22/09/1982 13 vasectomy 02-01-05 11387

12121 674 Billie Piper 22/09/1982 14 appendectomy 03-01-05 34456

12121 674 Billie Piper 22/09/1982 15 kidney transplant 05-01-05 34456

Operation

opID description date msp

12 appendectomy 01-01-05 34456

13 vasectomy 02-01-05 11387

14 appendectomy 03-01-05 34456

15 kidney transplant 05-01-05 34456



(1) sin fName lName age opID description date (9)

11387 499 Jon Pertwee 07/07/1919 12 appendectomy 01-01-05 34456

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387

11387 499 Jon Pertwee 07/07/1919 14 appendectomy 03-01-05 34456

11387 499 Jon Pertwee 07/07/1919 15 kidney transplant 05-01-05 34456

msp sin fName lName dob

11387 499 Jon Pertwee 07/07/1919

fName lName description

Jon Pertwee vasectomy

(1) sin fName lName age opID description date (9)

11387 499 Jon Pertwee 07/07/1919 13 vasectomy 02-01-05 11387
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fName,lName,description(Patient.msp = Operation.msp(dob.year 1920(Patient) Operation))

Patient

msp sin fName lName dob

34456 555 Tom Baker 20/01/1934

77321 321 Lalla Ward 28/06/1951

11387 499 Jon Pertwee 07/07/1919

12121 674 Billie Piper 22/09/1982

Operation

opID description date msp

12 appendectomy 01-01-05 34456

13 vasectomy 02-01-05 11387

14 appendectomy 03-01-05 34456

15 kidney transplant 05-01-05 34456



1.2



 The parser takes an SQL query and converts it to 
a parse tree

 A parse tree is a tree whose nodes are

▪ Atoms – keywords, attribute names, 
relations, constants, operators

▪ Syntactic categories – families of 
query subparts such as a query or a condition

 An atom is a node with no children

▪ If a node is a syntactic category it is described by one 
of the rules of the grammar

15John Edgar

<Attribute>

balance

= 1000000

<Condition>



 We will look at a simplified version of SQL

▪ … very simplified …

 The grammar only has rules for

▪ Queries, select, from and where clauses

▪ Rules for select, from and where are also simplified

 We will give examples of how the grammar 
can be used to convert queries to parse trees

John Edgar 16



 The syntactic category <Query> represents 
SQL queries

 Just one rule for queries

▪ The symbol ::= means “can be expressed as”

▪ The query rule omits GROUP BY, HAVING and 
(many) other optional clauses

<Query> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
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 Select Lists

▪ Comma separated list of 
attributes
▪ Single attributes, or

▪ An attribute, a comma and 
a select list

▪ No expressions, aliases 
and aggregations

 From Lists

▪ Comma separated list of 
relations

▪ No joins, sub-queries or 
tuple variables

John Edgar 18

<SelList> ::= <Attribute>, <SelList>

<SelList> ::= <Attribute>

<FromList> ::= <Relation>, <FromList>

<FromList> ::= < Relation>



 This abbreviated set of rules does not include

▪ OR, NOT and EXISTS

▪ Comparisons not on equality or LIKE

▪ Parentheses

▪ ...
<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Attribute> IN <Query>

<Condition> ::= <Attribute> = <Attribute>

<Condition> ::= <Attribute> LIKE <Pattern>
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 There are three base syntactic categories

▪ <Attribute>, <Relation> and <Pattern>

▪ These categories are not defined by rules but by 
which atoms they can contain

 An <Attribute> can be any string of 
characters that identifies a legal attribute

 A <Relation> can be any string of characters 
that identifies a legal relation
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 Consider two relations

▪ Account = {accID, balance, ownerID}

▪ Transaction = {transID,  amount, date, trans_accID}

 And a query
SELECT trans_accID, amount
FROM Transaction
WHERE trans_accID IN(

SELECT accID
FROM Account
WHERE balance = 1000000)

21John Edgar



<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Query>

<Attribute>

trans_accID

IN<RelName>

Transaction

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<SelList> FROM <FromList> WHERE <Condition>

<Attribute>

accID

<RelName>

Account

<Attribute>

balance

=

SELECT

1000000
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SELECT trans_accID, amount FROM Transaction
WHERE trans_accID IN( SELECT accID

FROM Account WHERE balance = 1000000)



 Consider the same two relations

▪ Account = {accID, balance, ownerSIN}

▪ Transaction = {transID,  amount, date, trans_accID}

 And a query that is equivalent to the query in 
the previous example

SELECT trans_accID, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID
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<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute>

<Attribute> <SelList>,

trans_accID

amount

<Attribute>

balance

= 1000000 <Attribute>

trans_accID

= <Attribute>

accID

<RelName>

Transaction

<FromList>,

<RelName>

Account AND

<Condition> <Condition>
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SELECT trans_accID, amount 
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID



 The pre-processor has two main tasks
 Relations that are virtual views are replaced by a parse 

tree that describes the view
 Names in the query are checked for validity

▪ Each relation name in the FROM clause

▪ Attributes
▪ In a relation in a FROM clause of the query

▪ All attributes must be in the correct scope

▪ Check types
▪ Attribute types must be appropriate for their uses

▪ Operands must be appropriate and compatible types

25John Edgar

Semantic checking



1.3



 Once a parse tree has been constructed for a 
query it is converted to a logical query plan

▪ A logical query plan consists of relational algebra 
operators and relations

▪ Nodes and components of the parse tree are 
replaced by relational algebra operators

 The relational algebra plan is then modified

▪ To an expression that is expected to result in an 
efficient physical query plan
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 A set of rules allow parse trees to be transformed into 
relational algebra

▪ Replace a <Query> with a <Condition> but no sub-queries 
by a relational algebra expression

 The relational algebra expression consists of

▪ The product of all the relations in the <FromList>, which is 
an argument to

▪ A selection c where C is the <Condition>, which is an 
argument to

▪ A projection L where L consists of the attributes in the 
<SelList>
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For our simplified SQL subset

r1  r2  r3

 (c (r1  r2  r3))

a1,a2 (c (r1  r2  r3))



SELECT ownerAcc, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID
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<Attribute>

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID

<SelList>,

<RelName>

Account
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SELECT ownerAcc, amount
FROM Transaction, Account
WHERE balance = 1000000 AND trans_accID = accID



<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID

<SelList>,

<RelName>

Account

31John Edgar



,<RelName>

FROM <FromList>

Transaction

<SelList>

<RelName>

Account



Transaction Account

<Query>

SELECT <SelList>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

WHERE <Condition>

AND

<Condition>

<Attribute>

balance

= 1000000

<Condition>

<Attribute>

trans_accID

= <Attribute>

accID
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balance = 1000000 AND trans_accID= accID

ownerAcc, amount



ownerAcc, amount

balance = 1000000 AND trans_accID= accID



Transaction Account

33John Edgar



 Some parse trees include a <Condition> with 

a sub-query

▪ Sub-queries add complexity to the translation

 Sub-queries are replaced by a selection and 

other relational algebra operators

▪ Different types of sub-query require different 

rules to replace them

▪ IN, EXISTS, ANY, ALL, …
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 Consider sub-queries of the form t IN S

▪ Where t is a tuple made up of some attributes of R

▪ And S is a sub-query

 Sub-queries with IN are usually uncorrelated

▪ They can be replaced by the expression tree for S

▪ If S might contain duplicates they are removed ()

▪ A selection where the condition equates t to the 
corresponding attribute of S, and

▪ The Cartesian product of R and S
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SELECT trans_accID, amount
FROM Transaction
WHERE trans_accID IN(

SELECT accID
FROM Account
WHERE balance = 1000000)
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<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <SelList>,

trans_accID <Attribute>

amount

<RelName>

Transaction

<Attribute>

trans_accID

IN

<Query>

<SelList> FROM <FromList> WHERE <Condition>

<Attribute>

accID

<RelName>

Account

<Attribute>

balance

=

SELECT

1000000
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trans_accID, amount

Transaction <Condition>
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

<Attribute>

trans_accID

IN

Account

accID

balance = 1000000

Replace IN with the product of the two
relations and an equality selection
comparing the attributes
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trans_accID= accID

trans_accID, amount

Transaction

Account

accID

balance = 1000000



Replace IN with the product of the two
relations and an equality selection
comparing the attributes



 A correlated sub-query contains a reference 
to the outer query in the sub-query

▪ The sub-query cannot be translated in isolation

▪ It must be processed once for each outer query row

▪ The sub-query is usually replaced with a query 
that joins the sub-query and outer query relations

▪ The process is otherwise similar to that of 
uncorrelated queries
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SELECT msp, email FROM Patient P
WHERE EXISTS (

SELECT * FROM Operation O
WHERE P.msp = O.msp AND … )



 Once an expression tree has been created the 
plan can be rewritten

▪ Using the algebraic laws

▪ The initial plan could differ based on the SQL to 
relational algebra conversion

▪ This will not be considered except for the issues relating 
to the order of joins

 There are a number of transformations that 
commonly improve plans

41John Edgar

Next section …



 Selections are pushed down as far as possible

▪ Selections with AND clauses can be split and the 
components pushed down the tree

▪ This may reduce the size of intermediate relations

 Projections should also be pushed down

▪ Additional projections may be added

 Duplicate eliminations may be moved
 Selections can be combined with Cartesian 

products to create equijoins
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V

R

⋈

W X



S T

⋈

⋈



R

V X

TS

W

⋈

 It may be possible to group a 

sub-tree into a single node

▪ If it consists of nodes with the 

same associative and 

commutative operators

▪ Group the nodes into a single 

node with multiple children

 Then consider which order to 

perform the operation in later





 If an operator is commutative the order of its 

arguments do not matter

▪ e.g. + (x + y = y + x), but not – (x – y ≠ y – x)

 If an operator is associative then two uses of it may 

be grouped from the left or the right

▪ e.g. + (x + y) + z = x + (y + z)

 If an operator is associative and commutative its 

operands may be grouped and ordered in any way

45John Edgar



 SQL queries result in bags, 
not sets
▪ A bag may contain duplicates 

but sets cannot

▪ Some set-theoretic laws apply 
to sets but not to bags

 The distributive law of 
intersection over union
▪ A  (B C)  (A  B)  (A C) 

▪ Does not apply to bags
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Set

A 123 B 234 C 345

B C 2345

A  (B C) 23

A  B 23 A C 3

(A  B)  (A C) 23

Bag

A 123 B 234 C 345

B C 233445

A  (B C) 23

A  B 23 A C 3

(A  B)  (A C) 233



 Unions are both commutative and associative

▪ R  S  S  R

▪ R  (S T)  (R  S) T

 Intersections are both commutative and associative

▪ R  S  S  R

▪ R  (S T)  (R  S) T

 Set difference is neither commutative nor associative

▪ R − S  S − R

▪ R − (S −T)  (R − S) −T

47John Edgar

order does not matter

order does not matter

order does matter



 Cartesian product and joins are commutative

▪ e.g. R ⋈ S  S ⋈ R

 Cartesian products and joins are associative

▪ e.g. R  (S T)  (R  S) T

 Relations may therefore be joined in any order

48John Edgar



 A selection and Cartesian product can be combined 
to form a join

▪ c(R  S)  R ⋈c S
▪ e.g. P.msp = O.msp(Patient Operation)  Patient⋈Operation

 This may have an impact on the cost of a query

▪ Some join algorithms are much more efficient than 
computing a Cartesian product
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 The order in which joins and Cartesian products are 
made affects the size of intermediate relations

▪ Which, in turn, affects the time taken to process a query

 Consider these three relations:

▪ Customer = {sin, fn, ln, age} – 1,000 records

▪ Account = {acc, type, balance} – 1,200 records

▪ Owns = {sinfkCustomer, accfkAccount} – 1,400 records

 Owns ⋈ (Customer⋈ Account)

▪ Intermediate relation – 1,000 * 1,200 = 1,200,000 records

 (Owns⋈ Customer) ⋈ Account

▪ Intermediate relation – 1,400 records
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 Pushing selections down the query plan tree 

reduces the size of intermediate relations
 Conjunctions can be split into a cascading selection

▪ c1  c2 …  cn(R)  c1(c2( … (cn(R))))

▪ dob<1970  name="Abe"(Patient)   dob<1970 (name="Abe"(Patient))

 Selections are commutative

▪ c1(c2(R))  c2(c1(R))

▪  dob<1970(name="Abe"(Patient))  name="Abe" ( dob<1970(Patient))

 Disjunctive selections can be replaced by unions

▪ c1  c2(R)  c1(R) c2(R) 

51John Edgar

But only if R is a set – not a bag



 Conjunctions can be split into a cascading selection

▪ c1  c2 …  cn(R)  c1(c2( … (cn(R))))

▪  dob<1970  name="Abe"(Patient)   dob<1970 name="Abe"(Patient))

 Selections are commutative

▪ c1(c2(R))  c2(c1(R))

▪  dob<1970(name="Abe"(Patient))  name="Abe" ( dob<1970(Patient))

 Disjunctive selections can be replaced by unions

▪ c1  c2(R)  c1(R) c2(R) 

▪ This only works if R is a set (not a bag)
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 A selection can be pushed through a union, and 
must be applied to both arguments

▪ c(R  S)  c(S) c(R)

 A selection can be pushed through an intersection, 
and need only be applied to one argument

▪ c(R  S)  c(S)  (R)

 A selection can be pushed through a set difference, 
and must be applied to the first argument

▪ c(R − S)  c(R) − (S)
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 A selection can be pushed through a Cartesian 
product, and is only required in one argument

▪ c(R  S)  c(R)  S

▪ If the selection involves attributes of only one relation

 This relationship can be stated more generally

▪ Replace c with: cRS (with attributes of both R and S), cR

(with attributes just of R) and cS (with attributes just of S):

▪ c(R  S)  cRS(cR(R)  cS(S))

▪  dob<1970  P.msp=O.msp  desc="lobotomy"(Patient  Operation) 
P.msp=O.msp( dob<1970(Patient)  desc="lobotomy"(Operation))
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Pushing selections as far down as possible

age>50  P.msp=O.msp desc="lobotomy"(Patient Operation)

age>50  P.msp=O.msp desc="lobotomy"

Patient Operation



55John Edgar

result

age>50 description = "lobotomy"

Patient Operation

⋈



 Only the final projection in a series of projections is 
required

▪ a1 (R) a1(a2((an(R))))

▪ where ai  ai+1

 For example:

▪ city(Patient) city(city,fName(city,fName,lName(Patient)))
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 Projections can be pushed through unions, and 
must be applied to both arguments

▪ a(R  S)  a(R) a(S)

 Projections can not be pushed through intersections 
or set difference

▪ a(R  S)  a(R) a(S)
▪ lname(Patient Doctor)  lname(Patient)  lname(Doctor)

▪ a(R − S)  a(R) − a(S)
▪ lname(Patient − Doctor)  lname(Patient) − lname(Doctor)
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Imagine both tables have sin as primary key

Last names of patients 
who are not doctors

Patient last names that are 
not the last names of doctors



 Projections can be pushed through Cartesian 
products

▪ a(R  S)  aR(R)  aS(S)

▪ Let the attribute list a be made up of aR (attributes of R), 
and aS (attributes of S)

▪ e.g. P.msp,fName,lName,description,O.msp(Patient Operation) 
msp,fName,lname(Patient)  description,msp(Operation)

▪ In this example a selection could then be made to extract 
patient and operations records that relate to each other
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 Projections can be pushed through joins

▪ If the join condition attributes are all in the projection
▪ e.g. msp,dob,description(Patient⋈Operation) 

▪ msp,age(Patient) ⋈ msp,description(Operation)

 More generally

▪ Let  aR contains the attributes of R that appear in c or a, 
and aS contains the attributes of S that appear in c or a:

▪ a(R ⋈c S)  a(aR
(R) ⋈c aS

(S))

▪ e.g. fName,lName,acc(Acccount⋈C.sin = A.sin balance > income Customer) 

▪ fName,lName,acc(acc,balance,sin(Account)⋈C.sin = A.sin  balance > income

sin,fName,lName,income(Customer))
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 Selections and Projections are commutative if the 
selection only involves attributes of the projection

▪ a(c(R))  c(a(R))

▪ e.g. msp,fName,lName(age > 50(Patient)) 

▪ is not equivalent to

▪ age > 50(msp,fName,lName(Patient))

 In other words, don't project out attributes that are 
required for downstream selections!
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 Duplicate removal may be pushed through 
several operators

▪ Selections, Cartesian products and joins

 Duplicate removal can be moved to either or 
both the arguments of an intersection

 But cannot generally be pushed through 
unions, set difference or projections
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 There are a number of transformations that 
may be applied to queries with aggregates

 Some of the transformations depend on the 
aggregation

▪ The projection of attributes not included in the 
aggregation may be pushed down the tree

▪ Duplicate removal may be pushed through MIN
and MAX, but not SUM, or COUNT, or AVG
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 For each physical plan derived from a logical 
plan we record

▪ An order and grouping for operations such as 
joins, unions and intersections

▪ An algorithm for each operator in the logical plan

▪ Additional operators needed for the physical plan

▪ The way in which arguments are passed from one 
operator to the next
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 Individual operations can be processed using a 
number of different algorithms

▪ Each with an associated cost, and

▪ Different possible orderings of the resulting relation

 When evaluating queries it is important to be able 
to assess the size of intermediate relations

▪ That is, the size of the result of a particular operation

 Information required for estimating the size of a 
result is stored in the system catalog
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 Rules for estimating relation size should be

▪ Accurate

▪ Easy to compute

▪ Logically consistent

 There are different methods of attempting to 
meet these requirements

▪ Consistency is important

▪ It doesn’t matter if size estimations are inaccurate as 
long as the least cost is assigned to the best plan
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 The size of a relation after a projection can be 
estimated from information about the relation

▪ Which includes the number and types of attributes

▪ The size of the result of a projection is:

▪ (column sizes) * estimated number of records
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 A selection reduces the size of the result, but 
not the size of each record

 Where an attribute is equal to a constant a 
simple estimate is possible

▪ T(S) = T(R) / V(R,A)

▪ Where S is the result of the selection, T(R) is the number 
of records, and V(R,A) is the value count of attribute A

▪ e.g. age = 50
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 In practice it may not be correct to assume that 
values of an attribute appear equally often

 The values of many attributes follow a Zipfian
distribution

▪ The frequency of the ith most common item is 
proportional to 1/i

▪ For example, if the most common value  occurs 1,000 times 
the second most common appears 1,000/ 2 = 707 times

▪ Applies to words in English sentences, population ranks of 
cities, corporation sizes, income rankings, …
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 Inequality selections are harder to estimate
▪ A simple rule is to estimate that, on average, half the 

records satisfy a selection

▪ Alternatively estimate that an inequality returns one 
third of the records
▪ As there is an intuition that we usually query for an inequality 

that retrieves a smaller fraction of records

 Not equals comparisons are relatively rare
▪ It is easiest to assume that all records meet the 

selection

▪ Alternatively assume T(R) * (V(R,A) – 1 / V(R,A))
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 For an AND clause treat the selection as a 
cascade of selections

▪ Apply the selectivity factor for each selection

 OR clauses are harder to estimate

▪ Assume no record satisfies both conditions

▪ The size of the result is the sum of the results for each 
separate condition

▪ Or assume that the selections are independent

▪ result = n*(1 – (1 – m1/n)*(1 – m2/n)), where R has n tuples and 
m1 and m2 are the fractions that meet each condition
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 Assume that a natural join is on the equality 
of one attribute in common, call it x

 How do the join values relate?

▪ The two relations could have disjoint sets of x

▪ The join is empty and T(R ⋈ S) = 0

▪ x might be a key of S and a foreign key in R

▪ T(R⋈ S) = T(R)

▪ x could be the same in most records of R and S

▪ T(R⋈ S) ≈ T(R) * T(S)
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 Containment of value sets

▪ If x appears in several relations then its values are 
in a fixed list x 1, x 2, x 3, ...

▪ Relations take values from the front of the list and 
have all values in the prefix

▪ If R and S contain x, and V(R, x) ≤ V(S, x) then 
every value for x of R will also be in S

 Preservation of value sets
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 Containment of value sets
 Preservation of value sets

▪ If R is joined to another relation and y is not a join 
attribute, y does not lose values

▪ That is, if y is an attribute of R but not of S then 
V(R⋈ S, y) = V(R, y) 
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 What is the probability that records (r) of R and (s) 
of S agree on some x value?

▪ Assume that V(R,x)  V(S,x)

▪ The x value of S must appear in R by the containment 
assumption

▪ The chance that the x value is the same is 1/ V(R,x)

▪ Similarly if V(R,x)  V(S,x) then the Y value of r must be in 
s, so the chance is 1/ V(S,x)

▪ In general the probability is 1 / max(V(R,x), V(S,x))

 So T(R⋈ S) = T(R)*T(S) / max(V(R,x), V(S,x))
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R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

So, for example, there are 2,000 records 
in S with 50 different values of b and 100 
different values of c
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R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

Compute R⋈ S⋈ U

Assume (R⋈ S) ⋈ U

The join attribute for R
and S is b

By the containment 
assumption all the values 
of b in R are also in S

The estimate for (R⋈ S)  is 1,000 * 2,000 / max(20, 50) = 
40,000 

There are 1,000 values in R each of which joins to 40 
records in S
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R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

Compute R⋈ S⋈ U

Assume (R⋈ S) ⋈ U

The final result is the same if the 
relations are joined in a different order

T(R⋈ S) = 40,000 

V(R⋈ S, c) = 100 

The estimate for (R⋈ S) ⋈U is 40,000 * 
5,000 / max(100, 500) = 400,000 

What is the estimate for R⋈ (S⋈U) ?
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 A natural join consisting of multiple attributes 
is an equijoin with an AND clause

▪ As the values of both attribute must be the same 
for records to qualify

 Use the same reduction factor

▪ max(V(R,x), V(S,x))

▪ And apply for each attribute
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R(a,b) S(b,c) U(c,d)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,b) = 20 V(S,b) = 50

V(S,c) = 100 V(U,c) = 500

What is the estimate for ((R⋈ U) ⋈ S) ?

Note that R and U have no attributes in 
common, so the result is a Cartesian product

T(R⋈U) = 1,000 * 5,000 = 5,000,000

R⋈ U contains both b and c attributes

T(R⋈U⋈ S)  = 5,000,000 * 2,000 ...

... divided by max(V(R,b), V(S,b)) and ...

... divided by max(V(S,c), V(U,c)) =

(10,000,000,000 / 50) / 500 = 400,000 
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 The number of records in an equijoin can be 
computed as for a natural join

▪ Except for the difference in variable names

 Other theta-joins can be estimated as a 
selection followed by a Cartesian product

▪ The product of the number of records in the 
relations involved
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 The same calculations can be performed for 
joins of many relations

 It is important to note that the number of 
values of join attributes changes in joins

▪ The preservation assumption applies only to non-
join attributes

 After R and S are joined on x

▪ V(R⋈ S) = min (V(R,x), V(S,x))
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R(a,b,c) S(b,c,d) U(b,e)

T(R) = 1,000 T(S) = 2,000 T(U) = 5,000

V(R,a) = 100

V(R,b) = 20 V(S,b) = 50 V(U,b) = 200

V(R,c) = 200 V(S,c) = 100

V(S,d) = 400

V(U,e) = 500

What is the estimate for T(R⋈ U⋈ S) ?

10,000,000,000 * 1/2001 * 1/502* 1/2003 =  5,000

1 – first join on b, 2 – second join on  b, 3 – join on c

And how many values of 
each attribute remain 
after the join?

RSU(b,c,d,e)

T(RSU) = 5,000

V(RSU,a) = 100

V(RSU,b) = 20

V(RSU,c) = 100

V(RSU,d) = 400

V(RSU,e) = 500
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 Union

▪ Bag – the sum of the sizes of the arguments

▪ Set – in between the sum of the sizes and the size 
of the larger of the arguments

 Intersection

▪ From zero to the size of the smaller argument

 Set difference

▪ For R – S, between T(R) and T(R) – T(S)
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 Duplicate elimination

▪ Between T(R) (no duplicates) and 1 (all duplicates)

▪ An upper limit is the product of all V(r, ai)

 Grouping and aggregation

▪ The number of records is equal to the number of 
groups

▪ Like duplicate removal the product of all V(r, ai) is 
the upper limit

85John Edgar





 Queries that require joins or Cartesian products can 
be expensive

▪ Regardless of the join order the final result’s size can be 
estimated (using available statistics)

▪ However, intermediate relations may vary widely in size 
depending on the order in which relations are joined

 If a query involves more than two tables there may 
be many ways in which they can be joined

▪ Many query optimizers only consider left-deep join trees
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 Many join algorithms are asymmetric

▪ The cost of these joins is dependent on which 
table plays which role in the join

▪ This applies to hash join, block nested loop join, index 
nested loop join

 We can make assumptions about the right 
and left arguments

▪ Nested loop joins – left is the outer relation

▪ Index nested loop joins – right has the index
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A B

C

DA B

C

D

By convention, the left child of a (nested 
loop) join node is always the outer table

A B C D
left-deep tree

linear tree

non-linear or 
bushy tree

A        B        C       D
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 How many ways can this relation be joined?

▪ For each possible tree shape there are n! possible ways

 If Tr(n) is the number of possible tree shapes, then:

▪ Tr(1) = 1, Tr(2) = 1, Tr(3) = 2, Tr(4) = 5, Tr(5) = 14 , Tr(6) = 42

▪ This then has to be multiplied by the number of ways that the 
relations can be distributed over the tree

▪ 4 relations means 5 possible shapes so 5 * 4! = 120 possible trees

▪ If n = 6, there are 42 * 6! = 30,240 possible trees, of which 720 
are left-deep trees

A        B        C       D
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 A binary tree is left-deep if all the right 
children are leaves

 The number of left-deep trees is large but not 
as large as the number of all trees

▪ We can therefore significantly limit searches for 
larger queries by only considering left-deep trees

 Left-deep trees work well with common 
algorithms

▪ Nested-loop joins, and hash joins
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 In a left deep tree right nodes are leaves

▪ Implying that right nodes are always base tables

▪ Or the results of other, non-join, operations

 Left deep trees often produce efficient plans

▪ The smaller relation in a join should be on the left

▪ Left deep join trees result in holding fewer 
relations in main memory

▪ And result in greater opportunities for pipelining
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R S

T

U

Assume that there is a small relation, R

left-deep tree

Need B(R) + B(R⋈ S) to keep all of R and 
the result in main memory

Join with T but can re-use the memory 
allocated to R to hold (R⋈ S⋈ T)

Joining with U is similar in that (R⋈ S) is 
no longer needed

Only two of the temporary relations must 
be in main memory at one time
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T U

T

R

The left relation is always the outer (build) 
relation

right-deep tree

First load R into main memory

Then compute S⋈ (T⋈ U) to join with R

Which requires first constructing T⋈U

So R, S and T must all be in main memory 
requiring B(R) + B(S) + B(T) to perform in 
one pass
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 When multiple tables are joined there may be many 

different resulting join orders

 To pick a join order there are three choices

▪ Consider all join orders

▪ Consider a subset of join orders

▪ Use some heuristic to select the join order

 One approach is using dynamic programming

▪ Record a table of the costs

▪ Retaining only the minimum data to come to a conclusion
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 To select a join order record

▪ The estimated size of the joined relation

▪ The least cost of computing the join

▪ The expression that gives the least cost

▪ The expressions can be limited to left-deep plans

 The process starts with single table

▪ And works up to n tables (where n is the number 
of tables to be joined)
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R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

First compute single relation plans (in this simple example 
there are no  prior operations on the tables)

R S T U

size 1,000 1,000 1,000 1,000

cost 0 0 0 0

best plan R S T U
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In this example we will only consider the
cost related to the size of intermediate
relations and ignore the cost of actually
computing the join – focusing on the
cost related to the join order



Now compute the estimated results for pairs of tables, the cost 
is still 0 since there are no intermediate tables

R,S R,T R,U S,T S,U T,U

size 5,000 1,000,000 10,000 2,000 1,000,000 1,000

cost 0 0 0 0 0 0

best plan R ⋈ S R ⋈T R ⋈U S ⋈T S ⋈U T ⋈U
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R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000



R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

Note that results of joins
of the same tables in
different orders are the
same size

R,S,T R,S,U R,T,U S,T,U

size 10,000 50,000 10,000 2,000

cost 2,000 5,000 1,000 1,000

best plan (S ⋈T) ⋈ R (R ⋈ S) ⋈U (T ⋈U) ⋈ R (T ⋈U) ⋈ S

R,S R,T R,U S,T S,U T,U

size 5,000 1,000,000 10,000 2,000 1,000,000 1,000

cost 0 0 0 0 0 0

best plan R ⋈ S R ⋈T R ⋈U S ⋈T S ⋈U T ⋈U
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In this example we only considered left deep join trees

Join Order Cost

((S ⋈T) ⋈ R) ⋈U 12,000

((R ⋈ S) ⋈U) ⋈T 55,000

((T ⋈U) ⋈ R) ⋈ S 11,000

((T ⋈U) ⋈ S) ⋈ R 3,000

And would select 
((T ⋈U) ⋈ S) ⋈ R
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R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1,000

R,S,T R,S,U R,T,U S,T,U

size 10,000 50,000 10,000 2,000

cost 2,000 5,000 1,000 1,000

best plan (S ⋈T) ⋈ R (R ⋈ S) ⋈U (T ⋈U) ⋈ R (T ⋈U) ⋈ S



 The cost estimate used was relation size

▪ This simplification that ignores the cost of actually 
performing the joins

 The dynamic programming algorithm can be 
modified to include the join cost

 In addition multiple costs can be maintained 
for each join order

▪ Where the lowest cost for each interesting order of 
the result is retained
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 An alternative to approaches like dynamic 

programming is a greedy algorithm

▪ Make one decision at a time about join order and never 

backtrack

 For example, select only left-deep trees

▪ And always select the pair of relations that have the 

smallest join

 Greedy algorithms may fail to find the best solutions

▪ But consider smaller subsets
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 Parse the query
 Convert it to a logical plan

▪ A relational algebra expression tree

 Improve the plan

▪ Apply heuristics, e.g. push selection down the tree

▪ Select join order and join algorithm

 There are a few stages left

▪ Select algorithms for other operations

▪ Decide whether to pipeline or materialize results

▪ Record the completed plan
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 If no index, table scan at a cost of B(R)
 Using an index to satisfy an equality selection on the index search 

key, a, has a cost of

▪ B(R) / V(R, a) if the index is primary, otherwise

▪ T(R) / V(R, a)

▪ Cost estimation can be improved by maintaining statistical data in 
histograms

 Using an index to satisfy an inequality selection on the index 
search key, a, has a cost of

▪ B(R) / 3 if the index is primary, otherwise

▪ T(R) / 3

▪ Cost estimations can be improved by using data maintained in 
histograms to estimate the size of a range of values
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 The choice of join algorithm is sensitive to the amount of 
main memory

 In the absence of this information

▪ Use a block nested loop join using the smaller relation as the 
outer relation

▪ Use sort-join

▪ If one or both operands are already sorted on the join attribute or

▪ There are multiple joins on the same attribute

▪ Use an index-join if there is an index on the join attribute in S, 
and R is expected to be small

▪ Use hashing if multiple passes are expected and none of the 
above apply
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 It may be possible to pipeline an operation’s result

▪ Perform the next operation without first writing out, or 
materializing, the results of the first

 There are often opportunities for pipelining

▪ The results of one selection can be pipelined into another, 
and most operations can be pipelined into projections
▪ When the input to a unary operator is pipelined into it, the operator 

is performed on-the-fly

▪ In some cases one join can be pipelined into another join
▪ Depending on the join algorithm being used
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 Some join algorithms are more suitable for pipelining 
than others

▪ Note that pipelining will reduce the amount of main memory 
available for operations

 Nested loop joins can easily be pipelined
 Both hash join and sort-merge join require the entire 

relation to be sorted or partitioned, and written out

▪ Although, if a table is ordered on the join attribute it may be 
pipelined into a merge join

 One reason why it is important to record orderings is 
the possible impact on pipelining

107John Edgar



 Assume that nested loop joins 
will be performed

 Node 2 (the root) requests 
records from node 1
▪ Node 1 is to provide the outer 

table for node 2

 A page (or multiple pages) of 
join 1 is produced, and

 Matching records are retrieved 
from table T
▪ And joined with the join 1 records

 The process then repeats

R S

T

⋈2
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 Pipelining adds complexity

▪ Separate input and output buffers are required for each 
pipelined operation

▪ Increasing main memory requirements

 Records have to be available from previous 
operations, this process is either

▪ Demand driven (pulling data), or

▪ Producer driven (pushing data)

 In a parallel processing system pipelined operations 
may be run concurrently
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 The number of disk I/Os required for a query 
is affected by a number of factors

▪ The logical operators chosen for the query

▪ Determined when the logical plan was chosen

▪ The size of intermediate results

▪ The physical operators used

▪ The ordering of similar operations

▪ The method of passing arguments from one 
operator to the next
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 When estimating sizes we assumed that 
values for T(R) and V(R, a) are known

 Such statistics are recorded in a DBMS

▪ By scanning a table and counting the records and 
number of distinct values

 B(R) can also be determined

▪ By either counting the blocks

▪ Or estimating based on how many records can fit 
in a block
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 A DBMS may keep more detailed information about 
values in relations

▪ The frequency of values can be recorded in histograms
▪ Used by both MS SQL Server and Oracle

 Attributes’ high and low values are recorded

▪ This information is easily obtainable from an index

▪ These values can be used to estimate the number of 
records in a range, column > value
▪ The reduction factor  (high(A) - value) / (high(A) - low(A))

▪ This assumes that the distribution of values is uniform
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Not very accurate



 Storing only the high and low values of an attribute 
may not provide accurate estimations

 Histograms can be stored in a DBMS to give a better 
approximation of a data distribution

▪ The range is divided into sub-ranges

▪ The number of values in each sub-range is stored

▪ The high and low values of each sub-range are stored

 Values are assumed to be uniformly distributed 
within sub-ranges

 Histograms can be either equiwidth or equidepth
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 An equiwidth histogram 

divides a range into sub-

ranges of equal size

▪ e.g. in a histogram on 

income each sub-range 

might contain a range (or 

band) of incomes of 

$10,000

▪ Each sub-range may 

contain a different count 

of values
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 In an equidepth histogram 

the sub-ranges contain 

the same count of values

▪ e.g. each sub-range might 

contain incomes of 5,000 

customers, and

▪ One sub-range might 

contain incomes from 

$51,000 to $52,000 

another from $150,000 to 

$200,000
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 Equiwidth histograms are better for values that occur 
less frequently

 Equidepth histograms are better for values that occur 
with more frequency

▪ A frequently occurring value may constitute an entire sub-range 
in an equidepth histogram

▪ Frequent values are generally considered more important

 Many commercial DBMS use equidepth or compressed 
histograms

▪ A compressed histogram keeps separate counts of very frequent 
values, and another histogram for other values
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Consider selecting the 
attribute on equality: 
A=60

6 6 6 7 5 6
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The estimate of the 
size is very accurate



 Histograms can be used to improve the 
estimates of join and selection sizes

 For joins, only records in corresponding 
bands of the histogram can join

▪ Assuming both tables have histograms on the join 
attribute

▪ The containment assumption can be applied to 
histogram bands rather than to all values
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 Statistics are only computed infrequently

▪ Significant changes only happen over time

▪ Even inaccurate statistics are useful

▪ Writing changes often would reduce efficiency

 Computing statistics for an entire table can 
be expensive

▪ Particularly if V(R,a) is computed for all attributes

▪ One approach is to use sampling to compute 
statistics
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 Cost estimates can be used to derive better logical 
plans

▪ Note that these estimates do not include differences in 
cost as a result of using different physical operators

▪ And only include estimates of intermediate relation size

 Some common heuristics

▪ Push selections down the expression tree

▪ Push projections down the expression tree

▪ Move duplicate removal

▪ Combine selections and Cartesian products into joins
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 Once a logical plan is formed it must be 
converted into a physical plan

▪ There are many different physical plans which 
vary based on which physical operator is used

 The basic approach for finding a physical plan 
is an exhaustive approach

▪ Consider all combinations of choices

▪ Evaluate the estimated cost of each, and

▪ Select the one with the least cost
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 The exhaustive approach has one drawback - there 
may be many different possible plans

▪ Other approaches exist

▪ There are two basic methods to explore the space of 
possible physical plans

 Top-down, work down the tree from the root

▪ For each implementation of the root operation compute 
each way to produce the arguments

 Bottom-up

▪ Compute the costs for each sub-expression
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 Make choices based on heuristics, such as

▪ Join ordering – see later

▪ Use available indexes for selections
▪ If there is an index on only one attribute use that index and then 

select on the result

▪ If an argument to a join has an index on the join attribute 
use an index nested loop join

▪ If an argument to a join is sorted on the join attribute then 
prefer sort-join to hash-join

▪ When computing union or intersection on three or more 
tables group the smallest relations first
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 Use heuristics to find a good physical plan for the 
logical plan

▪ Denote the cost of this plan as C

 Consider other plans for sub-queries

▪ Eliminate any plan for a sub-query with cost > C
▪ The complete plan cannot be better than the initial plan

 If a plan for the complete query has a cost less than C
replace C with this cost

 One advantage is that if C is good enough the search 
for a better plan can be curtailed
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 Use heuristics to find a good plan
 Make small changes to the plan

▪ Such as replacing one physical operator with a 
different one

▪ Look for similar plans (with different join orders 
for example) with lower costs

 If none of these small changes result in a 
decreased cost use the current plan
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 A bottom-up process that retains only the 
lowest cost for each sub-expression

 For higher sub-expressions different 
implementations are considered

▪ Assuming that the previously determined best 
plans for its sub-expressions are used
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 Similar to dynamic programming except that 
multiple sub-expressions plans are retained

 For each sub-expression retain the least cost 
for each interesting sort order, i.e. on

▪ The attributes specified in a sort operator at the 
root (corresponding to an ORDER BY clause)

▪ The grouping attributes of a late operator

▪ The join attributes of a later join
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