Algorithms for SOL Query Operators
Query Optimization

Query Optimization

- Introduction
- Unary Operators
- External Sorting
- Projection
- Binary Operators

Equivalent Queries

```
select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from customer c, sales s, product p
where c.city = 'Vancouver' and p.company = 'lego' and
s.year = 2019 and s.cid = c.cid and s.pid = p.pid
```

select c.cid, c.cname, c.email, p.pid, p.pname, p.price

SOL is procedural

Operations are specified

There are often equivalent queries
from (select cid, cname, email from company where city = 'Vancouver') as c
natural inner join
(select cid, pid from sales where year $=2019$) as s
That are more or less efficient
natural inner join
(select pid, pname, price from products where company = 'lego') as p

Query optimization entails finding
select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from (select c1.cid, s1.pid
from customer c1, sales s1
where c1.city = 'Vancouver' and s1.year = 2019
*Actually a good enough query

Query Optimization

select ... from ... where

What are these algorithms?

Evaluating Queries

```
select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from (select cid, cname, email from company where city = 'Vancouver') as c
natural inner join
(select cid, pid from sales where year = 2019) as s
natural inner join
(select pid, pname, price from products where company = 'lego') as p
```

$\pi_{\text {cid,cname,email,pid,pname,price }}\left(\pi_{\text {cid,cname,email }}\left(\sigma_{\text {city }}=\right.\right.$ 'Vancouver' ${ }^{\prime}($ Customer $\left.)\right)$
$\bowtie \pi_{\text {cid, pid }}\left(\sigma_{\text {year }=2019}(\right.$ Sales $\left.)\right)$
$\bowtie \pi_{\text {pid,pname, price }}\left(\sigma_{\text {company }=\text { 'legó }}(\right.$ Product $\left.\left.)\right)\right)$
Order of operations? 10 2 3 ... maybe ...

Size of input into next operation - intermediate relations?
Are results maintained in main memory?
What is the cost metric?

- A physical plan is made up of a sequence of steps
- Each step corresponds to a relational algebra operation
- Input is one or more relations
- Output from each operation is a relation
- Some operations require low level processes
- Scanning a table
- Using an index to access a record

Query Model and Metrics

1.1

Terminology and Cost Metric

$B(R)$ - number of blocks of R
$T(R)$ - number of records of R
$b f(R)$ - records per block of R
$V(R, a)$ - number of distinct values for attribute a in R

Computation Model

```
\mp@subsup{\pi}{\mathrm{ cid,,cname,email,pid,pname,price }}{}(\mp@subsup{\pi}{\mathrm{ cid,_cname,email }}{\mathrm{ city }}\mathrm{ (Vancouver'}
\bowtie <
凶 }\mp@subsup{\pi}{\mathrm{ pid,pname,price ( }}{\mathrm{ company = 'lego'}
```

B (Customer) $=100,000$
T (Customer) $=1,000,000$
$V($ Customer, city $)=100$

Assume performed first Cost?

- This section covers algorithms for query operations
- There is often more than one for an operation
- Operations are considered in isolation
- Assume that data is read from disk

Interaction of operations discussed later

- In practice this is not always the case
- And that the result is retained in memory - not written out

Unary Operators

1.2

Introduction

- A unary operator is an operation with a single operand
- For SQL operators the operand is a table
- Either a base table or the result of a previous query operation
- Unary operations
- Selection
$\sigma_{\text {salary }}>100000$ (Customer)
- Projection
- Which may include duplicate removal
- Sorting
- Aggregations AVG(salary)

id	name	salary	\ldots
154	bob	77000	
786	brie	120000	
001	kate	82000	
268	sue	63000	

Simple Selection

```
SELECT * don't do this ...
FROM Customer }\quad\mp@subsup{\sigma}{\mathrm{ city = 'Vancouver''(}}{
WHERE city = 'Vancouver'
```

- A simple selection has a single condition
- Complex selections are considered later
- Selections are satisfied by retrieving the matching records via an access path
- Scanning the file and testing each record to determine if it matches the selection which is unusual ...
- Or using binary search if the file is sorted and has no index
- Using an index on the attribute in the condition

Cost of Simple Selections

- No index on the selection attribute
- Linear search by scanning file, cost is B reads
- If the selection attribute is a candidate key the scan can be terminated once a match has been found (cost is $B / 2$)
- If the file is sorted use binary search to find record(s)
- $\log _{2}(B)+$ pages of matching records - 1 But it is unusual to have a sorted
- Index on the selection attribute file with no primary index
- The cost is dependent on
- The type of index - B+ tree, hash index, ...
- The height of the index
- The number of records that match the selection
- Whether the index is primary or secondary
Compare selections on
SIN
First name
City
Gender

Cost of Using an Index

- The cost of satisfying a selection with an index is composed of
- Number of disk reads to use the index
- i.e. to reach the leaf / bucket that contains the data entry
- The number of leaves / size of the bucket
- Number of blocks of the file with records that match the selection
- Generally larger if the index is secondary
- Assume that indices are
- Hash index - extensible or linear
- B+ tree index

Cost to Search Index

- B+Tree
- To find matching RIDs search tree
- RIDs reside in leaf nodes
- Cost: 1 disk read per level
- Additional leaf pages may have to be read
- If index is dense or selection is inequality
- i.e. entries are on multiple leaves
- Extensible hash index
- Read directory
- Probably 1 or 2 blocks
- Read bucket
- 1 block
- Linear hash index
- Read bucket
- Bucket may have overflow blocks
- Hash indexes only used for equality selections

Cost to Read Records

- Primary index
- File is sorted by search key
- Matching records are stored in consecutive blocks
- Blocks read is number of records \div records per block
- $1+\lceil($ records -1$) \div b f(R)\rceil$
- Assumes worst case
- Secondary index
- Matching records are not stored consecutively
- Assume one disk read for each matching record
- As records are scattered across the file
- For large selections could be worse than a file scan

Simple Selection Cost

Access Method	Candidate Key Selection	Non Candidate Key Selection				
Linear search	$B / 2$	B	Notes			
Binary search	$\log _{2}(B)$	$\log _{2}(B)+x$	Must be sorted on selection attribute $x=$ blocks of matching records			
Primary B+ tree index	tree height +1	tree height + x	$x=$ blocks of matching records	$	$	tre
:---	:---					

Notes: tree height usually 3 to 5 ; hash index "height" usually 1 or 2 ; root node of indexes may be resident in main memory which reduces cost by 1 ; value for w is usually 1 (particularly for a hash index); difference between x and y can be large; details on how to compute these costs follow

Complex Selections

- A complex selection is made of at least two terms connected by and (\wedge) and or (\vee)
- The terms can reference different or the same attributes
- Conjunctions are more selective and clauses
- Disjunctions are less selective or clauses
- Complex selections are satisfied in much the same way as simple selections
- If no index on any of the selection attributes scan the file
- Use indices on selection attributes where possible
- Use of indices is governed by the type of selection and index

Selections with no Disjunctions

- If only one index is available use the index and apply other selections in main memory
- Either there is an index on only one of the attributes
- Or an index with a compound key that references multiple selection attributes attributes in selection must form prefix of the key
- Note the restrictions on the use of hash indices
- If multiple indexes are available
- Either use the most selective $\sigma_{\text {firstname }}=$ "Emma" \wedge lastname $=$ "Lee" $($ Patient $)$
- Or collect RIDs from leaves or buckets of indexes and take the intersection

```
\sigma
```


Selections with Disjunctions

- Selections with disjunctions are stated in conjunctive normal form (CNF) By the query optimizer
- A collection of conjuncts
- Each conjunct consists either of a single term, or multiple terms joined by or
- e.g. $(A \wedge B) \vee C \vee D \equiv(A \vee C \vee D) \wedge(B \vee C \vee D)$
- This allows each conjunct to be considered independently
- A conjunct can only be satisfied by indices if there is an index on all attributes of all of its disjunctive terms
- If all the conjuncts contain at least one disjunction with no matching index a file scan is necessary

Selections with Disjunctions

- Consider a selection of this form
- $\sigma_{(a \vee b \vee c)} \wedge(d \vee e \vee f)(R)$
if there was no index on b a file scan would be necessary
- Where each of a to f is an equality selection on an attribute
- If each of the terms in either of the conjuncts has a matching index
- Use the indexes to find the rids
- Take the union of the rids and retrieve those records
- For example, if there are indexes just on a, b, c, and e
- Use the a, b, and c indexes and take the union of the rids
- Retrieve the resulting records and apply the other criteria

Projections

SELECT fName, lName

FROM Customer
 $\pi_{\text {fName, } 1 \text { Name }}$ (Customer)

- Only selected columns are retained
- Reducing the size of the result relation

Processed without writing out the previous result

- Projections can always be pipelined from other operations
- Unless the SELECT clause includes DISTINCT
- A SELECT DISTINCT clause eliminates duplicates
- Which requires sorting the relation
- Or building a hash table on the relation

But what if the relation does not fit in main memory?

External Sorting

A Digression (2-1)

Sorting and Scanning

- It is sometimes necessary or useful to sort data as it is scanned (read) The cost to scan a file is $B(R)$
- To satisfy a query with an ORDER BY clause
- Or because an algorithm requires sorted input
- Such as projection or some join algorithms
- There are a number of ways in which a sort scan can be performed
- Main memory sorting

But only if R fits in main memory: $B(R)<M$
If $B(R)<M$ the cost to sort a file is $B(R)$

- B+ tree index
- Multi-way mergesort

Internal vs. External Sorting

- Sorting a collection of records that fit within main memory can be performed efficiently
- There are a number of sorting algorithms that can be performed in $n\left(\log _{2} n\right)$ time
" That is, with $n\left(\log _{2} n\right)$ comparisons, e.g., Mergesort, Quicksort,
- Many DB tables are too large to fit into main memory at one time
- So cannot simply be read into main memory and sorted
- The focus in external sorting is to reduce the number of disk I/Os
- As it is with optimization in general

Merge Sort - a Brief Reminder

- Consider the Merge sort algorithm
- Input sub-arrays are repeatedly halved
- Until they contain only one element
- Sub-arrays are then merged into sorted sub-arrays by repeated merge operations
- merging two sorted sub-arrays can be performed in $O(n)$ mergesort(arr, start, end) if(start < end) //at least two elements mid $=$ start + end / 2 mergesort(arr, start, mid) mergesort(arr, mid+1, end) merge(arr, start, mid, mid+1, end)

Naïve External Merge Sort

- Convert main memory merge sort to work on disk data
- Initial step - read 2 pages of data from file
- Sort them and write them to disk Note: this does not make much sense,
- Results in B/2 sorted "runs" of size 2 but is included for illustration
- Merge the first two sorted runs of size 2
- Read the first page of the first two runs into input pages
- Merge to a single output page, and write it out when full
- When all records in an input page have been merged read in the second page of that run
- Repeat for each pair of runs of size 2
- There are now $B / 4$ sorted runs of size 4
- Repeatedly merge runs until the file is sorted

Naïve External Merge Sort ...

Naïve External Merge Sort ...

Naïve External Merge Sort ...

Cost of Naïve Merge Sort

- Assume that $B=2^{k}$
- After the first pass there are 2^{k-1} sorted runs
- Each is two pages in size
- After the second pass there are 2^{k-2} sorted runs, of length 4
- After the $k^{\text {th }}$ pass there is one sorted run of length B
- The number of passes is therefore $\left\lceil\log _{2} B\right.$
- In each pass all the pages of the file are read and written for a total cost of $\left\lceil\log _{2} B\right\rceil * 2 B \quad B$ pages read and B pages written
- Note that only 3 frames of main memory are required!
- Also note that main memory costs are ignored
- The algorithm can be improved in two ways

First Stage Improvement

- In the first stage of the naive process pairs of pages are read into main memory, sorted and written out
- Resulting in $B / 2$ runs of size 2
- To make effective use of main memory, read M pages, and sort them
M main memory pages available
- After the first pass there will be B / M sorted runs, each of length M
- This reduces the number of subsequent merge passes

Merge Pass Improvement

- In the merge passes perform an $M-1$ way merge
- $M-1$ input pages, one for each of $M-1$ sorted runs and
- 1 page for an output buffer
- The first items in each of the $M-1$ input partitions are compared to determine the smallest
- Each merge pass merges $M-1$ runs
- After the first pass the runs are size (M-1)*M after first pass
- This results in less merge passes, and less disk I/O

Cost of External Merge Sort

- The initial pass produces B / M sorted runs of size M
- Each merge pass reduces the number of runs by a factor of $M-1$
- The number of merge passes is $\left\lceil\log _{M-1}\lceil B / M\rceil\right\rceil$
- Each pass requires that the entire file is read and then written first pass
- Total cost is therefore $2 B\left(\left\lceil\log _{M-1}\lceil B / M\rceil\right\rceil+1\right)$
- M is typically relatively large this so this reduction over two-way merge is considerable

Number of Passes

$B=1,000,000$		
M	$\left\lceil\log _{2} B\right\rceil$	$\left\lceil\log _{b-1}\lceil B / M\rceil+1\right.$
3	20	20
5	20	10
200	20	3
2,000	20	2
Even a large file can usually be sorted in two passes (a cost of $4 B \mathrm{I} / \mathrm{Os}$ to sort and write out) assuming a reasonable size for M		

Replacement Sort

10	43	23	1	64	87	35	50	19	41	5	86	12	24	94	41	26	13	disk

- In the first pass of external mergesort B/M sorted runs of size M are produced
- Larger initial run size means less merge steps
- Replacement sort increases initial run size
- To 2 * M on average
- The algorithm uses buffers
- M-2 pages to sort the file - the current set
input buffer
output buffer main
memory main
memory

1	5	10
19	23	35
41	43	50
64	86	87

\square

- One page for input
- One page for output
- First the current set is filled
- ... then sorted

Replacement Sort

10	43	23	1	64	87	35	50	19	41	5	86	12	24	94	41	26	13	disk

- Once the current set is sorted the next page of the file is read into the input buffer

12	24	94
19	23	35
41	43	50
current set		
64	86	87

$12 \quad 24 \quad 94$ input buffer
$1 \quad 5 \quad 10$ output buffer main memory

- The smallest record from the current set, and input buffer, is put in the output buffer
- The first element of the current set is now free and is replaced with the first record from the input buffer
- This process is repeated until the output buffer is full and all the values in the input buffer are in the current set

Replacement Sort

Revisiting I/O Costs

- In practice it may be more efficient to make the input and output buffers larger than one page
- This reduces the number of runs that can be merged at one time, so may increase the number of passes required
- But, it allows a sequence of pages to be read or written to the buffers, decreasing the actual access time per page
- We have also ignored CPU costs
- If double buffering is used, the CPU can process one part of a run while the next is being loaded into main memory
- Double buffering also reduces the amount of main memory available for the sort

Note: B+ Trees and Sorting

- Primary B+ tree index
- The index can be used to find the first page, but
- Note that the file is already sorted!
- Secondary B+ tree index
- Leaves point to data records that are not in sort order
" In the worst case, each data entry could point to a different page from its adjacent entries
- Retrieving the records in order requires reading all of the index leaf pages, plus one disk read for each record!
- In practice external sort is likely to be much more efficient than using a secondary indexfor retrieving large selections

Projections

3.1

Projection and Duplicate Removal

- Naively, projection and duplicate removal entails

SELECT DISTINCT fname, Iname FROM Customer

- Scan the table, remove unwanted attributes, and write it back
- cost $\approx 2 B$ disk I/Os The cost to write the result is less than B
- Sort the result, using all of its attributes as a compound sort key
- cost $\approx 4 B$, possibly more if the file is very large Again, less than $4 B$
- Scan the result, removing the adjacent duplicates as they are encountered; cost $\approx B \quad$ And again, the relation size is now less than B
- The cost to write out the result of this last stage is not included; it may be the last operation or may be pipelined into another operations
- It appears that the total cost is $7 B$ disk I/Os, but this process can be much improved by combining multiple steps

Sort Projection Cost

- The initial scan is performed as follows
- Read M pages and remove unwanted attributes
- Sort the records, and remove any duplicates

The final result size can be estimated

- Write the sorted run to disk
- Repeat for the rest of the file, for a total cost of $2 B$
- Actually less than $2 B$ since the result will be smaller than B from attribute size
- Perform merge passes as required on the output from the first stage
- Remove any duplicates as they are encountered
- If only one merge pass is required the cost is $\approx 1 B$
- For a total cost of $\approx 3 B$

Hash Projection - Partitioning

- Duplicates can also be identified by using hashing
- Duplicate removal by hashing has two stages
- Partitioning and probing
- In the partitioning stage
\longrightarrow in output buffers \longrightarrow main memory
- Partition into M-1 partitions using a hash function, h
- With an output buffer for each partition, and one input buffer
- The file is read into main memory one page at a time, with each record being hashed to the appropriate buffer
- Output buffers are written out when full
- Partitions contain records with different attribute values
- Duplicates are eliminated in the next stage

Hash Projection - Probing

- The duplicate elimination stage uses a second hash function $h_{2}\left(h_{2} \neq h\right)$ to reduce main memory costs
- An in-memory hash table is built using h_{2}
- If two records hash to the same location they are checked to see if they are duplicates
- Duplicates can, instead, be removed using in-memory sorting
- If each partition produced in the partitioning stage can fit in main memory the cost is
- Partitioning stage: $2 B$

Approximate cost: actual cost is less since the result is smaller than the original file

- Duplicate elimination stage: B, for a total cost of $3 B$
- This is the same cost as projection using sorting

Sort and Hash Projection Compared

- Sort and hash projection have the same cost (3B)
- If $M>\sqrt{ }(B)$ sorting and sort projection can be performed in two passes
- The first pass produces B / M sorted runs

- If there are less than $M-1$ of them only one merge pass is required
- Hash projection partitions are different sizes
- If just one partition is greater than M-1, further partitioning is required
- Regardless of the overall size of the file

Aggregations

- Aggregations without groups are simple to compute
- Scan the file and calculate the aggregate amount
- Requires one input buffer and a variable for the result
- Aggregations can usually be pipelined from a previous operation

SELECT MIN(gpa)
FROM Student

- Aggregations with groups require more memory
- To keep track of the grouped data
- They can be calculated by sorting or hashing on the group attribute(s)

SELECTAVG(income) FROM Doctor GROUP BY specialty

- Or by using an index with all the required attributes

Sorting and Groups

- The table is sorted on the group attribute(s)
- The results of the sort are scanned and the aggregate operation computed
- These two processes can be combined in a similar way to the sort based projection algorithm
- The cost is driven by the sort cost
- $3 B(R)$ if the table can be sorted in one merge pass
- Final result is typically much smaller than the sorted table

Hashing and Groups

- In the hash based approach an in-memory hash table is build on the grouping attribute
- Hash table entries consist of
- 〈grouping-value, running-information〉 e.g. count and sum for AVG
- The table is scanned and for each record
- Probe the hash table to find the entry for the group that the record belongs to, and
- Update the running information for that group
- Once the table has been scanned the grouped results are computed using the hash table entries
- If the hash table fits in main memory the cost is $B(R)$

Aggregations and Indexes

- It may be possible to satisfy an aggregate query using just the data entries of an index
- The search key must include all of the attributes required for the query This may seem unlikely
- The data entries may be sorted or hashed, and
but an index may be created for this use
- No access to the records is required
- If the GROUP BY clause is a prefix of a tree index, the data entries can be retrieved in the grouping order
- The actual records may also be retrieved in this order
- This is an example of an index-only plan

Binary Operations

$3.2 / 4.1$

SELECT *

Customer \bowtie Account

FROM Customer NATURAL INNER JOIN Account

$$
\sigma_{c . \sin }=A \cdot \sin (\text { Customer } \times \text { Account })
$$

- A join is defined as a Cartesian product followed by a selection
- Where the selection is the join condition
- A natural join's condition is equality on all attributes in common
- Cartesian products typically result in much larger tables than joins
- It is important to be able to efficiently implement joins

Join Algorithms

- $T(R)=10,000$ and $T(S)=4,000$
- Assume S has a foreign key that references R

$R \bowtie S$

How do we find joined records without searching the entire space?

Algorithms
Nested loop joins
Sort-merge join
Hash join

- So records in S relates to at most one record in R
- The sizes of the join and the Cartesian product are
- Cartesian product - 40,000,000 records
- Natural join - 4,000 (if every sin S relates to an r in R)

Simple Nested Loop Joins

- There are three nested loop join algorithms that compare each record in one relation to each record in the other
- They differ in how often the inner relation is read
- Tuple nested loop join Cost $=B(R)+(T(R) * B(S))$
memory use R S ... out
- Read one page of R at a time
- For each record in R
- Scan S and compare to all S records
- Result has the same ordering as R
- Improved nested loop join
R凶 $\bowtie_{\text {R.i }}=S . j S$
for each record $r \in R$
for each record $s \in S$
if $r_{i}=s_{j}$ then
add $\langle r, s\rangle$ to result
- As tuple nested loop join but scan and compare S for records of R one page at a time

$$
\text { Cost }=B(R)+(B(R) * B(S))
$$

Block Nested Loop Join

- The simple nested loop join algorithms do not make effective use of main memory
- Both require only two input buffers and one output buffer
- The algorithm can be improved by making the input buffer for R as large as possible
memory use
- Use M-2 pages as an input buffer for the outer relation
- 1 page as an input buffer for the inner relation, and
- 1 page as an output buffer
- If the smaller relation fits in $M-2$ pages the cost is $B(R)+B(S)$
- CPU costs are reduced by building an in-memory hash table on R, using the join attribute for the hash function

Why Block Nested Loop Join?

- What if the smaller relation is larger than $M-2$?
- Break R, the outer relation, into blocks of $M-2$ pages
- I refer (somewhat flippantly) to these blocks as clumps
- Scan S once for each clump of R
- Insert concatenated records $\langle r, s\rangle$ that match the join condition into the output buffer
- S is read $\lceil B(R) /(M-2)\rceil$ times $M-2$ is the clump size
- The total cost is $B(R)+([B(R) /(M-2)] * B(S))$
memory

scan S
4 times
- Which may increase the number of times that S is scanned

Index Nested Loop Join

- Indexes can be used to compute a join where one relation has an index on the join attribute
- The indexed relation is made the inner relation (call it S)
- Scan the outer relation $B(R)$ reads
- While retrieving matching records of S using the index index cost?
- The inner relation is never scanned
- Only records that satisfy the join condition are retrieved
- Unlike the other nested loop joins this algorithm does not compare every record in R to every record in S
- Cost depends on the size of R and the type of index
- $B(R)+(T(R) *\langle$ index cost $\rangle)$

Index Nested Loop Join Cost

- The cost of index nested loop join is dependent on the type of index and the number of matching records
- The outer relation is scanned and records of S retrieved by using the index for each record of R
- Search index for matching RIDs - access leaf or bucket
- If no matching records move on to next record of $R \quad$ System catalog
- Retrieve matching records records data to estimate cost
- One disk read if a single S record matches one R record
- If multiple S records match to a single R the cost is dependent on the number of records and whether the index is primary or secondary

Sort-Merge Join Introduction

- Assume that both tables to be joined are sorted on the join attribute
- The tables may be joined with one pass
- Like merging two sorted runs cost $=B(R)+B(S)$
- Read in pages of R and S - join on X
- While x_{r} ! $=x_{s}$
- If $x_{r}<x_{s}$ move to the next R record else
- Move to the S next record
- If $x_{r}==x_{s}$
- Concatenate r and s, and
- Add to output buffer

> But R and S may not be sorted on the join attribute

Sort-Merge Join

- The sort-merge join* combines the join operation with the merge step of external merge sort *aka sort-join
- The first pass makes sorted runs of R and S of size M
- R and S are processed independently
- Merge runs of R and S as external merge sort until the combined number of sorted runs is less than M
- If M is large or R and S are small this step may not be necessary
- The final merge phase of the external sort algorithm is combined with the join, by comparing the runs of R and S
- Records that do not meet the join condition are discarded
- Records that meet the condition are concatenated and output

Memory Requirements

- Given sufficient main memory sort-merge join can be performed in two passes
- For a cost of $3(B(R)+B(S))$
cost to write out final result not included
- Main memory must be large enough to allow an input buffer for each sorted run of both R and S
- Main memory must be greater than $\sqrt{ }(B(R)+B(S))$ to perform the join in two passes
- Initial pass produces $B(R) / M+B(S) / M$ sorted runs of size M
- If M is greater than $\sqrt{ }(B(R)+B(S))$ then $(B(R) / M+B(S) / M)$ must be less than M

Memory Requirements Example

$$
M>\sqrt{ }(B(R)+B(S))
$$

main memory

$$
B(R)=49
$$

$$
B(S)=28
$$

$$
\begin{aligned}
& \text { input page for each } \\
& \text { sorted run }
\end{aligned}
$$

sorted runs of R and S after initial sort pass

$$
M<\sqrt{ }(B(R)+B(S))
$$

$$
M=8
$$

insufficient frames
for page for each run

Must perform another merge pass

Zig-Zag Join

- If both relations have a primary tree index on the join attribute a zig-zag join can be performed
- Scan the leaves of the two B+ trees in order from the left
- i.e. from the record with the smallest value for the join attribute
- When the search key value of one index is higher, scan the other index
- When both indexes contain the same search key values matching records are retrieved and concatenated
- Recall that the index is typically much smaller than the file Cost = blocks of leaves of both indexes + blocks of matching records

Hash Join - Partitioning

- The hash join algorithm has two phases $M=7$
- Partitioning, and
- Probing
- Partitioning

- Both relations are partitioned using the same hash function, h, on the join attribute
- Records in one partition of R can only match records in the matching partition of S
- One input buffer page and M - 1 output buffer pages are used to make M-1 partitions for each relation
- If the largest partitions of both relations do not fit in main memory, the relations must be further partitioned

Hash Join - Probing

- Probing
- Read in one partition of R, where R is the smaller relation
- To reduce CPU costs, build an in memory hash table using hash function $h_{2}\left(h_{2} \neq h\right)$
- Read the corresponding partition of S into an input buffer one page at a time
- Join matching records using the hash table
- Repeat for each partition of R
- Cost
- If each partition of one relation fits in main

S after
partitioning

Memory Requirements

- Relations must be partitioned until the largest partition of the smallest relation (S) fits in main memory
- Ideally only one partitioning step is required
- Which requires that $M-2$ is $>\sqrt{ }(B(S)) \quad$ Assuming that partitions
- Buffers for S and for the output are needed

are the same size

- Partitioning produces $B(S)$ - 1 partitions
- Of average size M / $(B(S)-1)$
- If $M-2$ is $>\sqrt{ }(B(S))$ the cost of hash join is $3(B(R)+B(S))$
- If $M<\sqrt{ }(B(S))$ then $B(S) / M$ must be larger than M, and the partitions are larger than main memory
- Therefore the relations must be further partitioned

Hybrid Hash Join

- Hybrid hash join can be used if M is large
- Retain an entire partition of the smaller relation (S) during the partitioning phase
- Eliminating the need to write out the partition, and read it back in during the probing phase
- Matching R records are joined and written out to the result when R is partitioned
- Hence the records of both R and S belonging to that partition are only read once
- This approach can be generalized to retain more than one partition where possible

Generalized Hybrid Hash Join

- Partition S (the smaller relation) into k partitions
- Retain t partitions, $S_{11} \ldots S_{t}$ in main memory
- The remaining k-t partitions, $S_{t+1,} \ldots S_{k}$ are written to disk
- Partition R into k partitions
- The first t partitions are joined to S since those t partitions of S are still in main memory The cost improvement is incremental
- The remaining k - t partitions are written to disk
- Join the remaining $k-t$ partitions as normal
- Cost is $B(R)+B(S)+2 *((k-t) / k) *(B(R)+B(S))$
- $=(3-2 * t / k)(B(R)+B(S)) \approx(3-2 * M / B(R))(B(R)+B(S))$

Choosing Values for k and t

- There must be 1 main memory buffer for each partition $k=$ the number of partitions
- So $k \leq M \quad t=$ the number of partitions to be retained in main memory
- Hybrid hash join is only used where $M \gg B(S)$, such that $(B(S) / k)<M$
- The ratio t / k_{1}, should be as large as possible
- And $t / k * B(S)+k-t \leq M \quad t / k=$ fraction of S kept in main memory
- The retained partitions must fit in main memory with sufficient buffers for the other $(k-t)$ partitions $\quad t=1, k$ small
- One approach: retain one partition and make as few partitions as possible $t=1$ and k as small as possible

Hybrid Hash Join Example

- Statistics
- $\mathrm{B}(R)=100,000$
- $B(S)=1,000$
- $M=200$, note that $\sqrt{ }(B(S))=100$
- Choose values for k and t
- k is the number of partitions and t is the number to be retained in main memory $\quad k=6$ each partition is 167 blocks, 1 is retained leaving 33 blocks
- Select $\mathrm{t}=1$ for 1 input buffer and 5 output buffers for the other partitions
- k should be as small as possible while still allowing
" one partition to be retained in main memory
- one output page for each if the other ($k-t$) partitions
- one input page

Hybrid Hash Join Example

partition S - read in all of S and write out $(k-t) / k=5 / 6$ of S and retain one partition

partition R - read in all of R, write out $(k-t) / k=5 / 6$ of R and join partition 1 of R and S

use	S_{1}					r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	in	result	
frames			...										\ldots
\#	0	1	\ldots	165	166	167	168	169	170	171	172	173	

read in second partition of S and scan and join second partition of R

repeat for the remaining four partitions of R and S

Hybrid Hash Join Example - Cost

- Statistics
- $\mathrm{B}(\mathrm{R})=100,000$
- $B(S)=1,000$
- $k=6, t=1$
- Cost
- Read all of S - cost $=B(S)=1,000$
- Write out $5 / 6$ of S - cost $=B(S) * 5 / 6=833$
- Read all of R-cost $=\mathrm{B}(R)=100,000$
- Write out $5 / 6$ of R-cost $=\mathrm{B}(S) * 5 / 6=83,333$
- Read remaining partitions of R - cost = 833
- Scan and probe matching partitions of S - cost $=83,333$
- Total cost $=B(R)+B(S)+2 *(5 / 6) *(B(R)+B(S))=269,333$

Hybrid Hash Join and Block Nested Loop Join

- If the smaller relation fits in main memory the costs are identical
- The smaller relation is read once $B(R)+B(S)$
- The larger relation is scanned once to join the records
- Otherwise hybrid hash join is more efficient
- Block nested loop reads R once
- But S once for each clump of R
- Hybrid hash join reads one partition of R and S once
- Reads the other partitions twice and writes them once
- And the records of both R and S belonging to a particular partition are only read once, after the partitioning phase

Hash Join and Sort-Merge Join

Sort-join in 2 passes: $M>\sqrt{ }(B(R)+B(S))$
insufficient frames!

sorted runs of R and S after initial sort pass

Hash join in 2 passes: $M>\sqrt{ }(B$ (smaller $))$

But
sort-join not sensitive to data skew
sort-join
results
sorted on
join
attribute

OK!

Join Method Ordering

- Simple nested loop join (read S for each record)
- Retains the original order of R
- Index nested loop join
- Retains the original order of R
- Sort-Merge join
- Ordered by the join attribute
- Zig-zagjoin

But an awful algorithm ...

Order might make an upstream operation is more efficient

Such as a join with a third table on the same join attribute

- Ordered by the join attribute
- All other join methods
- No order

General Join Conditions

- The join process is more complex if the join condition is not simple equality on one attribute
- For equalities over several attributes
- Sort-merge and hash join must sort (or hash) over all of the attributes in the selection
- An index that matches one of the equalities may be used for the index nested loop join
- For inequalities (\leq, \geq, etc.)
- Hash indexes cannot be used for index nested loop joins
- Sort-merge and hash joins are not possible
- Other join algorithms are unaffected

Set Operations

SELECT fName, IName
FROM Patient
INTERSECT
SELECT fName, lName FROM Doctor

```
    \pi
```

Note that set operations, unlike other operations remove duplicates by default

- Intersection $R \cap S \quad \pi_{\text {fName, 1Name }}$ (Patient) $\bowtie \pi_{\text {fName, 1Name }}$ (Doctor)
- A join where the condition is equality on all attributes
- Cartesian product $R \times S$
- A special case of join where there is no join condition
- All records are joined to each other

More Set Operations

- Union using sorting
- Sort R and S using all fields
- Scan and merge the results while removing duplicates
- Union using hashing
- Partition R and S using a hash function h
- For each partition of smaller relation (S)
- Build an in-memory hash table (using h_{2})
- Scan the corresponding partition of R, and for each record probe the hash table if it is not in the table, add it
- Set difference
- Similar to union except that for $R-S$, if records are not in the hash table for S add it to the result The result is separate from the S hash table

Summary

Memory Requirements

One-Pass and Simple Algorithms

Operation	Algorithm	M Requirement	Disk I/O
σ, π	scan	1	B
δ, γ^{*}	scan	B	B
$\cup, \cap,-, \times$	scan	$\min (B(R), B(S))$	$B(R)+B(S)$
\bowtie	nested loop	$\min (B(R), B(S))$	$B(R)+B(S)$
\bowtie	nested loop	$M \geq 2$	$B(R)+B(R) * B(S) / M$

$$
\text { * } \delta=\text { duplicate removal, } \gamma=\text { grouping }
$$

cost is greater if M requirement is not met

Sort-Based Algorithms

Operation	M Requirement	Disk I/O	Notes
δ, γ	$\sqrt{ } \mathrm{B}$	$3 B$	
$\cup, \cap,-$	$\sqrt{ }(B(R)+B(S))$	$3(B(R)+B(S))$	
\bowtie	$\sqrt{ }(B(R)+B(S))$	$3(B(R)+B(S))$	sort-merge join

cost is greater if M requirement is not met

Hash-Based Algorithms

Operation	M Requirement	Disk I/O	Notes
δ, γ	$\sqrt{ }$	$3 B$	
$\cup, \cap,-$	$\sqrt{ } B(S)$	$3(B(R)+B(S))$	$B(S)$ is smaller
\bowtie	$\sqrt{ }(S)$	$3(B(R)+B(S))$	relation
\bowtie	$>\sqrt{ } B(S)$	$(3-2 * t / k)(B(R)+B(S))^{\text {note }}$	hybrid hash-join

Assume $B(S) \leq B(R)$, and $B(S) \geq M$
note - reduction dependent on relative sizes of M and R
cost is greater if M requirement is not met

Appendix

Selections with no Disjunctions

- Hash indexes can be used if there is an equality condition for every attribute in the search key
- e.g. a single hash index on \{city, street, number\}
- $\sigma_{\text {city }}$ "London"^street="Baker"^number=221 (Detective) can be used
" $\sigma_{\text {city="Los Angeles"^street="Cahuenga" }}($ Detective) cannot
- Tree indexes can be used if there is a selection on each of the first n attributes of the search key
- e.g. B+ index on \{city, street, number\}
- $\sigma_{\text {city="London"^street="Baker"^number=221 }}$ (Detective) can be used
- $\sigma_{\text {city }}=$ "Los Angeles"^street="Cahuenga" (Detective) can be used

Selections with no Disjunctions...

- If an index matches a subset of the conjuncts
- Use the index to return a result that contains some unwanted records
- Scan the result for matches to the other conjuncts
- $\sigma_{\text {city= }}$ London"^street="Baker"^number=221^fName="Sherlock"
(Detective)
- Use the address index and scan result for Sherlocks
- If more than one index matches a conjunct
- Either use the most selective index, then scan the result, discarding records that fail to match to the other criteria
- Or use all indexes and retrieve the rids
- Then take the intersection of the rids and retrieve those records

Selections with no Disjunctions...

- Consider the relation and selection shown below
- Detective = \{id, fName, IName, age, city, street, number, author $\}$
- $\sigma_{\text {city="New }}$ York"^author="Spillane"^IName="Hammer"(Detective)
- With indexes
- Secondary hash index, \{city, street, number\} cannot be used
- Secondary B+ tree index, \{IName, fName\} can be used
- Secondary hash index, \{author\} can be used
- There are two strategies:
- Use the most selective of the two matching indexes, and search the results for the remaining criteria
- Use both indexes, take the intersection of the rid

What if the B+ tree index is primary?

Selections with Disjunctions

- Consider the selections shown below
" $\sigma_{(\text {author="King" }} \vee$ age>35)^(1Name="Tam" \vee id=11) $(D e t e c t i v e) ~$
" $\sigma_{\text {(author="King") }}$ ^(1Name="Tam" \vee id=11) $($ Detective)
- Indexes on the relation
- Secondary B+ tree index, \{IName, fName\}
- Secondary hash index, \{author\}
- Compare the two selections
- In the first selection each conjunct contains a disjunction without an index (age, id) so a file scan is required
- In the second selection the index on author can be used, and records that don't meet the other criteria removed

Hybrid Hash Join and Block Nested Loop Join

- If the smaller relation fits in main memory the costs are identical
- The smaller relation is read once $B(R)+B(S)$
- The larger relation is scanned once to join the records
- Otherwise hybrid hash join is more efficient $B(R)+5 * B(S)=6 n$
- Block nested loop reads R once
- But S once for each clump of R

$$
\begin{aligned}
& (B(R)+B(S)) / 5+ \\
& (B(R)+B(S)) * 12 / 5 \\
& =2 n / 5+24 n / 5 \\
& =26 n / 5
\end{aligned}
$$

- Hybrid hash join reads one partition of
- Reads the other partitions twice and $=5.2 n$
- And the records of both R and S belonging to a particular partition are only read once, after the partitioning phase

