
Algorithms for SQL Query Operators



 Introduction
 Unary Operators
 External Sorting
 Projection
 Binary Operators
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select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from customer c, sales s, product p
where c.city = ‘Vancouver’ and p.company = ‘lego’ and 
s.year = 2019 and s.cid = c.cid and s.pid = p.pid

select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from (select cid, cname, email from company where city = ‘Vancouver’) as c
natural inner join 
(select cid, pid from sales where year = 2019) as s
natural inner join
(select pid, pname, price from products where company = ‘lego’) as p

select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from (select c1.cid, s1.pid

from customer c1, sales s1
where c1.city = ‘Vancouver’ and s1.year = 2019
intersect
select s2.cid, p1.pid
from product p1, sales s2
where p1.company = ‘lego’ and s2.year = 2019) as cp

natural inner join customer
natural inner join product

SQL is procedural

Operations are specified

There are often equivalent queries

That are more or less efficient

Query optimization entails finding 
the best* query

*Actually a good enough query



generate 
physical 

plans

convert to 
relational 
algebra

generate 
equivalent 

logical plans
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select … from … where

 ( (...))

construct 
parse tree

logical plan 2

logical plan 1

logical plan n

logical plans 
are relational 

algebra queries

R     S     …

x

 …

 …

physical plan 2

physical plan 1

physical plan n

an algorithm is 
selected for each 

operator in a 
logical plan

What are these algorithms?

estimate 
cost

which is 
best?
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select c.cid, c.cname, c.email, p.pid, p.pname, p.price
from (select cid, cname, email from company where city = ‘Vancouver’) as c
natural inner join 
(select cid, pid from sales where year = 2019) as s
natural inner join
(select pid, pname, price from products where company = ‘lego’) as p

cid,cname,email,pid,pname,price(cid,cname,email(city = ‘Vancouver’ (Customer))

⋈  cid,pid(year = 2019(Sales))

⋈  pid,pname,price(company = ‘lego’ (Product)))

Order of operations?

Size of input into next operation – intermediate relations?

Are results maintained in main memory?

What is the cost metric?

1 2 3

 A physical plan is made up 
of a sequence of steps
▪ Each step corresponds to a 

relational algebra operation

▪ Input is one or more relations

▪ Output from each operation 
is a relation

 Some operations require 
low level processes
▪ Scanning a table

▪ Using an index to access a 
record

… maybe …



1.1
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DB – on disk relationscontains

main memory 
frames

M frames available

B(R) – number of blocks of R

T(R) – number of records of R

V(R,a) – number of distinct values for 
attribute a in R

Metadata – in system catalog

Cost metric – number of blocks 
read or written from disk

Cost of disk 
I/O dominates

For simplicity, assume data is 
accessed one block at a time

why?

bf(R) – records per block of R
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cid,cname,email,pid,pname,price(cid,cname,email(city = ‘Vancouver’ (Customer))

⋈  cid,pid(year = 2019(Sales))

⋈  pid,pname,price(company = ‘lego’ (Product)))

Assume performed first

B(Customer) = 100,000 

T(Customer) = 1,000,000 

V(Customer, city) = 100

 This section covers algorithms for query operations

▪ There is often more than one for an operation

 Operations are considered in isolation

▪ Assume that data is read from disk

▪ In practice this is not always the case

▪ And that the result is retained in memory – not written out

Interaction of operations discussed later

Cost?



1.2



 A unary operator is an operation with a single 
operand

▪ For SQL operators the operand is a table
▪ Either a base table or the result of a previous query operation

 Unary operations

▪ Selection

▪ Projection
▪ Which may include duplicate removal

▪ Sorting

▪ Aggregations
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id name salary …

001 kate 82000

154 bob 77000

268 sue 63000

786 brie 120000

id name salary …

001 kate 82000

154 bob 77000

268 sue 63000

786 brie 120000

id name salary …

001 kate 82000

154 bob 77000

268 sue 63000

786 brie 120000

id name salary …

154 bob 77000

786 brie 120000

001 kate 82000

268 sue 63000

salary > 100000(Customer)

name,salary(Customer)

AVG(salary) 85500



 A simple selection has a single condition

▪ Complex selections are considered later

 Selections are satisfied by retrieving the matching 
records via an access path

▪ Scanning the file and testing each record to determine if it 
matches the selection

▪ Or using binary search if the file is sorted and has no index

▪ Using an index on the attribute in the condition

SELECT *

FROM Customer

WHERE city = ‘Vancouver’

city = ‘Vancouver’(Customer)

11John Edgar

don’t do this …

which is unusual …



 No index on the selection attribute

▪ Linear search by scanning file, cost is B reads

▪ If the selection attribute is a candidate key the scan can be 
terminated once a match has been found (cost is B/2)

▪ If the file is sorted use binary search to find record(s)

▪ log2(B) + pages of matching records - 1

 Index on the selection attribute

▪ The cost is dependent on

▪ The type of index – B+ tree, hash index, …

▪ The height of the index

▪ The number of records that match the selection

▪ Whether the index is primary or secondary
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But it is unusual to have a sorted 
file with no primary index

Compare selections on
SIN
First name
City
Gender



 The cost of satisfying a selection with an index 
is composed of

▪ Number of disk reads to use the index

▪ i.e. to reach the leaf / bucket that contains the data entry

▪ The number of leaves / size of the bucket

▪ Number of blocks of the file with records that
match the selection

▪ Generally larger if the index is secondary

 Assume that indices are

▪ Hash index – extensible or linear

▪ B+ tree index

13John Edgar

index

file

…(R)



 B+ Tree

▪ To find matching RIDs 

search tree

▪ RIDs reside in leaf nodes

▪ Cost: 1 disk read per level

 Additional leaf pages 

may have to be read

▪ If index is dense or 

selection is inequality

▪ i.e. entries are on multiple 

leaves

 Extensible hash index

▪ Read directory

▪ Probably 1 or 2 blocks

▪ Read bucket

▪ 1 block

 Linear hash index

▪ Read bucket

▪ Bucket may have overflow 
blocks

 Hash indexes only used 
for equality selections

John Edgar 14



 Primary index

▪ File is sorted by search key

▪ Matching records are stored 

in consecutive blocks

▪ Blocks read is number of 

records  records per block

▪ 1 + (records – 1)  bf(R)

▪ Assumes worst case

 Secondary index

▪ Matching records are not 
stored consecutively

▪ Assume one disk read for 
each matching record

▪ As records are scattered 
across the file

▪ For large selections could 
be worse than a file scan

John Edgar 15
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Access Method
Candidate Key 

Selection
Non Candidate Key 

Selection
Notes

Linear search B/2 B

Binary search log2(B) log2(B) + x
Must be sorted on selection attribute
x = blocks of matching records

Primary B+ tree index tree height + 1 tree height + x x = blocks of matching records

Secondary B+ tree index tree height + 1 tree height + w + y
w = leaf nodes of data entries - 1
y = number of matching records

Primary hash index index height + 1 index height + w + x
w = blocks in bucket - 1
x = blocks of matching records

Secondary hash index index height + 1 index height + w + y
w = blocks in bucket - 1
y = number of matching records

Notes: tree height usually 3 to 5; hash index "height" usually 1 or 2; root node of indexes may be 
resident in main memory which reduces cost by 1; value for w is usually 1 (particularly for a hash 
index); difference between x and y can be large; details on how to compute these costs follow



 A complex selection is made of at least two terms 
connected by and () and or ()

▪ The terms can reference different or the same attributes

▪ Conjunctions are more selective

▪ Disjunctions are less selective

 Complex selections are satisfied in much the same 
way as simple selections

▪ If no index on any of the selection attributes scan the file

▪ Use indices on selection attributes where possible
▪ Use of indices is governed by the type of selection and index

17John Edgar

and clauses

or clauses



 If only one index is available use the index and apply 
other selections in main memory

▪ Either there is an index on only one of the attributes

▪ Or an index with a compound key that references multiple 
selection attributes

▪ Note the restrictions on the use of hash indices

 If multiple indexes are available

▪ Either use the most selective

▪ Or collect RIDs from leaves or buckets of indexes and take 
the intersection

John Edgar 18

attributes in selection must form prefix of the key

contrast

firstname = “Emma”  lastname = “Lee”(Patient)

city = “Vancouver”  msp = 555123456(Patient)



 Selections with disjunctions are stated in conjunctive 

normal form (CNF)

▪ A collection of conjuncts

▪ Each conjunct consists either of a single term, or multiple terms 

joined by or

▪ e.g. (A  B) C  D  (A C  D)  (B C  D)

▪ This allows each conjunct to be considered independently

 A conjunct can only be satisfied by indices if there is an 
index on all attributes of all of its disjunctive terms

▪ If all the conjuncts contain at least one disjunction with no 
matching index a file scan is necessary 

19John Edgar

By the query optimizer



 Consider a selection of this form

▪ (a  b  c)  (d  e  f)(R)

▪ Where each of a to f is an equality selection on an attribute

 If each of the terms in either of the conjuncts has a 
matching index

▪ Use the indexes to find the rids

▪ Take the union of the rids and retrieve those records

▪ For example, if there are indexes just on a, b, c, and e

▪ Use the a, b, and c indexes and take the union of the rids

▪ Retrieve the resulting records and apply the other criteria

20John Edgar

if there was no index on b a 
file scan would be necessary



 Only selected columns are retained

▪ Reducing the size of the result relation

▪ Projections can always be pipelined from other operations
▪ Unless the SELECT clause includes DISTINCT

 A SELECT DISTINCT clause eliminates duplicates

▪ Which requires sorting the relation
▪ Or building a hash table on the relation

SELECT fName, lName

FROM Customer fName,lName(Customer)

21John Edgar

Processed without
writing out the
previous result

But what if the relation does 
not fit in main memory?



A Digression (2-1)



 It is sometimes necessary or useful to sort data 
as it is scanned (read)
▪ To satisfy a query with an ORDER BY clause

▪ Or because an algorithm requires sorted input
▪ Such as projection or some join algorithms

 There are a number of ways in which a sort scan 
can be performed
▪ Main memory sorting

▪ B+ tree index

▪ Multi-way mergesort
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But only if R fits in main memory: B(R) < M

The cost to scan a file is B(R)

If B(R) < M the cost to sort a file is B(R)



 Sorting a collection of records that fit within main 
memory can be performed efficiently

▪ There are a number of sorting algorithms that can be 
performed in n(log2n) time
▪ That is, with  n(log2n) comparisons, e.g., Mergesort, Quicksort, 

 Many DB tables are too large to fit into main 
memory at one time

▪ So cannot simply be read into main memory and sorted

▪ The focus in external sorting is to reduce the number of 
disk I/Os
▪ As it is with optimization in general

24John Edgar



 Consider the Merge sort algorithm

▪ Input sub-arrays are repeatedly halved 

▪ Until they contain only one element

 Sub-arrays are then merged into sorted sub-arrays by 
repeated merge operations

▪ merging two sorted sub-arrays can be performed in O(n)

mergesort(arr, start, end)
if(start < end) //at least two elements

mid = start + end / 2
mergesort(arr, start, mid)
mergesort(arr, mid+1, end)
merge(arr, start, mid, mid+1, end)

25John Edgar

O(n log2n)



 Convert main memory merge sort to work on disk data
 Initial step - read 2 pages of data from file

▪ Sort them and write them to disk

▪ Results in B/2 sorted "runs" of size 2

 Merge the first two sorted runs of size 2
▪ Read the first page of the first two runs into input pages

▪ Merge to a single output page, and write it out when full

▪ When all records in an input page have been merged read in the 
second page of that run

▪ Repeat for each pair of runs of size 2

▪ There are now B/4 sorted runs of size 4

 Repeatedly merge runs until the file is sorted

26John Edgar

Note: this does not make much sense, 
but is included for illustration



6 10 14

11 15 23

 After the first sort pass 
the file consists of B/2 
sorted runs each of two 
pages

 Read in the first page of 
each of the first two 
sorted runs

 Leaving a third page free 
as an output buffer

main 
memory

sorted runs 
of size 2

11 15 23 39 5331 64 87 6 10 14 3 25 2841 55 76

27John Edgar

input buffers

output buffer

disk pages contain 
three records



66 106 10 11

6 10 14

11 15 23

 Records from the input 
pages are merged into 
the output buffer

 Once the output buffer 
is full it's contents are 
written out to disk, to 
form the first page of 
the first sorted run of 
length 4

6 10 11

28John Edgar

input buffers

output buffer

11 15 23 39 5331 64 87 6 10 14 3 25 2841 55 76

disk

main 
memory



6 10 111414 15

6 10 1441 55 76

 At this point all of the 
records from one of the 
input pages have been 
processed

 The next page of that 
sorted run is read into 
the input page

 And the process 
continues

uses 
only 

three 
main 

memory 
frames!

29John Edgar

11 15 23
input buffers

output buffer

11 15 23 39 5331 64 87 6 10 14 3 25 2841 55 76

disk

main 
memory

6 10 11



 Assume that B = 2k

▪ After the first pass there are 2k-1 sorted runs

▪ Each is two pages in size

▪ After the second pass there are 2k-2 sorted runs, of length 4

▪ After the kth pass there is one sorted run of length B

 The number of passes is therefore log2 B 

 In each pass all the pages of the file are read and written 
for a total cost of log2 B  * 2B
▪ Note that only 3 frames of main memory are required!

▪ Also note that main memory costs are ignored

 The algorithm can be improved in two ways

30John Edgar

B pages read and B pages written



 In the first stage of the naive process pairs of pages 
are read into main memory, sorted and written out

▪ Resulting in B/2 runs of size 2

 To make effective use of main memory, read M
pages, and sort them

▪ After the first pass there will be B/M sorted runs, each of 
length M

▪ This reduces the number of 
subsequent merge passes

31John Edgar

file

memory

sort

M main memory pages available



 In the merge passes perform an M-1 way merge

▪ M-1 input pages, one for each of M-1 sorted runs and

▪ 1 page for an output buffer

 The first items in each of the M-1 input partitions 
are compared to determine the smallest

 Each merge pass merges M-1 runs

▪ After the first pass the runs are size (M-1)*M

▪ This results in less merge passes, and less disk I/O

32John Edgar

Runs were size M
after first pass

…

file

memory M-1 way merge



 The initial pass produces B/M sorted runs of size M
 Each merge pass reduces the number of runs by a 

factor of M-1

▪ The number of merge passes is  logM-1B/M 

 Each pass requires that the entire file is read and 
then written

▪ Total cost is therefore 2B (logM-1B/M + 1)

 M is typically relatively large this so this reduction 
over two-way merge is considerable

33John Edgar

first pass



M log2B logb-1B/M+1

3 20 20

5 20 10

200 20 3

2,000 20 2
Even a large file can usually be sorted in two passes
(a cost of 4B I/Os to sort and write out) assuming a
reasonable size for M

B = 1,000,000
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 In the first pass of external mergesort B/M 
sorted runs of size M are produced

▪ Larger initial run size means less merge steps

 Replacement sort increases initial run size
▪ To 2 * M on average

 The algorithm uses buffers
▪ M-2 pages to sort the file – the current set

▪ One page for input

▪ One page for output

 First the current set is filled  
▪ … then sorted

input buffer

main 
memory

35John Edgar

output buffer

current set

disk10 43 23 1 64 87 35 50 19 41 5 86 12 24 94 41 26 13

10 43 23

1 64 87

35 50 19

41 5 86

1 5 10

19 23 35

41 43 50

64 86 87



1 5 10

19 23 35

41 43 50

64 86 87

 Once the current set is sorted the next page 

of the file is read into the input buffer

 The smallest record from the current set, 

and input buffer,  is put in the output buffer

 The first element of the current set is now 

free and is replaced with the first record 

from the input buffer

 This process is repeated until the output 

buffer is full and all the values in the input 

buffer are in the current set

input buffer

main 
memory

36John Edgar

output buffer

current set

disk10 43 23 1 64 87 35 50 19 41 5 86 12 24 94 41 26 13

12 24 94

12 5 10

19 23 35

41 43 50

64 86 87

1

12 24 94

19 23 35

41 43 50

64 86 87

1 5 10



1 5 10

 When the output buffer is full
▪ The next page of the file is read into the input 

buffer

▪ And the output buffer is written to disk as the first 
page of the first sorted run

▪ As the process continues the current set is 
periodically re-sorted

 When a value is read that is less than the 
values in the output buffer the current set 
must be written out
▪ The process starts again to generate the next run

input buffer

main 
memory
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output buffer

current set

disk10 43 23 1 64 87 35 50 19 41 5 86 12 24 94 41 26 13

12 24 94

12 24 94

19 23 35

41 43 50

64 86 87

41 26 13

1 5 10



 In practice it may be more efficient to make the 
input and output buffers larger than one page

▪ This reduces the number of runs that can be merged at 
one time, so may increase the number of passes required

▪ But, it allows a sequence of pages to be read or written to 
the buffers, decreasing the actual access time per page

 We have also ignored CPU costs

▪ If double buffering is used, the CPU can process one part 
of a run while the next is being loaded into main memory
▪ Double buffering also reduces the amount of main memory 

available for the sort
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 Primary B+ tree index

▪ The index can be used to find the first page, but

▪ Note that the file is already sorted!

 Secondary B+ tree index

▪ Leaves point to data records that are not in sort order

▪ In the worst case, each data entry could point to a different page from 
its adjacent entries

▪ Retrieving the records in order requires reading all of the index 
leaf pages, plus one disk read for each record!

▪ In practice external sort is likely to be much more efficient than 
using a secondary index

39John Edgar

Secondary indices are not useful 
for retrieving large selections



3.1



 Naively, projection and 
duplicate removal entails

▪ Scan the table, remove unwanted attributes, and write it back

▪ cost  2B disk I/Os

▪ Sort the result, using all of its attributes as a compound sort key

▪ cost  4B, possibly more if the file is very large

▪ Scan the result, removing the adjacent duplicates as they are 
encountered; cost  B

▪ The cost to write out the result of this last stage is not included; it may 
be the last operation or may be pipelined into another operations

 It appears that the total cost is 7B disk I/Os, but this process 
can be much improved by combining multiple steps

41John Edgar

SELECT DISTINCT fname, lname
FROM Customer

The cost to write the result is less than B

Again, less than 4B

And again, the relation size is now less than B



 The initial scan is performed as follows

▪ Read M pages and remove unwanted attributes

▪ Sort the records, and remove any duplicates

▪ Write the sorted run to disk

▪ Repeat for the rest of the file, for a total cost of 2B
▪ Actually less than 2B since the result will be smaller than B

 Perform merge passes as required on the output from 
the first stage

▪ Remove any duplicates as they are encountered

▪ If only one merge pass is required the cost is ≈ 1B

 For a total cost of ≈ 3B

42John Edgar

The final result size 
can be estimated

from attribute size

and other statistics

Unless more merge passes are required



 Duplicates can also be identified by using hashing
 Duplicate removal by hashing has two stages

▪ Partitioning and probing

 In the partitioning stage

▪ Partition into M-1 partitions using a hash function, h

▪ With an output buffer for each partition, and one input buffer

▪ The file is read into main memory one page at a time, with each 
record being hashed to the appropriate buffer

▪ Output buffers are written out when full

 Partitions contain records with different attribute values

▪ Duplicates are eliminated in the next stage

43John Edgar

table result

main memory

in output buffers



 The duplicate elimination stage uses a second hash 
function h2 (h2  h) to reduce main memory costs
▪ An in-memory hash table is built using h2

▪ If two records hash to the same location they are checked to see 
if they are duplicates

▪ Duplicates can, instead, be removed using in-memory sorting

 If each partition produced in the partitioning stage can fit in 
main memory the cost is

▪ Partitioning stage: 2B

▪ Duplicate elimination stage: B, for a total cost of 3B

 This is the same cost as projection using sorting
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Approximate cost: actual cost is less since 
the result is smaller than the original file



 Sort and hash projection have the same cost (3B)
 If M > (B) sorting and sort projection 

can be performed in two passes

▪ The first pass produces B/M sorted runs

▪ If there are less than M-1 of them only one merge pass is 
required

 Hash projection partitions are different sizes

▪ If just one partition is greater than M-1, further 
partitioning is required
▪ Regardless of the overall size of the file

45John Edgar

table resultM

table

result

M



 Aggregations without groups are simple to compute

▪ Scan the file and calculate the aggregate amount

▪ Requires one input buffer and a variable for the result

▪ Aggregations can usually be pipelined 
from a previous operation

 Aggregations with groups require more memory

▪ To keep track of the grouped data

▪ They can be calculated by sorting 
or hashing on the group attribute(s)

▪ Or by using an index with all the required attributes
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SELECT MIN(gpa)
FROM Student

SELECT AVG(income)
FROM Doctor
GROUP BY specialty



 The table is sorted on the group attribute(s)

 The results of the sort are scanned and the 

aggregate operation computed

▪ These two processes can be combined in a similar way to 

the sort based projection algorithm

 The cost is driven by the sort cost

▪ 3B(R) if the table can be sorted in one merge pass

▪ Final result is typically much smaller than the sorted table
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 In the hash based approach an in-memory hash table is 
build on the grouping attribute

▪ Hash table entries consist of

▪ grouping-value, running-information

 The table is scanned and for each record

▪ Probe the hash table to find the entry for the group that the 
record belongs to, and

▪ Update the running information for that group

 Once the table has been scanned the grouped results 
are computed using the hash table entries

▪ If the hash table fits in main memory the cost is B(R)
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e.g. count and sum for AVG



 It may be possible to satisfy an aggregate query 
using just the data entries of an index

▪ The search key must include all of the attributes required 
for the query
▪ The data entries may be sorted or hashed, and

▪ No access to the records is required

▪ If the GROUP BY clause is a prefix of a tree index, the data 
entries can be retrieved in the grouping order
▪ The actual records may also be retrieved in this order

 This is an example of an index-only plan
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This may seem unlikely but an index may be 
created for this use



3.2 / 4.1



 A join is defined as a Cartesian product followed by a 
selection

▪ Where the selection is the join condition

▪ A natural join’s condition is equality on all attributes in common

 Cartesian products typically result in much larger tables 
than joins

▪ It is important to be able to efficiently implement joins

SELECT *

FROM Customer NATURAL INNER JOIN Account

C.sin = A.sin(Customer  Account)

Customer ⋈ Account
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R

S
R x S

 T(R) = 10,000 and T(S) = 4,000
▪ Assume S has a foreign key that references R

▪ So records in S relates to at most one record in R

 The sizes of the join and the Cartesian product are
▪ Cartesian product – 40,000,000 records

▪ Natural join – 4,000 (if every s in S relates to an r in R)

R ⋈ S

How do we find joined
records without searching
the entire space?

Algorithms

Nested loop joins
Sort-merge join

Hash join



…

 There are three nested loop join algorithms that compare 
each record in one relation to each record in the other

▪ They differ in how often the inner relation is read

 Tuple nested loop join

▪ Read one page of R at a time

▪ For each record in R

▪ Scan S and compare to all S records

▪ Result has the same ordering as R

 Improved nested loop join

▪ As tuple nested loop join but scan and compare S for records of 
R one page at a time
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for each record r  R
for each record s  S
if ri = sj then 
add r,s to result

R⋈R.i=S.j S

Cost = B(R) + (T(R) * B(S))

Cost = B(R) + (B(R) * B(S))

memory use

R S out



…

 The simple nested loop join algorithms do not make 
effective use of main memory

▪ Both require only two input buffers and one output buffer

 The algorithm can be improved by making the input buffer 
for R as large as possible

▪ Use M – 2 pages as an input buffer for the outer relation

▪ 1 page as an input buffer for the inner relation, and

▪ 1 page as an output buffer

▪ If the smaller relation fits in M – 2 pages the cost is B(R) + B(S)

▪ CPU costs are reduced by building an in-memory hash table 
on R, using the join attribute for the hash function
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 What if the smaller relation is larger than M-2?

▪ Break R, the outer relation, into blocks of M – 2 pages
▪ I refer (somewhat flippantly) to these blocks as clumps

▪ Scan S once for each clump of R
▪ Insert concatenated records r, s that match 

the join condition into the output buffer

▪ S is read B(R)/(M-2) times 

▪ The total cost is B(R) + (B(R)/(M-2) * B(S))

 Disk seek time can be reduced by increasing 
the size of the input buffer for S

▪ Which may increase the number of times that S is scanned
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…R S out

memory

R 
on 

disk
S  

on 
disk

scan S
4 times

M-2 is the clump size



 Indexes can be used to compute a join where one 
relation has an index on the join attribute

▪ The indexed relation is made the inner relation (call it S)

▪ Scan the outer relation

▪ While retrieving matching records of S using the index

 The inner relation is never scanned

▪ Only records that satisfy the join condition are retrieved

▪ Unlike the other nested loop joins this algorithm does not compare 
every record in R to every record in S

 Cost depends on the size of R and the type of index

▪ B(R) + (T(R) * index cost) 
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B(R) reads

index cost?



 The cost of index nested loop join is dependent on the 

type of index and the number of matching records

 The outer relation is scanned and records of S retrieved 

by using the index for each record of R

▪ Search index for matching RIDs – access leaf or bucket

▪ If no matching records move on to next record of R

▪ Retrieve matching records

▪ One disk read if a single S record matches one R record

▪ If multiple S records match to a single R the cost is dependent on the 

number of records and whether the index is primary or secondary
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System catalog 
records data to 
estimate cost



…

id …

11

17

18

23

34

41

44

47

49

53

61

…

id …

11

16

20

23

32

40

41

42

46

49

52

…
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…

R S

out
 Assume that both tables to be joined are sorted 

on the join attribute

▪ The tables may be joined with one pass

▪ Like merging two sorted runs

 Read in pages of R and S – join on x
 While xr != xs

▪ If xr < xs move to the next R record else

▪ Move to the S next record

 If xr == xs

▪ Concatenate r and s, and

▪ Add to output buffer

 Repeat until all records have been read

cost = B(R) + B(S)

But R and S may
not be sorted on
the join attribute

R S



 The sort-merge join* combines the join operation 
with the merge step of external merge sort

▪ The first pass makes sorted runs of R and S of size M
▪ R and S are processed independently

▪ Merge runs of R and S as external merge sort until the 
combined number of sorted runs is less than M
▪ If M is large or R and S are small this step may not be necessary

▪ The final merge phase of the external sort algorithm is 
combined with the join, by comparing the runs of R and S
▪ Records that do not meet the join condition are discarded

▪ Records that meet the condition are concatenated and output
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*aka sort-join



 Given sufficient main memory sort-merge join can 

be performed in two passes

▪ For a cost of 3(B(R) + B(S))

 Main memory must be large enough to allow an 

input buffer for each sorted run of both R and S

▪ Main memory must be greater than (B(R) + B(S)) to 

perform the join in two passes

▪ Initial pass produces B(R) / M + B(S) / M sorted runs of size M

▪ If M is greater than (B(R) + B(S) ) then (B(R) / M + B(S) / M ) must be 

less than M
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cost to write out final 
result not included
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B(R) = 49

B(S) = 28

M = 10 M = 8

M > (B(R) + B(S))

main memory

M < (B(R) + B(S))

sorted runs of R 
and S after initial 

sort pass

sorted runs of R and S 
after initial sort pass

out

input page for each 
sorted run

insufficient frames 
for page for each run

Must perform another 
merge pass



 If both relations have a primary tree index on the 

join attribute a zig-zag join can be performed

▪ Scan the leaves of the two B+ trees in order from the left

▪ i.e. from the record with the smallest value for the join attribute

▪ When the search key value of one index is higher, scan the 

other index

▪ When both indexes contain the same search key values 

matching records are retrieved and concatenated

▪ Recall that the index is typically much smaller than the file
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Cost = blocks of leaves of both indexes + blocks of matching records



 The hash join algorithm has two phases

▪ Partitioning, and

▪ Probing

 Partitioning

▪ Both relations are partitioned using the same hash function, h, 
on the join attribute

▪ Records in one partition of R can only match records in the matching 
partition of S

▪ One input buffer page and M- 1 output buffer pages are used to 
make M - 1 partitions for each relation

▪ If the largest partitions of both relations do not fit in main 
memory, the relations must be further partitioned
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in

M = 7

R (S not shown)



 Probing
▪ Read in one partition of R, where R is the 

smaller relation

▪ To reduce CPU costs, build an in memory 
hash table using hash function h2 (h2  h)

▪ Read the corresponding partition of S into 
an input buffer one page at a time 

▪ Join matching records using the hash table

▪ Repeat for each partition of R
 Cost

▪ If each partition of one relation fits in main 
memory the overall cost is 3(B(R) + B(S))
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M = 7

R after 
partitioning

S after 
partitioning

out



 Relations must be partitioned until the largest partition of 
the smallest relation (S) fits in main memory

 Ideally only one partitioning step is required 

▪ Which requires that M - 2 is  (B(S))

▪ Buffers for S and for the output are needed 

▪ Partitioning produces B(S) - 1 partitions

▪ Of average size M / (B(S) - 1)

▪ If M - 2 is  (B(S)) the cost of hash join is 3(B(R) + B(S))

 If M < (B(S)) then B(S) / M must be larger than M, and the 
partitions are larger than main memory

▪ Therefore the relations must be further partitioned
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Assuming that partitions 
are the same size



 Hybrid hash join can be used if M is large

▪ Retain an entire partition of the smaller relation (S) during 
the partitioning phase
▪ Eliminating the need to write out the partition, and read it back in 

during the probing phase

▪ Matching R records are joined and written out to the result 
when R is partitioned

▪ Hence the records of both R and S belonging to that 
partition are only read once

 This approach can be generalized to retain more 
than one partition where possible
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 Partition S (the smaller relation) into k partitions

▪ Retain t partitions, S1, … St in main memory

▪ The remaining k – t partitions , St+1, … Sk are written to disk

 Partition R into k partitions

▪ The first t partitions are joined to S since those t partitions 
of S are still in main memory

▪ The remaining k – t partitions are written to disk

 Join the remaining k – t partitions as normal
 Cost is B(R) + B(S) + 2 * ((k – t)/k) * (B(R) + B(S))

▪ = (3 – 2 * t / k)(B(R) + B(S))  (3 – 2 * M / B(R)) (B(R) + B(S))
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The cost improvement is incremental



 There must be 1 main memory buffer for each 
partition
▪ So k ≤ M

▪ Hybrid hash join is only used where M  B(S), such that 
(B(S) / k) < M

 The ratio t / k, , should be as large as possible
▪ And t / k * B(S) + k - t ≤ M

▪ The retained partitions must fit in main memory with 
sufficient buffers for the other (k – t) partitions

▪ One approach: retain one partition and make as few 
partitions as possible t = 1 and k as small as possible
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k = the number of partitions

t/k = fraction of S kept in main memory

t = the number of partitions to be retained in main memory

t = 1, k small



 Statistics

▪ B(R) = 100,000

▪ B(S) = 1,000

▪ M = 200, note that (B(S)) = 100

 Choose values for k and t

▪ k is the number of partitions and t is the number to be retained in main 
memory

▪ Select t = 1

▪ k should be as small as possible while still allowing

▪ one partition to be retained in main memory

▪ one output page for each if the other (k-t) partitions

▪ one input page
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k = 6 each partition is 167 blocks, 1 is retained leaving 33 blocks 
for 1 input buffer and 5 output buffers for the other partitions
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use partition 1 of S (s1) s2 s3 s4 s5 s6 in

frames … …

# 0 1 … 165 166 167 168 169 170 171 172

partition S – read in all of S and write out (k-t) / k = 5/6 of S and retain one partition

partition R – read in all of R, write out (k-t) / k = 5/6 of R and join partition 1 of R and S

use s1 r2 r3 r4 r5 r6 in result

frames … … …

# 0 1 … 165 166 167 168 169 170 171 172 173

use s2 in (r2) result

frames … …

# 0 1 … 165 166 167 168

read in second partition of S and scan and join second partition of R

repeat for the remaining four partitions of R and S



 Statistics

▪ B(R) = 100,000

▪ B(S) = 1,000

▪ k = 6, t = 1

 Cost

▪ Read all of S – cost = B(S) = 1,000

▪ Write out 5/6 of S – cost  = B(S) * 5/6 = 833

▪ Read all of R – cost = B(R) = 100,000

▪ Write out 5/6 of R – cost  = B(S) * 5/6 = 83,333

▪ Read remaining partitions of R – cost = 833

▪ Scan and probe matching partitions of S – cost = 83,333

▪ Total cost = B(R) + B(S) + 2 * (5/6) * (B(R) + B(S)) = 269,333
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 If the smaller relation fits in main memory the costs are 
identical

▪ The smaller relation is read once

▪ The larger relation is scanned once to join the records

 Otherwise hybrid hash join is more efficient

▪ Block nested loop reads R once 

▪ But S once for each clump of R

▪ Hybrid hash join reads one partition of R and S once

▪ Reads the other partitions twice and writes them once

▪ And the records of both R and S belonging to a particular 
partition are only read once, after the partitioning phase
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B(R) + B(S)
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B(S) = 80

sorted runs of R and S after initial 
sort pass

partitions of R and S

insufficient frames!

But

B(R) = 60 B(S) = 80

M = 10 M = 10

B(R) = 60

etc.

out

OK!

Sort-join in 2 passes: M > (B(R) + B(S)) Hash join in 2 passes: M > (B(smaller))

sort-join 
not 

sensitive 
to data 

skew

sort-join 
results 

sorted on 
join 

attribute



 Simple nested loop join (read S for each record)
▪ Retains the original order of R

 Index nested loop join

▪ Retains the original order of R

 Sort-Merge join
▪ Ordered by the join attribute

 Zig-zag join
▪ Ordered by the join attribute

 All other join methods
▪ No order
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But an awful algorithm …

Order might make an upstream 
operation is more efficient 

Such as a join with a third table 
on the same join attribute



 The join process is more complex if the join condition is 
not simple equality on one attribute

 For equalities over several attributes

▪ Sort-merge and hash join must sort (or hash) over all of the 
attributes in the selection

▪ An index that matches one of the equalities may be used for the 
index nested loop join

 For inequalities (, , etc.)
▪ Hash indexes cannot be used for index nested loop joins

▪ Sort-merge and hash joins are not possible

▪ Other join algorithms are unaffected
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 Intersection R  S

▪ A join where the condition is equality on all attributes

 Cartesian product R  S

▪ A special case of join where there is no join condition

▪ All records are joined to each other

SELECT fName, lName

FROM Patient

INTERSECT

SELECT fName, lName

FROM Doctor

fName,lName(Patient)  fName,lName(Doctor)
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Note that set operations, unlike other 
operations remove duplicates by default

fName,lName(Patient) ⋈ fName,lName(Doctor)



 Union using sorting

▪ Sort R and S using all fields

▪ Scan and merge the results while removing duplicates

 Union using hashing

▪ Partition R and S using a hash function h

▪ For each partition of smaller relation (S)

▪ Build an in-memory hash table (using h2) 

▪ Scan the corresponding partition of R, and for each record probe the hash table 

if it is not in the table, add it

 Set difference

▪ Similar to union except that for R – S, if records are not in the hash 

table for S add it to the result
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The result is separate from the S hash table



Memory Requirements



Operation Algorithm M Requirement Disk I/O

,  scan 1 B

, * scan B B

, , −,  scan min(B(R), B(S)) B(R) + B(S)

⋈ nested loop min(B(R), B(S)) B(R) + B(S)

⋈ nested loop M  2 B(R) + B(R) * B(S)/M

* = duplicate removal,  =  grouping
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cost is greater  if M requirement is not met



Operation M Requirement Disk I/O Notes

,  B 3B

, , − (B(R) + B(S)) 3(B(R) + B(S))

⋈ (B(R) + B(S)) 3(B(R) + B(S)) sort-merge join

80John Edgar

cost is greater  if M requirement is not met



Operation M Requirement Disk I/O Notes

,  B 3B

, , − B(S) 3(B(R) + B(S)) B(S) is smaller 
relation⋈ B(S) 3(B(R) + B(S))

⋈ > B(S) (3 – 2 * t / k)(B(R) + B(S))note hybrid  hash-join

Assume B(S)  B(R), and B(S)  M
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note – reduction dependent on
relative sizes of M and R

cost is greater  if M requirement is not met





 Hash indexes can be used if there is an equality 
condition for every attribute in the search key

▪ e.g. a single hash index on {city, street, number}
▪ city="London"street="Baker"number=221(Detective) can be used

▪ city="Los Angeles"street="Cahuenga"(Detective) cannot

 Tree indexes can be used if there is a selection on 
each of the first n attributes of the search key
▪ e.g. B+ index on {city, street, number}

▪ city="London"street="Baker"number=221(Detective) can be used

▪ city="Los Angeles"street="Cahuenga"(Detective) can be used
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 If an index matches a subset of the conjuncts 

▪ Use the index to return a result that contains some 
unwanted records 

▪ Scan the result for matches to the other conjuncts

▪ city="London"street="Baker"number=221fName="Sherlock" (Detective)

▪ Use the address index and scan result for Sherlocks

 If more than one index matches a conjunct

▪ Either use the most selective index, then scan the result, 
discarding records that fail to match to the other criteria

▪ Or use all indexes and retrieve the rids
▪ Then take the intersection of the rids and retrieve those records

84John Edgar



 Consider the relation and selection shown below

▪ Detective = {id, fName, lName, age, city, street, number, author}

▪ city="New York"author="Spillane"lName="Hammer"(Detective)

 With indexes

▪ Secondary hash index, {city, street, number}

▪ Secondary B+ tree index, {lName, fName}

▪ Secondary hash index, {author}

 There are two strategies:

▪ Use the most selective of the two matching indexes, and search 
the results for the remaining criteria

▪ Use both indexes, take the intersection of the rid

can be used

cannot be used

can be used

What if the B+ tree 
index is primary?

85John Edgar



 Consider the selections shown below

▪ (author="King"  age>35)(lName="Tam"  id=11)(Detective)

▪ (author="King")  (lName="Tam"  id=11)(Detective)

 Indexes on the relation

▪ Secondary B+ tree index, {lName, fName}

▪ Secondary hash index, {author}

 Compare the two selections

▪ In the first selection each conjunct contains a disjunction 
without an index (age, id) so a file scan is required

▪ In the second selection the index on author can be used, and 
records that don't meet the other criteria removed
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 If the smaller relation fits in main memory the costs are 
identical

▪ The smaller relation is read once

▪ The larger relation is scanned once to join the records

 Otherwise hybrid hash join is more efficient

▪ Block nested loop reads R once 

▪ But S once for each clump of R

▪ Hybrid hash join reads one partition of R and S once

▪ Reads the other partitions twice and writes them once

▪ And the records of both R and S belonging to a particular 
partition are only read once, after the partitioning phase
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B(R) + B(S)

B(R) + 5 * B(S) = 6n

(B(R) + B(S)) / 5 + 
(B(R) + B(S)) * 12 / 5
= 2n / 5 + 24n / 5
= 26n / 5
= 5.2n


