
CMPT 454

 Memory hierarchy
 Hard disks

 Architecture

 Processing requests

 Writing to disk

 Hard disk reliability and efficiency

 RAID

 Solid State Drives
 Buffer management
 Data storage

John Edgar 2

1.1

 A table consists of rows and columns

 Rows represent records

▪ Records must be unique

▪ One or more attributes
forms a primary key

▪ Records are also referred to as tuples

 Each column represents an attribute

▪ Columns must have unique names within the table

 A table is an instance of a schema

John Edgar 4

sid first last email …

123 bob smith bob@sfu.ca

456 kate larson kate@sfu.ca

789 ida chan ida@sfu.ca

 A schema is defined in the DB

 Created either by running a CREATE TABLE statement or
using the DBMS GUI

 Schemas are part of the DB metadata
▪ Stored in the system catalog

 A schema is associated with one or more constraints

 Primary key

 Foreign key(s)

 Other constraints

 Each column is associated with a domain – i.e. a type

John Edgar 5

 An application uses a conceptual view when
interacting with a DB

 In a relational DB uses the relational model

▪ Interacts with SQL

 The DBMS maps the conceptual view to the
physical view

 Data stored in main memory or secondary storage

 And is responsible for accessing data from storage
devices

John Edgar 6

 There are two major alternatives for the
interface between DBMS and application

 Embedded
 The application access the DB directly via API

function call
 Tiered client-server

 The application makes a connection with the
DBMS via ODBC, JDBC etc.

 This may entail connecting to a server that
connects to the DB server

John Edgar 7

 The DBMS is linked to the application at
compile time

 They share the same address space

 Embedded DBs are often used in mobile
systems

John Edgar 8

SQLite is a widely used DBMS

https://www.sqlite.org/index.html

 The application and DBMS reside in separate
machines

 And communicate through a network

 There are many different possible tiered
architectures

 With different numbers of tiers

 This type of architecture is common and used
with most enterprise DBMSs

John Edgar 9

1.2

 Ideally memory should be

 Unlimited capacity

 High bandwidth

 Instantaneous access

 Persistent

 Reliable (never fail)

 Free

 Unfortunately …

John Edgar 11

Of course this is not reality

Instead we have trade-offs
between these qualities

volatile

non
volatile

main memory

John Edgar 12

registers

L1 cache

L2 cache

L3 cache

persistent memory

tape

flash (SSD)
disk (HDD)

cost speed

1

1

3

15

access time (ns)

50

100

20,000

SRAM

DRAM

5,000,000

General interest: latency comparisons

10,000,000,000

a few blocks

distance (kms)

long commute to work

vancouver to capetown

6.5 round trips to the moon, tenth of the way to mars

33 round trips to the sun

Cost (and speed) change

Cost of all memory types has
decreased

For newer technologies such
as SSD cost per MB has
substantially decreased

The comparison ignores
bandwidth which generally
increases down the hierarchy

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

 Database data must be stored in
persistent storage

 But must be operated on in main
memory

 And ultimately in registers

 Transfer of data from memory to
storage is very time-consuming

 And should be managed carefully

 Through buffer management

John Edgar 13

storage

memory

cache

registers

slow

very slow

 There are two main types of secondary memory
 Hard disk drives (HDDs)

 The most widely used secondary memory device

 Cheap

 Relatively unreliable

 Much slower than primary memory

 Solid state drives (SSDs)

 Faster but more expensive than HDDs

 Use of SSDs in databases is increasing

John Edgar 14

 Offline storage for database archives

 Tertiary storage should have large capacity and
low cost

 Examples of tertiary storage devices include

 Optical drives – CDs and DVDs

 Magnetic tape

▪ A very old storage media that is still used

▪ Tape jukeboxes store catalogued banks of tapes

John Edgar 15

 Persistent memory is non-volatile RAM and is
also known as
 NVM – non-volatile memory

 NVRAM – non-volatile RAM

 SCM – storage class memory
 Characteristics

 Byte-addressable

 Persistent
 There are different types

 Varied speed, capacity and cost

John Edgar 16

 NVDIMM-N

 DRAM paired with flash with a battery

 Similar performance to DRAM

 Small capacity and relatively expensive

 NVDIMM-F

 Flash storage using a DRAM bus

 Slower than DRAM and closer to flash performance

 Large capacity and cheap

 Other technologies

 Intel 3D XPoint – Optane DC PM, released in 2019

 Large capacity, performance in between DRAM and flash

John Edgar 17

non-volatile dual in-line memory module

other technologies
are in development

 Main memory assumed to be much smaller than
persistent storage

 Transaction processing occurs in main memory

 DB resides in storage

▪ Data must be transferred between main memory and storage

 Performance is primarily determined by storage
access speed

 Traditionally stored on HDDs

 Transitioning to SSDs

John Edgar 18

 Reduced price of DRAM allows for large
enough main memory to store entire DB

 Or at least the working set

 Implications

 No IO during execution of transactions

 Changes must still be made persistent

▪ But can be performed in the background

 Violates many assumptions of classic DBMS

 Use of persistent memory also possible

John Edgar 19

2.1

 A traditional database requires both persistent
and working (transient) memory
 The data is stored in non-volatile secondary storage

to reduce the risk of data loss
▪ Hard Disk Drive (HDD) or Solid State Drive (SSD)

 Data is transferred from disk to main memory
▪ Where operations (read, update, write, …) are performed on

the data

 New technologies provide alternatives to HDDs
 However they are likely to be the primary storage

medium for many databases for some time

John Edgar 21

John Edgar 22

surface

platters each has 2 surfaces

disk head array

disk head

for 1st surface

moves in and out

platters rotate

 10,ooo rpm

 Areas on a disk are magnetized to store bit values

 Grouped into bytes

 The capacity of disks for personal computers ranges from

hundreds of gigabytes to a few terabytes

▪ Server and mainframe disks are often 10TB or more

 Disks are made magnetic material

 Referred to as platters

 Single or double sided

 Multiple platters may be grouped

together in a disk to increase capacity

John Edgar 23

track

platter
surfaces

cylinder

John Edgar 24

surfaces are made up of
concentric rings called
tracks

tracks are divided into
arcs called sectors which

… contain a contiguous
sequence of bytes

when the disk is formatted the block size is set to a small number of sectors, 4 to 16 kb

blocks are the units which are read from or written to

set of tracks with same
diameter on all surfaces

 Block sizes vary
 Typically ranges from 512 to 8,192 bytes

 Blocks are separated by fixed sized gaps
▪ Which contain control information

 Blocks can be addressed by cylinder number,
surface number and block number
 In many modern disk drives a single Logical Block

Address (LBA) identifies a block
▪ Which are numbered from 0 to block capacity – 1

 Blocks map to pages
 A higher level abstraction

John Edgar 25

 A sector is an arc of a track

 Tracks closer to the centre of the
disk have smaller arc lengths

 There are a number of
different sector organizations

 Sectors subtending a fixed angle

▪ Sectors on different tracks have
different recording densities

 Uniform recording density

▪ The same arc on different tracks
holds different numbers of sectors

 Combination of the two

John Edgar 26

 Query processor requests a
record

 Request handled by the
buffer manager

 Data from a disk is read or
written in units of a block

▪ Blocks typically contain multiple
records

 The desired block is read
from disk into main memory

John Edgar 27

blocks record

disk

main memory

read-modify-write cycle

no read-modify-write cycle

key

 Most writes require an initial
read of a disk block

 Even blind writes

 Consider inserting a new
record into a disk block

 Which contains existing records

 The block must be read first

 To preserve the existing data

 Referred to as the read-modify-
write cycle

John Edgar 28

disk

main memory

new record

existing records

disk

main memory

disk

main memory

existing data
overwritten

read write

write

 There is one disk head for each
surface

 Moved together as a unit called a
disk head array

▪ All disk heads are in identical positions
with respect to their surfaces

 To read or write a block a disk head
must be positioned over it

 Only one disk head can read or
write at a time

John Edgar 29

 To access a block on a disk
 The disk head pivots over the

desired track
▪ Seek time – average 4 to 10 ms

 Wait for leading edge of block to
reach the disk head
▪ Rotational delay – derived from rpm

 The desired block is read as it
passes underneath the disk head
▪ Transfer time – derived from rpm

 Drive controlled by a processor
 Called the disk controller

The disk spins
at a constant

speed

John Edgar 30

responsible for controlling the actuator, determining
when the disc has rotated to a sector, transferring data

 The seek time and rotational delay depend on

 Where the disk head is before the request

 Which track is being requested

 How far the disk has to rotate

 Average rotational delay = ½ * max rotational delay

 The transfer time depends on the request size

 The transfer time (in ms) for one block equals

▪ (60,000 ÷ disk rpm) ÷ blocks per track

 The transfer time (in ms) for an entire track equals

▪ (60,000 ÷ disk rpm)

▪ For a disk with 10,000 rpm = 6ms

60,000? 1,000(ms) * 60(s)

John Edgar 31

 Minimum seek time
 0 - the disk head is on the

desired track
 Maximum seek time

 Time to move from the
innermost to outermost track

 Average seek time
 1/3 maximum seek time

▪ Not ½ maximum seek time

 In practice the disk head does
not move at constant speed
 It must accelerate / decelerate

John Edgar 32

disk centre

disk edge

disk head

disk head

 Transferring data between main memory and register is
fast
 DRAM  50 ns

 Cache  5 ns
▪ Depending on which cache

 Register  1 ns
 HDD access is very slow in comparison

 Can be broken into components
▪ Seek time + rotational delay + transfer time

 Main memory vs. disk
 15 ms vs. 0.000,060 ms

▪ 250,000 times faster

John Edgar 33

7,200 rpm

4.16 ms average latency

15 ms – estimate of
reading one record

comparison from:
https://scoutapm.com/blog/understandi
ng-disk-i-o-when-should-you-be-
worried

vs.

https://scoutapm.com/blog/understanding-disk-i-o-when-should-you-be-worried

 Disk access is slow

 The largest components are seek time then rotational
delay

 Access two records in adjacent blocks on a track

 Seek the track, rotate to first block, and transfer two
blocks = 10 + 4 + 2*1 = 16ms

 Accessing two records on different tracks

 Seek the desired track, rotate to the block, and
transfer the block, then repeat = (10 + 4 + 1)*2 = 30ms

 Solution: store related data in close proximity

John Edgar 34

Assume average seek time is 10ms

and average rotational delay is 4ms

assume transfer time of 1ms

John Edgar 35

 Approximate order of proximity

 Same block

 Adjacent blocks on same track

 Same track

 Same track, different cylinder

 Adjacent cylinder

 ….

 In practice

 Fill tracks in same cylinder with
related data

▪ Usually from a single table

 Then fill tracks in adjacent cylinders

The disk head array does not have to be moved to
read data from the same track on different platters

cylinder

 The minimum unit of transfer of is a block

 Multiple contiguous blocks may be transferred as a
unit

▪ To a correspondingly sized main memory buffer

 This is much faster than reading blocks one at a time

▪ Since seek time and rotational delay are only incurred once

 Buffer management is important in reducing
access time and includes

 Prefetching

 Double buffering

John Edgar 36

… discussed later …

 Requests to read a block (or blocks) are processed in
some order based on the disk scheduling algorithm

 There are a variety of such algorithms

 First-come-first served (FIFO)

 Elevator and its variants
▪ SCAN, LOOK, C-SCAN, C-LOOK, …

 Shortest-seek

 Goals

 Reduce overall access time

 Avoid starvation

John Edgar 37

 A fair algorithm would take a first-come,
first-serve approach

 Insert requests in a queue and process them
in the order in which they are received

2,0001

4,0004

6,0002

10,0006

14,0003

16,0005

Cylinder Received Complete Moved Total

2,000 0 5 2,000 2,000

6,000 0 14 4,000 6,000

14,000 0 27 8,000 14,000

4,000 10 43 10,000 24,000

16,000 20 60 12,000 36,000

10,000 30 72 6,000 42,000

John Edgar 38

 The elevator algorithm generally performs
better than FIFO
 Requests are buffered and the disk head

moves in one direction, processing requests

 The arm then reverses direction

2,0001

4,0004

6,0002

10,0006

14,0003

16,0005

Cylinder Received Complete Moved Total

2,000 0 5 2,000 2,000

6,000 0 14 4,000 6,000

14,000 0 27 8,000 14,000

16,000 20 35 2,000 16,000

10,000 30 46 6,000 22,000

4,000 30 58 6,000 28,000

John Edgar 39

 Hard drives fail

 The failure probability

follows a bathtub curve

 High at the start

▪ Lemons

 High at the end

 Assume a lifespan of

around 3 to 5 years

 Back up your data

John Edgar 40

HDD after a head crash

 Intermittent failure

 Multiple attempts are required to read or write a sector

▪ Use checksums to check that incurred data has not been read

 Media decay

 A bit or a number of bits are permanently corrupted and it is
impossible to read a sector

 Write failure

 A sector cannot be written to or retrieved

▪ Often caused by a power failure during a write

 Disk crash

 The entire disk becomes unreadable

John Edgar 41

 Each sector contains additional bits whose values are

based on the data bits in the sector

 Simple single-bit checksum maintains an even parity

▪ Odd (data) bit sum: checksum bit = 1

▪ Even (data) bit sum: checksum bit = 0

 Using a single checksum bit allows errors of only one

bit to be detected reliably

 Several checksum bits can be maintained to reduce

the chance of failing to notice an error

 e.g. 8 checksum bits, one for each bit position in a byte

John Edgar 42

e.g. 7 data bits and 1 checksum bit

data: 0111011

data bit sum is odd

1: checksum bit

 Compared to main memory hard drives have
two major problems

 They are painfully slow

 They are sadly unreliable

 Both these issues are, to some extent,
addressed by using RAID

 Or by using SSDs

 Or an in-memory database

John Edgar 43

… there is a certain amount of
exaggeration going on here …

3.1

 Hard disks act as bottlenecks for processing

 DB data is stored on disks, and must be fetched
into main memory to be processed

 Disk access is considerably slower than main
memory processing

 Hard disks are also relatively unreliable

 Disks contain mechanical components that are
more prone to failure than electronic components

 One solution is to use multiple disks

John Edgar 45

 Single HDD

 Multiple
platters

 Disk heads
are always
over the
same
cylinder

 Multiple HDDs

 Each disk contains multiple platters

 Disks can be read in parallel, and

 Different disks can read from different

cylinders

▪ e.g. disk 1 can read data from cylinder 6,000,

while disk 2 reads data from cylinder 11,000

John Edgar 46

 A disk array gives the user the abstraction of a single
large disk

 When an I/O request is issued the physical disk blocks to
be retrieved have to be identified

 How the data is distributed over the disks in the array
affects access time
▪ And how many disks are involved in an I/O request

 Data is divided into partitions called striping units

 The striping unit is usually either a block or a bit

 Striping units are distributed over the disks using a round
robin algorithm

John Edgar 47

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 …

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 …

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 …

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 …

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …

Notional File – the data is divided into striping units of a given size

The striping units are distributed across a RAID system in a round robin fashion

The size of the striping unit has an impact on the behaviour of the system

disk 1

disk 2

disk 3

disk 4

John Edgar 48

…

John Edgar 49

 Assumptions

 Multiple records fit on a block
▪ Four in the example

 Records are composed of multiple bytes

 Bit striping

 Bit 1 of the first record on the first block
(b1r1) on D1, b2r1 on D2, b3r1 on D3, etc.

 All disks must be read to recreate a single
record

 Block striping

 Block 1 of the file stored on D1, block 2
on D2, block 3 on D3, etc.

 Each record is stored on just one disk

 Remaining disks are available for use

D1

records

block 1 block 2

D2

D3

D4

Bit Striping

D1

D2

D3

D4

Block Striping

one record on four disks

 Assume that a disk array consists of D disks

 Data is distributed across the disks using data striping

 How does it perform compared to a single disk?

 Consider four types of requests

 Random read – reading multiple, unrelated records

▪ i.e. records that are not stored close to each other

 Random write

 Sequential read – reading a number of records

▪ Such as an entire file or table

▪ Stored on more than D blocks in close proximity

 Sequential write

John Edgar 50

 Use all D disks to improve efficiency, and distribute data

using block striping

 Random reads and writes

 Up to D different records can be read from or written to at once

▪ Depending on which disks the records reside on

▪ Records might reside on different disks, or – if unlucky – all on the

same disk

 Sequential reads and writes

 Related data are distributed over all D disks so performance is D

times faster than a single disk

 Writes generally entail reading the data first

John Edgar 51

But what about reliability …

 The standard hard drive failures measure is MTBF, expressed in
hours

 Annualized Failure Rate (AFR) expresses the probability per year a
drive will fail

▪ AFR  8766 / MTBF

 Modern enterprise hard drives have MTBF values of around
1,000,000

 Consumer quality drives are around half these values

 Hard drive reliability has increased substantially over time

 MTBF values are usually published by manufacturers

 And should be assumed to give a flattering picture of a drive's
reliability

John Edgar 52

8766? average number of hours in a year

 Hard disks contain mechanical components and are less
reliable than other, purely electronic, components

 Increasing the number of hard disks decreases reliability,
reducing the mean-time-between-failures (MTBF)

▪ Let's say the MTBF of a hard disk is  500,000 hours, or 57 years

 In a disk array the overall MTBF decreases

 Because the number of disks is greater

 MTBF of a 100 disk array is 210 days: (500,000 ÷ 100) ÷ 24

▪ This assumes that failures occur independently and

▪ The failure probability does not change over time

 Reliability can be improved by storing redundant data

John Edgar 53

 Reliability of a disk array can be improved by storing
redundant data

 If a disk fails the redundant data can be used to reconstruct
the data lost on the failed disk

 The data can either be stored on a separate check disk or

 Distributed uniformly over all the disks

 Redundant data is typically stored using one of two methods

 Mirroring, where each disk is duplicated

 A parity scheme, where sufficient redundant data is maintained
to recreate the data in any one disk

 Other redundancy schemes provide greater reliability

John Edgar 54

 For each bit on the data disks there is a parity bit on a check disk

 If the sum of the data disks bits is even the parity bit is set to zero

 If the sum of the bits is odd the parity bit is set to one

 The data on any one failed disk can be recreated bit by bit

0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 …

1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 …

0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 …

0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 …

1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 …

Corresponding bytes of the system's check disk

First threebytes of data disks in a four (data) disk
RAID system

John Edgar 55

Reading – not affected by parity

data

Writing - either

calculate new value of the parity

bit from all the data disks or

flip parity bit if corresponding

data bit has changed

 A RAID system consists of several disks organized to
increase performance and improve reliability

 Performance is improved through data striping

 Reliability is improved through redundancy

 RAID stands for Redundant Arrays of Independent Disks

 There are several RAID schemes or levels

 The levels differ in terms of their

▪ Read and write performance,

▪ Reliability, and

▪ Cost

John Edgar 56

 All D disks are used to improve efficiency, and data is
distributed using block striping

 No redundant information is kept
 Read and write performance is very good
 Reliability is poor

 Unless data is regularly backed up a RAID 0 system should
only be used when the data is not important

 A RAID 0 system is the cheapest of all RAID levels

 Because there are no disks used for storing redundant data

 With D data disks there are 0 check disks

John Edgar 57

 An identical copy is kept of each disk in the system, hence
the term mirroring

 Read performance is similar to a single disk

 No data striping, but parallel reads of the duplicate disks can be
made improving random read performance

 Write performance is worse than a single disk
as the duplicate disk has to be written to

 Writes to the original and mirror should not be
performed simultaneously in case of a global system failure

 But write performance is superior to most other RAID levels

 Very reliable but costly

 With D data disks, a level 1 RAID system has 2D disks

John Edgar 58

 Sometimes referred to as RAID level 10, combines both
striping and mirroring

 Very good read performance

 Similar to RAID level 0

 2D times the speed of a single disk for sequential reads

 Up to 2D times the speed of a single disk for random reads

 Allows parallel reads of blocks that, conceptually, reside on the
same disk

 Poor write performance, that is similar to RAID level 1

 Very reliable but the most expensive RAID level
 Requires 2D disks

John Edgar 59

 Writing is the Achilles heel of RAID

 Data and check disks should not be written
to simultaneously

 Parity information may have to be read
before check disks are written

 Bit striping random and sequential
writes, block striping sequential writes

 Write all data disks using r-m-w cycle

 Recalculate parity data from data disks

 Write new parity data to check disk

 Block striping random writes

 Write to single disk using r-m-w cycle

 Read check disk and calculate parity data

 Write check disk

John Edgar 60

In many RAID systems writing is
less efficient than a single disk!

 A RAID system with D disks can read data up to D times
faster than a single disk system

 For sequential reads there is no performance difference
between bit striping and block striping

 Block striping is more efficient for random reads
 With bit striping all D disks have to be read to recreate a single record

(and block) of the data file

 With block striping a complete record is stored on one disk therefore
only that one disk is required to satisfy a random read

 Write performance is similar except that it is affected by the
parity scheme
 Random writes are typically inefficient

John Edgar 61

 Level 2 – Memory Style Error Correcting Code

 The striping unit is a single bit

 Uses a scheme that allows the failed disk to be identified

▪ Which increases the number of disks required

 Modern disk controllers can detect a failed disk so this is unnecessary

 Can only tolerate the loss of a single disk

 Level 3 – Byte Interleaved Parity

 The striping unit is a byte

 Random read and write performance is poor as all disks have to be
accessed for each request

 Can tolerate the loss of a single disk

 Requires D + 1 disks

John Edgar 62

 Uses block striping to distribute data over disks
 Uses one redundant disk containing parity data

 The ith block on the redundant disk contains
parity checks for the ith blocks of all data disks

 Good sequential read performance

 D times single disk speed
 Very good random read performance

 Disks can be read independently therefore up to D
times single disk speed

John Edgar 63

 Cost is moderate

 Only one check disk is required

 The system can tolerate the loss of one drive
 Write performance is poor for random writes

 In which different data disks are written independently

 For each such write a write to the redundant disk is also
required

 Performance can be improved by distributing
the redundant data across all disks – RAID level 5

John Edgar 64

 The dedicated check disk in RAID level 4 tends to
act as a bottleneck for random writes

 RAID level 5 does not have a dedicated check disk
but distributes the parity data across all disks

 Increasing the performance of random writes

 Read performance is marginally improved

 Sequential read and write performance is similar to level 4

 Cost is moderate, with the same effective space
utilization as level 4

 The system can tolerate the loss of one drive

John Edgar 65

 RAID levels 4 and 5 can only cope with single disk
crashes

 If multiple disks crash at the same time data will be lost

 It is unlikely that two disks will fail at the same time

 At least, by coincidence

 Replacing a disk is time consuming

 Therefore it is possible that a second disk may fail during
the rebuilding process

 RAID level 6 allows systems to deal with multiple disk
crashes

John Edgar 66

 RAID level 6 records two sets of parity data
for each set of bits across all disks

 Using two different parity schemes

 The system requires at least 4 disks

▪ In a 4 disk system half of the data is parity data

▪ As the number of disks increases the percentage of
redundant data decreases

 The redundancy data allows a system to
recover from two simultaneous disk crashes

John Edgar 67

 The parity data is distributed across all disks

 Read performance is similar to level 5

 Write performance is worse than level 5

 Sequential writes are slower since two sets of
parity data have to be calculated

 Random writes are considerable slower since the
two sets of parity data are on separate disks

▪ Which requires a read-modify-write cycle for each disk

John Edgar 68

 In real-life RAID systems the disk array is

partitioned into reliability groups

 A reliability group consists of a set of data disks and a

set of check disks

 The number of check disks depends on the reliability

level that is selected

 Using a RAID system and reliability groups

greatly increases reliability over a single disk

 Making the possibility of failure relatively remote

John Edgar 69

 RAID level summary

 Level 0 is cheap, improves performance but not reliability

 Level 1+0 is better than level 1 and has the best write performance

 Levels 2 and 4 are always inferior to 3 and 5

 Level 3 is worse than 4 for random requests

 Level 5 is a good general-purpose solution

 Level 6 is appropriate if higher reliability is required

 The choice is usually between 0, 1+0, 5 and 6

 There are a number of other RAID levels that are also used derived

from the levels discussed here

▪ RAID 7, RAID-DP, RAID-K, RAID-Z, …

John Edgar 70

4.1

John Edgar 72

database A database is made up of tables

 A table is generally represented by a single
file

 Tables are collections of records

 A record describes an entity or relationship

 And is defined by its attribute values

 Attributes also referred to as fields

 Each attribute is associated with a type

▪ Also known as a domain

 Information about fields is stored in the
system catalog

id name dob rate

1 bob 12/3/1974 21.35

2 kate 21/10/2001 17.34

3 sue 11/11/1999 19.22

metadata

name type size …

id int 4

name varchar 255

dob datetime 8

rate real 8SQL Server types

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-2017

 Records are stored in pages

 Fixed-size abstract units of storage
▪ Generally map to a block on a disk

▪ Or a frame in main memory

 Page contents

 Page header – administrative data

 Slots – each slot contains a record

 Record IDs

 Records are uniquely identified by record IDs (RID)

 Record IDs are page number : slot number pairs

John Edgar 73

page 123

slot 1 record

slot 2 record

slot 3 record

free
space

header header information

RID: 123,2

 Records are either fixed or variable length

 Fixed length records have some important advantages

▪ Easier to rearrange records

▪ Less overhead for header data

▪ More efficient search

 Fixed length records

 Both the number of fields and the field length is fixed

 Given the address of a record a field can be found

▪ By referring to the field size in the system catalog

 This format is sometimes referred to as relative location

John Edgar 74

header field 1 field 2 field 3 … field n

e.g. find field 3 = base address + size(field1) + size (field2)

 In the relational model each record contains the same
number of fields

 However fields may be of variable length
▪ e.g. VARCHAR

 Two tables could be stored in the same file – a mixed file
▪ Allows fast access to the results of a join between two related tables

 Alternative 1 – separate attributes with delimiters

 Delimiters identify the end of a field

John Edgar 75

header field 1 field 2 field 3 field 4

delimiters requires a sequential scan to find a field

 There are other alternatives for recording variable length
records

 Store additional data in the record header
 An array containing the length of each field

▪ Or just the lengths of the variable length fields, then store all fixed length fields first

 Allows fields to be found by an offset calculation

 If a record contains a variable number of fields other
organizations may be used

 Pointers to a list of fields
▪ e.g. a mixed file

 Preceding the attribute by the attribute identifier

John Edgar 76

Variable length field sizes may grow / shrink

Gets smaller – wastes space

Gets larger – may not fit in its slot, or in its page, or may even exceed the page size

 Some data types may not fit on a single page

 Large object data
▪ Text, images, video, sound, …

 LOB data is stored as either binary or character data

 BLOB – unstructured binary data

 CLOB, NCLOB – character data

 BFILE – unstructured binary data in OS files

 LOB data types store and manipulate large blocks of unstructured
data

 The maximum size of a LOB is large

▪ At least 8 terabytes in Oracle 10g

 LOB data must be processed by application programs

John Edgar 77

 LOB's have to be stored on a sequence of pages

 Ideally the pages should be contiguous for efficient
retrieval, or

 Store the LOB on a linked list of blocks

▪ Where each block contains a pointer to the next block

 If fast retrieval of LOBs is required they can be
striped across multiple disks for parallel access

 It may be necessary to provide an index to a LOB

 For example indexing by seconds for a movie to allow
a client to request small portions of the movie

John Edgar 78

 Packed

 Offset calculation to find record

 Move records up on deletion

 Simple
 But

 Time consuming to move records

 External RIDs no longer valid if slot
number changes on deletion

 Bit array

 Page is divided into slots

 Header includes a bit array which
shows which slots contain records

 Advantages

 No changes to external references

 No rearranging records

 But slightly more administration

John Edgar 79

slot 1 record

slot 2 record

slot 3 record

free
space

header N

slot 1 record

slot 2 empty

slot 3 record

…

slot n empty

header 1 0 1 … 0 N

free space

16 … 24 20 N

N 2 1

slot directory

 Maintain a slot directory

 Each entry is a pair

▪ Record offset

▪ Record length

 Records can be moved

without affecting RID

 By modifying the slot entry

 Flexible

 But more complex than

fixed record organization

John Edgar 80

length = 24

length = 16

length = 20

4.2

 A DB increases and decreases in size

 The disk space manager for the DBMS maps pages to blocks

 Over time gaps in sequences of allocated blocks may appear

 Free blocks need to be recorded so that they can be
allocated in the future, using either

 A linked list with the head
pointing to the first free block

 A bitmap where each bit corresponds to a single block

▪ Allows for fast identification of
contiguous areas of free space

John Edgar 82

 Pages containing related records are organized into files

 One file usually corresponds to one table

 Files are expected to span several pages

 So must allow access to all the pages in the file

 There are different file organizations

 With their own strengths and weaknesses

 All file organizations support

 Opening and closing the file

 Searching for and reading records

 Inserting, deleting and modifying records

 Scanning the entire file

John Edgar 83

 Heap files are not ordered in any way
 They guarantee that all of the records in a file can be retrieved by

repeatedly requesting the next record

 Inserting new records into heap files is very efficient
 Searching for records is inefficient

▪ As it requires a linear search of the file

 Deletion and modification of records first requires they be found

 To support file operations it is necessary to
 Keep track of the pages in the file

 Keep track of which of those pages contain free space

John Edgar 84

Fast access to records in a heap file requires additional data structures Indices

 Linked List

 Two doubly linked lists of pages
▪ Pages with free space

▪ Pages that are full

 Records page ID of list head

 Finding a page with enough
space may be time-consuming

 Variable-length records may make
the list long

 Directory

 File pages recorded in a directory

 Entries kept in page order

 Directory entries record

 Whether or not the page is full

 The amount of free space
▪ Pages need not be visited to see if they

contain enough free space

John Edgar 85

page with
free space

header

full page

full page
page with
free space

entry for page 1

page 2

page n

(small) linked list of
directory pages

 Heap files do not provide efficient access to records based
on (any) search criteria

 Other file organizations support more efficient access to
records

 Ordered files

▪ Ordered on some record field

 Hash files

 Files of mixed records

▪ That contain records of more than one table

 Files organized as B or B+ trees

John Edgar 86

94 97 34 68 65 80 68 94 83 70 56 81 75 79 53 find 81

Discussed in the section on indices

5.1

 Main memory is partitioned into a collection
of frames called the buffer pool
 The buffer manager is responsible for bringing

pages from disk to main memory as required
▪ Pages are mapped to frames

 Processes inform the buffer manager if a
page is no longer required
▪ And if it has been modified

 A DB may be many times larger than the
buffer pool
 Accessing an entire table can easily fill up the

buffer pool

▪ The buffer manager replaces pages by
following a replacement policy

John Edgar 88

database

replacement policy

free frame
occupied frame

Main Memory

In addition to the buffer

pool a data structure

maps pages to frames

e.g. a hash table

 If the page is already in the buffer pool
 Increment the pin-count (pin the page)

 If there are vacant frames
 Read requested page into chosen frame and set

pin-count to 1

 If there are no vacant frames
 Select an frame with pin-count = 0 using the

replacement policy
▪ If the chosen frame is dirty write to disk

 If there are no frames with pin-count = 0
▪ The transaction must wait or abort

 Read requested page into chosen frame and set
pin-count to 1

data page

main
memory

frame

dirty bit

pin count

John Edgar 89

set to 1 if page modified

pin-count is
decremented
when a page

is released

 Assumption: buffer size much smaller than working set
 The policy used to replace frames can affect the efficiency

of database operations

 Ideally a frame should not be replaced if it will be needed again
in the near future

 Buffer replacement policies

 Random

 FIFO

 Least Recently Used (LRU)

▪ Clock Replacement

 Most Recently Used (MRU)

John Edgar 90

Queue whose entries are frames
with pin-count = 0

Replaces frame at front of queue

Requires memory for queue

Assumes frames not recently
used are no longer required

 A variant of the LRU policy with less overhead

 Instead of a queue the system requires one bit per frame, and a single
variable, called current

 Assume that frames are numbered from 0 to B-1

▪ Where B is the number of frames

 Each frame has an associated referenced bit

 Which is initially set to 1 when the frame is read or accessed

 The current variable is initially 0, and is used to show the next
frame to be considered for replacement

John Edgar 91

…

ref-bit for frame 0 ref-bit for frame B-1

current

wraps around

 Consider the current frame for replacement

 If pin-count  0, increment current

 If pin-count  0 and referenced bit is 1
▪ Switch referenced to 0 and increment current

 If pin-count  0 and referenced is 0
▪ Replace the frame

 If current equals B-1 set it to 0

 Only replaces frames with pin-counts of zero

 Frames with a pin-count of zero are only replaced after all
older candidates are replaced

John Edgar 92

consider next frame

make frame a candidate

2nd time around replace frame

wrap around

 LRU and clock replacement are fair schemes
 They are not always the best strategies for a DB system

 It is common for some DB operations to require repeated
sequential scans of data (e.g. Cartesian products, joins)

 With LRU such operations may result in sequential flooding

 An alternative is the Most Recently Used policy

 This prevents sequential flooding but is a generally poor
replacement policy

 Most systems use some variant of LRU

 Some systems will identify certain operations, and apply MRU
for those operations

John Edgar 93

p1p1 p2p1 p2 p3 p4 p5 p6 p7 p8 p9

 Assume that a process requests sequential scans of a file
 The file, shown below, has nine pages

 Assume that the buffer pool has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9

Read page 1 first,

All the pages are in the buffer, when the next scan of the file is requested, no
further disk access is required!

Buffer Pool

then page 2, … then page 9

John Edgar 94

p1p1 p2p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Read pages 1 to 10 first, page 11 is still to be read

 Assume that a process requests sequential scans of a file
 This file, shown below, has eleven pages

 Assume that the buffer pool still has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Buffer Pool

John Edgar 95

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10p11 p2 p3 p4 p5 p6 p7 p8 p9 p10

Read pages 1 to 10 first, page 11 is still to be read

Buffer Pool

Using LRU, replace the appropriate frame, which contains p1, with p11

John Edgar 96

 Assume that a process requests sequential scans of a file
 This file, shown below, has eleven pages

 Assume that the buffer pool still has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

p11 p2 p3 p4 p5 p6 p7 p8 p9 p10p11 p1 p3 p4 p5 p6 p7 p8 p9 p10

Read pages 1 to 10 first, page 11 is still to be read

Buffer Pool

Using LRU, replace the appropriate frame, which contains p1, with p11

John Edgar 97

 Assume that a process requests sequential scans of a file
 This file, shown below, has eleven pages

 Assume that the buffer pool still has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

The first scan is complete, start the second scan by reading p1 from the file

Replace the LRU frame (containing p2) with p1

p11 p1 p3 p4 p5 p6 p7 p8 p9 p10p11 p1 p2 p4 p5 p6 p7 p8 p9 p10

Read pages 1 to 10 first, page 11 is still to be read

Buffer Pool

Using LRU, replace the appropriate frame, which contains p1, with p11

The first scan is complete, start the second scan by reading p1 from the file

Replace the LRU frame (containing p2) with p1

Continue the scan by reading p2, …

John Edgar 98

 Assume that a process requests sequential scans of a file
 This file, shown below, has eleven pages

 Assume that the buffer pool still has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

p11 p1 p2 p4 p5 p6 p7 p8 p9 p10p11 p1 p2 p3 p5 p6 p7 p8 p9 p10p11 p1 p2 p3 p4 p6 p7 p8 p9 p10p11 p1 p2 p3 p4 p5 p7 p8 p9 p10p11 p1 p2 p3 p4 p5 p6 p8 p9 p10p11 p1 p2 p3 p4 p5 p6 p7 p9 p10p11 p1 p2 p3 p4 p5 p6 p7 p8 p10p11 p1 p2 p3 p4 p5 p6 p7 p8 p9p10 p1 p2 p3 p4 p5 p6 p7 p8 p9p10 p11 p2 p3 p4 p5 p6 p7 p8 p9

Buffer Pool

John Edgar 99

 Assume that a process requests sequential scans of a file
 This file, shown below, has eleven pages

 Assume that the buffer pool still has ten frames

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Each scan of the file requires that every page is read from the disk!

In this case LRU is the worst possible replacement policy!

 A DBMS can often predict patterns in the way in which pages
are referenced

 Most page references are generated by processes such as query
processing with known patterns of page accesses

 Knowledge of these patterns allows for a better choice of pages
to replace and
▪ Allows prefetching of pages, where the page requests can be anticipated

and performed before they are requested

 A DBMS requires the ability to force a page to disk

 To ensure that the page is updated on a disk

 This is necessary to implement crash recovery protocols where the
order in which pages are written is critical

John Edgar 100

 Some DBMS buffer managers predict page requests

 And fetch pages into the buffer before they are requested
▪ Known as prefetching

 Pages are available in the buffer when they are requested,
and
▪ If the pages to be prefetched are contiguous, the retrieval will be

faster than if they had been retrieved individually

▪ If the pages are not contiguous, retrieval may still be faster as
access to them can be efficiently scheduled

 Prefetching does require additional main memory
buffers

John Edgar 101

 Prefetching can be combined with buffering

 Where two processes are interleaved to improve performance

 Data from one process is read into main memory as the
CPU acts on the second

 Disk I/O processors are separate from the CPU so these tasks
can be performed in parallel

 Double buffering is an important memory management
technique

John Edgar 102

Read pages for operation A0 B0 A1 B1 A2 …

Process page for operation - A0 B0 A1 B1 …

time

 Organize data by cylinders

 Related data should be stored "close to" each other

 Use a RAID system to improve efficiency or reliability

 Multiple disks and striping improves efficiency

 Mirroring or redundancy improves reliability

 Schedule requests using the elevator algorithm

 Reduces disk access time for random reads and writes

 Most effective when there are many requests waiting

 Prefetch data in large chunks and use double buffering

 Speeds up access when needed blocks can be predicted but
requires more main memory buffers

John Edgar 103

5.2

 Most Solid State Drives (SSDs) use NAND flash memory and
do not contain moving parts like an HDD
 Accessing an SSD does not require seek time or rotational latency and

they are therefore considerably faster

 Flash memory is non-volatile memory that is used by smart-phones,
mp3 players and thumb (or USBO) drives

 Like HDDs SSDs contain a controller whose functions include
 Read and write caching

 Encryption

 Error detection and correction

 Wear leveling
▪ Evenly distributing reads and writes across the disk

John Edgar 105

 NAND flash architecture is similar to a NAND (negated
and) logic gate hence the name

 Only able to read and write data one page at a time

 NAND flash memory is non-volatile
▪ It does not require power to retain memory

 Earlier SSDs used DRAM which
necessitated an internal power supply

 There are different types of NAND SSD

 SSD with multiple charge levels

▪ Multi-level cell (MLC), Triple Level Cell (TLC), Quad Level Cell (QLC)

 Single-level cell (SLC)

John Edgar 106

Re-writing SSD data requires
first erasing the entire block – i.e.
multiple pages

An SSD page is
a few kB in size

 MLC , TLC and QLC cells can store multiple different
charge levels

 And contain more than one bit

▪ With four charge levels a cell can store 2 bits

▪ With eight, 3 bits, etc.

 Reading is more complex but more data can be
stored per cell

 MLC, TLC and QLC SSDs are cheaper per byte than SLC
SSDs

 However write performance is worse

 And their lifetimes are shorter

John Edgar 107

 SLC cells can only store a single charge level

 They are therefore on or off, and can contain only one
bit

 SLC drives are less complex

 More reliable with a lower error rate

 Faster since it is easier to read
or write a single charge value

 But SLC drives are more expensive

 And were typically used for enterprise rather than
home use

John Edgar 108

The trend appears to be towards
using TLCs for enterprise solutions
rather than SLC

Larger storage size and use of cache
or other memory types to mitigate
their disadvantages

 An EFD is an Enterprise Flash Drive

 The term was introduced by EMS Corporation

 EFDs are designed for applications requiring high
performance

 Reliability

 Energy efficiency

 Consistent performance

 There is no standard for what defines an EFD

 So SSD manufacturers can claim that their high performing
products are EFDs

▪ Without meeting any particular requirements

John Edgar 109

 SSD technology continues to evolve

 Consumer drives are decreasing in price per byte

 There are multiple types of SSD and multiple form factors

 3D XPoint Intel Optane

 New technology

 Developed by Intel and Micron

 Multi-purpose

▪ SSDs

▪ Cache for other drives

▪ Persistent memory

 Faster than NAND flash but more expensive per byte

John Edgar 110

 SSD access is entirely electronic and so no seek time

or rotational delay is incurred

 Both reads and writes are faster than HDDs

 However flash memory must be erased before it is written,

and entire blocks must be erased

▪ Referred to as write amplification

 The performance increase over HDDs is greatest for

random reads

 SSDs are considerably more durable than HDDs

 Primarily due to the lack of moving parts

John Edgar 111

John Edgar 113

2014 figures – per text (Elmasri, Navathe)

Type Capacity Access Time Max Bandwidth Cost

RAM 4GB – 1TB 30ns 35GB/s $100 – $20,000

SSD 64GB – 1TB 50s 750MB/s $50 – $600

USB Stick 4GB – 512GB 100s 50MB/s $2 – $200

HDD 600GB – 8TB 10ms 200MB/s $70 – $500

Optical 50GB – 100GB 180ms 72MBs $100

Tape 2.5TB – 8.5TB 10s – 80s 40 – 250MB/s $2,500 – $30,000

Tape Jukebox 25TB – 2.1m TB 10s – 80s 250MB/s – 1.2PB/s $3,000 – $1m

Note that the capacity figures are already quite out of date

In particular RAM and SSD capacity have increased while cost decreased

read-modify-write cycle

no read-modify-write cycle

key

 Most writes require an initial
read of a disk block

 Even blind writes

 Consider inserting a new
record into a disk block

 Which contains existing records

 The block must be read first

 To preserve the existing data

 Referred to as the read-modify-
write cycle

John Edgar 114

disk

main memory

new record

existing records

disk

main memory

disk

main memory

read-modify-write cycle

no read-modify-write cycle

key

 Most writes require an initial
read of a disk block

 Even blind writes

 Consider inserting a new
record into a disk block

 Which contains existing records

 The block must be read first

 To preserve the existing data

 Referred to as the read-modify-
write cycle

John Edgar 115

disk

main memory

new record

existing records

disk

main memory

disk

main memory

existing data
overwritten

read write

write

