Transaction Management

Concurrency Control (4)

What are the Objects We Lock?

B Dalabase elements can be tuples, blocks or entire

relations. T .
Relation A uple A Disk
Tuple B block
Relation B Tuple C A
Disk
block
B

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

E Locking works in any case, but should we

choose large objects or small objects? At which
level of granularity shall we lock?

B There is a trade-off: the lower the level of
granularity, the more concurrency, but the more
locks and the higher the locking overhead.

Best trade-off depends on application: e.g., lock
blocks or tuples in bank database, and entire
documents in document database.

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

Even within the same application, there may be a
need for locks at multiple levels of granularity.

B Database elements are organized in a hierarchy:

relations @
blocks @ @ @

tuples @ @ @ @@ \contained in

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

B The warning protocol manages locks on a

hierarchy of database elements.
B We introduce two new types of locks:
- [S: intention to request an S lock and
- IX: intention to request an X lock.

E An IS (IX) lock expresses the intention to request
an S (X) lock for a subelement further down in
the hierarchy.

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

E Torequest an S (or X) lock on some database element A, we

traverse a path from the root of the hierarchy to element A.
B If we have reached A, we request the S (X) lock.
B Otherwise, we request an IS (IX) lock.

B As soon as we have obtained the requested lock, we
proceed to the corresponding child (if necessary).

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

Compatibility matrix

Requester
1S | IX | S X

IS | Yes | Yes | Yes| No
Holder IX | Yes| Yes| No | No
S Yes | No | Yes| No
X No | No | No | No

E If two transactions intend to read / write a

subelement, we can grant both of them an I lock

and resolve the potential conflict at a lower level.

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

B An I lock for a superelement constrains
the locks that the same transaction can
obtain at a subelement.

B If Ti has locked the parent element P in
IS, then Ti can lock child element C in
IS, S.

If Ti has locked the parent element P in

[X, then Ti can lock child element C in
IS, S, IX, X.

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

Example
T2 wants to request an X lock on tuple t3

CMPT 454: Database Systems Il — Concurrency Control (2)

Locks With Multiple Granularity

Example
T2 wants to request an S lock on block B2

CMPT 454: Database Systems Il — Concurrency Control (2)

How Does Locking Work In Practice?

E Every system is different

(E.g., may not even provide
CONFLICT-SERIALIZABLE schedules)

E But here is one (simplified) way ...

Sample Locking System:

(1) Don’t trust transactions to
request/release locks;

(2) Hold all locks until H
transaction commits ~ locks

time

CMPT 454: Database Systems Il — Concurrency Control (2)

Optimistic Concurrency Control

B Optimistic approaches to concurrency control
assume that unserializable schedules are

infrequent.

Unlike in pessimistic approaches (locking),
unserializable schedules are not prevented, but
detected and some of the transactions aborted.

B The two main optimistic approaches are
timestamping (not covered in class) and
validation (next section).

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

E We allow transactions to proceed without
locking.

B All DB modifications are made on a local copy.

B At the appropriate time, we check whether the
transaction schedule is serializable.

B [If so, the modifications of the local copy are
applied to the global DB.

B Otherwise, the local modifications are discarded,
and the transaction is re-started.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

E For each transaction T, the scheduler maintains

two sets of relevant ¢

atabase elements:

- RS(T), the read set of '
elements read by T.

: the set of all database

- WS5(T), the write set of T: the set of all database
elements written by T.

This information is crucial to determine whether

some schedule that h

as already been executed

was indeed serializable.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B Transaction T is executed in three phases:

1. Read: transaction reads all elements in its read
set from DB and is executes all its actions in its
local address space.

2. Validate: the serializability of the schedule is
checked by comparing RS(T) and WS5(T) to the
read / write sets of the concurrent transactions.
If validation is unsuccessful, skip phase 3.

3. Write: write the new values of the elements in
WS(T) back to the DB.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

F At any time, the scheduler maintains three sets
of transactions and some relevant information.

B START: set of transactions that have started, but

have not yet completed their validation phase.
For each element T of START, keep START(T).

B VAL: set of transactions that have completed

validation, but not yet their write phase. For
elements T of VAL, record VAL(T).

B FIN: set of transactions that have completed all
three phases. For T in FIN, keep FIN(T).

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B Make validation an atomic operation.

B [fT1, T2, T3, ... 1is validation order, then the
resulting schedule will be conflict equivalent
to serial schedule S =T1, T2, T3.

B Can think of each transaction that successfully
validates as executing entirely at the moment
that it validates.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B Example

RS(T1)={B} ~—RS(T2)={A,B} #* ®
WS(T1)={B,D} WS(T2)={C}

T1 T2 T1 T2
start start T2 T1 validated validated
J reads B writes B J J
l l > time

E]tis possible that T1 wrote database element B
after T2 has read it.

B Schedule is not conflict-equivalent to T1,T2.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B Example

RS(T1)={B} ~— RS(T)={A,B} # ¢
WS(T1)={B,D} ~ WS(T2)={C}

T1 T1 T2
J start tart J validated Jvalidated

[T1 {Tlfinish [T2 { T2

writes B phase 3 start reads B

time

B New value of B written by T1 must have been
written back to the DB before T2 has read B.

B Schedule is conflict-equivalent to T1, T2.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B Example
RS(T1)={A} RS(T2)={A,B}
WS(T1)={D,E} — " — WS(T2)={C,D} F 0

T1 T2
validated validated i
> tIme
T1 [T1 finish

[T2 [
output D output D | phase 3

B The new value of D written by T1 may be output
to the DB later than the new value written by T2.

E Schedule is not conflict-equivalent to T1, T2.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

¥ Example
RS(T1)={A}

RS(T2)={A,B}

WS(T1)={D,E} — " — WS(T2)={C,D} F 0

T1
validated

T2

validated

T1 ‘[T1 finish
phase 3

output D

- —~— time
o B
output D hase 3

B The new value of D written by T1 must be
output to the DB earlier than the new value of D
written by T2.

B Schedule is conflict-equivalent to T1, T2.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

B The above examples motivate the following two
validation rules for a given transaction T2.

B We consider all transactions T1 that have
validated before T2.

B For all T1 with FIN(T1) > START(T2):
RS (T2) AWS (T1) = 2.
B For all T1 with FIN(T1) > VAL(T2):
WS (T 2) AWS (T1) = &.
B If T2 does successfully validate, if the two
validation rules are satisfied for all these T1.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

U: RS(U)={B} W: RS(W)={A,D}

WS(U)={D} WS(W)={A,C}

A\ start
P validate
Y finish
T: RS(T)={A,B} V: RS(V)={B}
WS(T)={A,C} WS(V)={D,E}

% U validates successfully, since there are no other
transactions that have validated before U.

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

U: RS(U)={B} W: RS(W)={A,D}
WS(U)={D} WS(W)={A,C}
NAN—©B m N\ A X fan A D— S R
P validate
¥ finish
T: RS(T)={A,B} V: RS(V)={B}
WS(T)={A,C} WS(V)=1{D,E}
% T validates successfully, since RS(T) and WS(T)
have no intersection with WS(U).

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control by Validation

U: RS(U)={B} W: RS(W)={A,D}
WS(U)={D} WS(W)={A,C}
AN—©P an A\ e (//I-\\ A P— e R
V /\ start
P validate
¥ finish
T: RS(T)={A,B} V: RS(V)={B}
WS(T)={A,C} WS(V)={D,E}
% V validates successfully, since RS(V) has no intersection with
WS(U) and FIN(U) < VAL(V) and neither RS(V) nor WS(V)

CMPT 454. Database Systems Il - Concurrency Control (2)

Concurrency Control by Validation

U: RS(U)={B} W: RS(W)={A,D}

WS(U)={D} N:{A,C}

AR 1/ N JARRY w I\ o
A\ start
P validate
Y< finish

T: RS(T)={A,B} V: RS(V)={B}
WS(T)={A,C} WS(V)=1{D.E}
% W validates unsuccessfully, since RS(W) has
intersection with W5(V) and FIN(V) > START(W).

CMPT 454: Database Systems Il — Concurrency Control (2)

Concurrency Control Mechanisms

B We conclude by comparing pessimistic and
optimistic concurrency control mechanismes.

B Locking delays transactions, but avoids
rollbacks.

B Validation does not delay transactions, but can
cause a rollback (and re-start).

B Rollbacks may waste a lot of resources.

E If interactions between transactions are
infrequent, then there will be few rollbacks,
and validation will be more efficient.

CMPT 454: Database Systems Il — Concurrency Control (2)

Next to Discuss

E Serialibility and Recoverability (Chapter 19.1)

B Deadlocks (Chapter 19.2)

CMPT 454: Database Systems Il — Concurrency Control (2)

To-Do-List

F |s Validation = 2PL?

0 ‘

CMPT 454: Database Systems Il — Concurrency Control (2)

