
Transaction ManagementTransaction Management

Concurrency Control (4)Concurrency Control (4)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 22 / 29/ 29

What are the Objects We Lock?What are the Objects We Lock?

Database elements can be tuples, blocks or entire
relations.

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 33 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Locking works in any case, but should we
choose large objects or small objects? At which
level of granularity shall we lock?
There is a trade-off: the lower the level of
granularity, the more concurrency, but the more
locks and the higher the locking overhead.
Best trade-off depends on application: e.g., lock
blocks or tuples in bank database, and entire
documents in document database.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 44 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Even within the same application, there may be a
need for locks at multiple levels of granularity.

Database elements are organized in a hierarchy:

relations R1

blocks B1 B2 B3 B4

tuples t1 t2 t3 t4 t5 contained in

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 55 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
The warning protocol manages locks on a
hierarchy of database elements.

We introduce two new types of locks:
- IS: intention to request an S lock and

- IX: intention to request an X lock.
An IS (IX) lock expresses the intention to request
an S (X) lock for a subelement further down in
the hierarchy.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 66 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
To request an S (or X) lock on some database element A, we
traverse a path from the root of the hierarchy to element A.
If we have reached A, we request the S (X) lock.
Otherwise, we request an IS (IX) lock.
As soon as we have obtained the requested lock, we
proceed to the corresponding child (if necessary).

R1
B1

B2 B3
B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 77 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Compatibility matrix

Requester
IS IX S X

IS Yes Yes Yes No
Holder IX Yes Yes No No

S Yes No Yes No
X No No No No

If two transactions intend to read / write a
subelement, we can grant both of them an I lock
and resolve the potential conflict at a lower level.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 88 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
An I lock for a superelement constrains
the locks that the same transaction can
obtain at a subelement.
If Ti has locked the parent element P in
IS, then Ti can lock child element C in
IS, S.
If Ti has locked the parent element P in
IX, then Ti can lock child element C in
IS, S, IX, X.

P

C

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 99 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Example
T2 wants to request an X lock on tuple t3

R1

B1

B2 B3
B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

T2(IX)

T2(IX)

T2(X)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1010 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Example
T2 wants to request an S lock on block B2

R1

B1

B2 B3
B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

T2(IS)

T2(S)
not granted!

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1111 / 29/ 29

How Does Locking Work In Practice?How Does Locking Work In Practice?

Every system is different
(E.g., may not even provide

CONFLICT-SERIALIZABLE schedules)

But here is one (simplified) way ...

Sample Locking System:
(1) Don’t trust transactions to

request/release locks;
(2) Hold all locks until

transaction commits
#

locks

time

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1212 / 29/ 29

Optimistic Concurrency ControlOptimistic Concurrency Control
Optimistic approaches to concurrency control
assume that unserializable schedules are
infrequent.
Unlike in pessimistic approaches (locking),
unserializable schedules are not prevented, but
detected and some of the transactions aborted.
The two main optimistic approaches are
timestamping (not covered in class) and
validation (next section).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1313 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
We allow transactions to proceed without
locking.

All DB modifications are made on a local copy.
At the appropriate time, we check whether the
transaction schedule is serializable.
If so, the modifications of the local copy are
applied to the global DB.

Otherwise, the local modifications are discarded,
and the transaction is re-started.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1414 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
For each transaction T, the scheduler maintains
two sets of relevant database elements:

- RS(T), the read set of T: the set of all database
elements read by T.

- WS(T), the write set of T: the set of all database
elements written by T.
This information is crucial to determine whether
some schedule that has already been executed
was indeed serializable.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1515 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Transaction T is executed in three phases:

1. Read: transaction reads all elements in its read
set from DB and is executes all its actions in its
local address space.

2. Validate: the serializability of the schedule is
checked by comparing RS(T) and WS(T) to the
read / write sets of the concurrent transactions.
If validation is unsuccessful, skip phase 3.

3. Write: write the new values of the elements in
WS(T) back to the DB.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1616 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
At any time, the scheduler maintains three sets
of transactions and some relevant information.
START: set of transactions that have started, but
have not yet completed their validation phase.
For each element T of START, keep START(T).
VAL: set of transactions that have completed
validation, but not yet their write phase. For
elements T of VAL, record VAL(T).
FIN: set of transactions that have completed all
three phases. For T in FIN, keep FIN(T).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1717 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Make validation an atomic operation.
If T1, T2, T3, … is validation order, then the
resulting schedule will be conflict equivalent
to serial schedule S = T1, T2, T3.
Can think of each transaction that successfully
validates as executing entirely at the moment
that it validates.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1818 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Example

It is possible that T1 wrote database element B
after T2 has read it.
Schedule is not conflict-equivalent to T1,T2.

RS(T1)={B} RS(T2)={A,B}
WS(T1)={B,D} WS(T2)={C}

time

T1
start

T1
validated

T2
validatedT2

reads B

 = 

T2
start T1

writes B

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1919 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Example

New value of B written by T1 must have been
written back to the DB before T2 has read B.
Schedule is conflict-equivalent to T1, T2.

T1 finish
phase 3 time

T1
start

T1
validated

T2
validated

T2
start

 = 

T2
start

RS(T1)={B} RS(T2)={A,B}
WS(T1)={B,D} WS(T2)={C}

T2
reads B

T1
writes B

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2020 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Example

The new value of D written by T1 may be output
to the DB later than the new value written by T2.
Schedule is not conflict-equivalent to T1, T2.

RS(T1)={A} RS(T2)={A,B}
WS(T1)={D,E} WS(T2)={C,D}

time

T1
validated

T2
validated

T1 finish
phase 3

 = 

T2
output D

T1
output D

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2121 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
Example

The new value of D written by T1 must be
output to the DB earlier than the new value of D
written by T2.
Schedule is conflict-equivalent to T1, T2.

T1 finish
phase 3

time

T1
validated

T2
validated

T1 finish
phase 3

T1
output D

T2
output D

RS(T1)={A} RS(T2)={A,B}
WS(T1)={D,E} WS(T2)={C,D} = 

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2222 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation
The above examples motivate the following two
validation rules for a given transaction T2.
We consider all transactions T1 that have
validated before T2.
For all T1 with FIN(T1) > START(T2):

For all T1 with FIN(T1) > VAL(T2):

If T2 does successfully validate, if the two
validation rules are satisfied for all these T1.

.)1()2( TWSTRS

.)1()2( TWSTWS

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2323 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation

 U validates successfully, since there are no other
transactions that have validated before U.

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2424 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation

 T validates successfully, since RS(T) and WS(T)
have no intersection with WS(U).

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2525 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation

 V validates successfully, since RS(V) has no intersection with
WS(U) and FIN(U) < VAL(V) and neither RS(V) nor WS(V)
have intersection with WS(T).

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2626 / 29/ 29

Concurrency Control by ValidationConcurrency Control by Validation

 W validates unsuccessfully, since RS(W) has
intersection with WS(V) and FIN(V) > START(W).

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2727 / 29/ 29

Concurrency Control MechanismsConcurrency Control Mechanisms
We conclude by comparing pessimistic and
optimistic concurrency control mechanisms.
Locking delays transactions, but avoids
rollbacks.
Validation does not delay transactions, but can
cause a rollback (and re-start).
Rollbacks may waste a lot of resources.
If interactions between transactions are
infrequent, then there will be few rollbacks,
and validation will be more efficient.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2828 / 29/ 29

Next to DiscussNext to Discuss
Serialibility and Recoverability (Chapter 19.1)

Deadlocks (Chapter 19.2)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 2929 / 29/ 29

ToTo--DoDo--ListList
Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL

