Transaction Management

Concurrency Control (3)

Review: Enforcing Serializability by Locks

B We introduce two new actions:
e li (X): /Jock database element X
e ui (X): unlock database element X, i.e. release lock.

® A locking protocol must guarantee the consistency
of transactions:

® A locking protocol must also guarantee the legality
of schedules:

CMPT 454: Database Systems Il — Concurrency Control (2)

Enforcing Serializability by Locks

® Schedule F
T1

12

11(A);Read(A)
A—A+100;Write(A);u1(A)

11(B);Read(B)
B<-B+100;Write(B);u1(B)

12(A);Read(A)
A—Ax2;Write(A);uz2(A)
12(B);Read(B)
B Bx2;Write(B);u2(B)

E Schedule F is legal, but not serializable.

CMPT 454: Database Systems Il — Concurrency Control (2)

250

Two-Phase Locking

B A legal schedule of consistent transactions is not
necessarily conflict-serializable.

B However, a legal schedule with the following
locking protocol is conflict-serializable.

B Two-phase locking (2PL)

In every transaction, all lock actions precede all
unlock actions.

B Growing phase: acquire locks, no unlocks.

B Shrink phase: release locks, no locks.

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

e Example

locks
held by
Ti

time

Growing Shrinking

“Phase * “Phase

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

B Schedule G |
T1 T2

1(A); Read(A)

changed order! 2(A);Read(A) delayed
- A—AX2;Write(A); (=)}
Read(B);B~ B+100 |
Write(B); ui(B) :

2(B); u2(A);Read(B)

B +— Bx2;Write(B);uz2(B);

Schedule G is serfalizable.

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

B In 2PL, each transaction may be thought of as
executing all of its actions when issuing the first
unlock action.

B Thus, the order according to the first unlock action
defines a conflict-equivalent serial schedule.

B Theorem 3
(1) legality of schedule, and (2) consistency of
transactions and (3) 2PL
= conflict-serializability.

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

B Lemma 4

Ti—>TjinS = SH(TI) <q SH(TJ)

where Shrink(T1) = SH(T1) = first unlock action of Ti
E Proof

T1 — Tj means that

= ... pi(A) ... q(A) ... and pi,qj conflict
According to (1), (2):
.. PI(A) .. ui(A) IJ(A) QA .

Accordlng to (3): SH(TI) SH(TJ)
Therefore, SH(Ti) < SH(T]).

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

e Proof of theorem 3

Given a schedule S.
Assume P(S) has cycle
T1>T2—>....Th—> T1
By lemma 4: SH(T1) < SH(T2) < ... < SH(T1).
Contradiction, so P(S) acyclic.
By theorem 2, S Is conflict serializable.

E 2PL allows only serializable schedules.

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

Serializable

B Not all serializable schedules are allowed by 2PL.
B Example S1:wl(x) w3(x) w2(y) wl(y)
B The lock by T1 for y must occur after w2(y), so the unlock

by T1 for x must also occur after w2(y) (according to 2PL).

® Because of the schedule legality, w3(x) cannot occur where
shown in S1 because T1 holds the x lock at that point.

B However, S1 serializable (equivalent to T2, T1, T3).

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

B Deadlocks may happen under 2PL, when two or
more transactions have got a lock and are waiting
for another lock currently held by one of the other

transactions.

¥ Example (T2 reversed)

T1: Read(A, t) T2: Read(B,s)
t <« t+100 S « Sx2
Write(A,t) Write(B,s)
Read(B,t) Read(A,s)
t <« t+100 S « Sx2
Write(B,1) Write(A,s)

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

¥ Possible schedule |
T1 T2

[i(A); Read(A) ~ T(B);Read(B)

A +7A+100;Write(A) - B*=Bx2;Write(B)
L(B)) ())
delayed, wait for T2 - delayed, wait for T1

B Deadlock cannot be avoided, but can be detected
(cycle in wait graph).

B At least one of the participating transactions needs
to be aborted by the DBMS.

CMPT 454: Database Systems Il — Concurrency Control (2)

Two-Phase Locking

B So far, we have introduced the simplest possible
2PL protocol and showed that it works.

E There are many approaches for improving its
performance, i.e. allowing a higher degree of
concurrency:

- shared locks,

- increment locks,

- multiple granularity locks,
- tree-based locks.

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

B In principle, several transactions can read
database element A at the same time, as long as
none is allowed to write A.

B In order to enable more concurrency, we
distinguish two different types of locks:

- shared (S) lock: there can be multiple shared locks
on X, permission only to read A.

- exclusive (X) lock: there can be only one exclusive
lock on A, permission to read and write A.

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

E We introduce the following lock actions for

database element A and transaction i:

sl-1(A): lock A In shared mode
xI-1(A): lock A In exclusive mode
u-1(A): unlock whatever modes Ti has locked A

B Modity consistency of transactions as follows:
- A read action ri(A) must be preceded by sl-i(A)
or xl-i(A) with no intervening ui(A).

- A write action wi(A) must be preceded by xI-

i(A) with no intervening ui(A).

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

B Typically, a transaction does not know its needs
for locks in advance.

B What if transaction Ti reads and writes the same
database element A?

B Tiwill request both shared and exclusive locks on
A at different times.

E Example
T1=...sl-1(A) ... r1(A) ... xI-1(A) ...w1(A) ...ul(A)...

B If Ti knows lock needs, request X lock right away.

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

B Modity legality of schedules as follows:

- If xI-i(A) appears in a schedule, then there
cannot follow an xl-j(A) or sl-j(A), | # |,
without an intervening ui(A).

- If sl-i(A) appears in a schedule, then an x1-j(A)
cannot follow without an intervening ui(A).

B All other consistency and legality as well as the
2PL requirements remain unchanged.

B The proot of Theorem 3 still works.

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

B A compatibility matrix is a convenient way to specify

a locking protocol.

B Rows correspond to lock already held by another

transaction, columns correspond to a lock being

requested by current transaction.

Lock requested

Lock held Shared (S)

In mode Exclusive (X)

Shared (S) | Exclusive (X)
Yes No
NoO NO

CMPT 454: Database Systems Il — Concurrency Control (2)

Shared and Exclusive Locks

B [f a transaction first reads A and later writes A,
it has to upgrade its S lock to an X lock.

B Upgrading is a frequent source of deadlocks.

T1 T2
sl-1(A)

sl-2(A)
r1(A)

2(A)
-1 0A)

A1-2(A)

CMPT 454: Database Systems Il — Concurrency Control (2)

Update Locks

E In order to avoid such deadlocks (as far as
possible), we introduce another type of lock.

B An update lock (U) ul-i(A) gives transaction i the
privilege to
- read database element A;
- upgrade its lock on A to an X lock.

® An update lock is not shared.

E Read locks cannot be upgraded.

CMPT 454: Database Systems Il — Concurrency Control (2)

Update Locks

Compatibility matrix
Lock requested
S [X | U
Lockheld S | Yes| No |Yes
Inmode X | No| No | No
Ul Nol Nol No

U Is not symmetric!

B Example T1 T2
ul-1(A)
-2(A)
r1(A)
xI-1(A)
w1(A)

CMPT 454: Database Systems Il — Concurrency Control (2)

Next to Discuss

E Locks With Multiple Granularity (Chapter 18.6)

E Concurrency Control by Validation (Chapter 18.9)

CMPT 454: Database Systems Il — Concurrency Control (2)

