
Transaction ManagementTransaction Management

Concurrency Control (2)Concurrency Control (2)

CMPT 454: Database Systems II – Concurrency Control (2) 2 / 30

Conflict Actions
A pair of consecutive actions in a schedule constitutes a
conflict if swapping these actions may change the effect of

at least one of the transactions involved.

Most pairs of actions do not cause a conflict.

ri (X) and rj (Y) never cause a conflict, even if
X = Y, since they do not modify the DB state.

ri(X) and wj(Y) do not cause a conflict if .

wi(X) and rj(Y) do not cause a conflict if .

wi(X) and wj(Y) do not cause a conflict if .YX 

YX 

YX 

CMPT 454: Database Systems II – Concurrency Control (2) 3 / 30

Conflict Actions (cont.)
The following three situations do cause a conflict:

Actions of the same transaction, i.e. i = j.

Two writes of the same database element by
different transactions, i.e. wi(X) and wj(X), .
Depending on the schedule, the results of either
wi(X) or wj(X) survive, which may be different.

A read and a write of the same database element
by different transactions, i.e. ri(X) and wj(X),

. ri(X) may read a different version of X.

ji 

ji 

CMPT 454: Database Systems II – Concurrency Control (2) 4 / 30

Conflict Equivalent/Serializable
Definition:

CMPT 454: Database Systems II – Concurrency Control (2) 5 / 30

Review: Schedule C

CMPT 454: Database Systems II – Concurrency Control (2) 6 / 30

Conflict-Serializability
If transactions Ti and Tj contain at least two pairs
of conflicting actions, then for each of these pairs
the action of Ti has to be performed before that of
Tj (or always Tj before Ti).
Given a schedule S, Ti takes precendence over Tj,
denoted by Ti <S Tj, if there are actions pi(A) of Ti
and qj(A) of Tj such that
- pi(A) is ahead of qj(A) in S,
- both pi(A) and qj(A) involve the same database

element, and at least one of them is a write.

CMPT 454: Database Systems II – Concurrency Control (2) 7 / 30

Conflict-Serializability
If Ti takes precendence over Tj, then a schedule S’
that is conflict equivalent to S must have pi(A)
before qj(A).
Precedence graph: directed graph with nodes
representing the transactions of S,

edges representing precedence relationships,
i.e. edge from node Ti to Tj if Ti <S Tj.

Notation: P(S)

CMPT 454: Database Systems II – Concurrency Control (2) 8 / 30

Examples (1)
What is P(S) for
S=w3(A)w2(C)r1(A)w1(B)r1(C)w2(A)r4(A)w4(D)

CMPT 454: Database Systems II – Concurrency Control (2) 9 / 30

Examples (2)
What is P(S) for
S=r1(A)w1(B)r1(C)w2(C)w2(A)w3(A)r4(A)w4(D)

CMPT 454: Database Systems II – Concurrency Control (2) 10 / 30

Conflict-Serializability
Lemma 1
S1, S2 conflict equivalent  P(S1) = P(S2)
Proof
Assume P(S1)  P(S2)
  Ti, Tj: Ti  Tj in P(S1) and not in P(S2)
 S1 = …pi(A)... qj(A)… pi, qj

S2 = …qj(A)…pi(A)... in conflict

 S1, S2 not conflict equivalent

CMPT 454: Database Systems II – Concurrency Control (2) 11 / 30

Conflict-Serializability
Note
P(S1)=P(S2)  S1, S2 conflict equivalent

Counter example
S1=w1(A) r2(A) w2(B) r1(B)
S2=r2(A) w1(A) r1(B) w2(B)

P(S1)=P(S2)= T1 T2

S1 not conflict equivalent to S2, since w1(A) and
r2(A) cannot be swapped

CMPT 454: Database Systems II – Concurrency Control (2) 12 / 30

Conflict-Serializability
Theorem 2
P(S) acyclic  S conflict serializable
Proof

(i) 
Assume S is conflict serializable.
  S’: S’ is serial, S conflict equivalent to S’.
 P(S’) = P(S) according to Lemma 1.

P(S’) is acyclic because S’ is serial.
 P(S) is acyclic.

CMPT 454: Database Systems II – Concurrency Control (2) 13 / 30

Conflict-Serializability
Proof

(ii) 
Assume P(S) is acyclic.
Transform S as follows:
(1) Take T1 to be transaction with no incoming edges.

T1 exists, since P(S) is acyclic.
(2) Move all T1 actions to the front:

S = ……. qj(A)…….p1(A)…..
This does not create any conflicts, since there is
no Tj with Tj  T1.

(3) We now have S’ = < T1 actions ><... rest ...>.
(4) Repeat above steps to serialize rest.

T1

T2 T3

T4

P(S)

CMPT 454: Database Systems II – Concurrency Control (2) 14 / 30

Conflict-Serializability
How to enforce that only conflict-serializable
schedules are executed?

There are two alternative approaches:
- Pessimistic concurrency control

Lock data elements to prevent P(S) cycles from
occurring.

- Optimistic concurrency control
Detect P(S) cycles and undo participating trans-
actions, if necessary.

CMPT 454: Database Systems II – Concurrency Control (2) 15 / 30

Enforcing Serializability by Locks
Before accessing a database element, a transaction requests a
lock on that element in order to prevent other transactions
from accessing the same database element at the “same”
time.
Typically, different types of locks are used for different
types of access operations, but we first introduce a
simplified lock protocol with only one type of lock.

scheduler

T1 T2
lock
table

CMPT 454: Database Systems II – Concurrency Control (2) 16 / 30

Enforcing Serializability by Locks
We introduce two new actions:

li (X): lock database element X
ui (X): unlock database element X, i.e. release lock.
A locking protocol must guarantee the consistency of
transactions:
- A transaction can only read or write database X
element if it currently holds a lock on X.

- A transaction must unlock all database elements that is
has locked at some later time.
A consistent transaction is also called well-formed.

Ti: … li(A) … pi(A) … ui(A) ...

CMPT 454: Database Systems II – Concurrency Control (2) 17 / 30

Enforcing Serializability by Locks

A locking protocol must also guarantee the
legality of schedules:
At most one transaction can hold a lock on
database element X at a given point of time.
If there are actions li (X) followed by lj (X) in
some schedule, then there must be an action
ui(X) somewhere between these two actions.

S = …….. li(A) ………... ui(A) ……...
no lj(A)

CMPT 454: Database Systems II – Concurrency Control (2) 18 / 30

Enforcing Serializability by Locks
Example
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

 S1 illegal, because T2 locks B before T1 has unlocked it

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

 T1 inconsistent, because T1 writes B before locking it

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

 schedule legal and all transactions consistent

CMPT 454: Database Systems II – Concurrency Control (2) 19 / 30

To-Do-List
Do a research on how the currency control and
logging recovery are related.

