
Data Mining and Information Data Mining and Information
RetrievalRetrieval

MapReduceMapReduce

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 2 / 16

SingleSingle--node architecturenode architecture

Memory

Disk

CPU
Machine Learning, Statistics

“Classical” Data Mining

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 3 / 16

Cluster ArchitectureCluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 4 / 16

Stable storageStable storage
First order problem: if nodes can fail, how can we
store data persistently?
Answer: Distributed File System

Provides global file namespace
Google GFS; Hadoop HDFS; Kosmix KFS

Typical usage pattern
Huge files (100s of GB to TB)
Data is rarely updated in place
Reads and appends are common

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 5 / 16

Distributed File SystemDistributed File System
Chunk Servers

File is split into contiguous chunks
Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)
Try to keep replicas in different racks

Master node
a.k.a. Name Nodes in HDFS
Stores metadata
Might be replicated

Client library for file access
Talks to master to find chunk servers
Connects directly to chunkservers to access data

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 6 / 16

Warm up: Word CountWarm up: Word Count
We have a large file of words, one word to a line
Count the number of times each distinct word
appears in the file
Sample application: analyze web server logs to find
popular URLs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 7 / 16

Word Count (2)Word Count (2)
Case 1: Entire file fits in memory
Case 2: File too large for mem, but all <word, count>
pairs fit in mem
Case 3: File on disk, too many distinct words to fit in
memory
sort datafile | uniq –c

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 8 / 16

Word Count (3)Word Count (3)
To make it slightly harder, suppose we have a large
corpus of documents
Count the number of times each distinct word occurs
in the corpus

words(docs/*) | sort | uniq -c

where words takes a file and outputs the words in it, one
to a line

The above captures the essence of MapReduce
Great thing is it is naturally parallelizable

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 9 / 16

MapReduceMapReduce: The Map Step: The Map Step

vk

k v

k v

map
vk

vk

…

k v
map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 10 / 16

MapReduceMapReduce: The Reduce Step: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

group

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 11 / 16

MapReduceMapReduce
Input: a set of key/value pairs
User supplies two functions:

map(k,v) list(k1,v1)
reduce(k1, list(v1)) v2

(k1,v1) is an intermediate key/value pair
Output is the set of (k1,v2) pairs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 12 / 16

Word Count using Word Count using MapReduceMapReduce
map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 13 / 16

Distributed Execution Overview Distributed Execution Overview

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

remote
read,
sort

Output
File 0

Output
File 1

write

Split 0
Split 1
Split 2

Input Data

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 14 / 16

Exercise: Frequent PairsExercise: Frequent Pairs
Given a large set of market baskets, find all frequent
pairs

Remember definitions from Association Rules lectures

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 15 / 16

ImplementationsImplementations
Google

Not available outside Google
Hadoop

An open-source implementation in Java
Uses HDFS for stable storage
Download: http://lucene.apache.org/hadoop/

Aster Data
Cluster-optimized SQL Database that also implements
MapReduce

CMPT 454: Database Systems II CMPT 454: Database Systems II –– MapReduceMapReduce 16 / 16

ReadingReading
Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The
Google File System

http://labs.google.com/papers/gfs.html

