Data Mining and Information

Retrieval

PageRank and Web
Spam




Ranking Web Pages

¥ Web pages are not equally “important”
eWwww.joe-schmoe.com v www.stanford.edu
E Inlinks as votes
swww.stanford.edu has 23,400 inlinks
eWww.joe-schmoe.com has 1 inlink
e Are all inlinks equal?
eRecursive gquestion!
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Simple Recursive Formulation

¥ Each link’s vote is proportional to the importance of
its source page

k If page P with importance x has n outlinks, each link
gets x/n votes

¥ Page P’s own importance is the sum of the votes on
its inlinks
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Simple “Flow’ Model

The web in 1839

y =yl2+ al2
y/2 a=yl2+m
m=al2
o
al2 ;

a m
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Solving the Flow Equations

E 3 equations, 3 unknowns, no constants
#No unique solution
e All solutions equivalent modulo scale factor
F Additional constraint forces uniqueness
sy+a+m = 1
ey =2/5,a=2/5 m=1/5

¥ Gaussian elimination method works for small
examples, but we need a better method for large
graphs
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Matrix formulation

e Matrix M has one row and one column for each web
page
B Suppose page | has n outlinks
olf j — i, then M;=1/n
oElse M;=0
E M is a column stochastic matrix
#Columns sum to 1
E Suppose ris a vector with one entry per web page
er; is the importance score of page |
«Call it the rank vector
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Suppose page / links to 3 pages, including /
J

T~ 1/3
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Eigenvector formulation

E The flow equations can be written
r=Mr
E So the rank vector is an eigenvector of the stochastic
web matrix

eIn fact, its first or principal eigenvector, with
corresponding eigenvalue 1
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y a m

y 1/21/2 0
1/2 0 1
m|01/2 O

QD

r=Mr

y | (1/21/2 0

y =yl2+al? a =12 0 1
a=yl2+m m| |01/2 0 |lm

D <

m=al2
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Power lteration method

E Simple iterative scheme
E Suppose there are N web pages
¥ |nitialize: r0 = [1/N,....,1/N]"
B |terate: r<*1 = Mrk
B Stop when |r**1- k|, <¢
®|X|, = 2i<enlXi| IS the L1 norm
#Can use any other vector norm
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Power lteration Example

y a m
y 1/21/2 0
a (1/2 0 1
m|01/2 0
y 1/3 1/3 5/12 3/8 2/5
a = 1/3  1/2 1/3 11/24 ... 2/5
m 1/3  1/6 1/4  1/6 1/5
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Random Walk Interpretation

¥ Imagine a random web surfer
e At any time t, surfer is on some page P

e At time t+1, the surfer follows an outlink from P
uniformly at random

eEnds up on some page Q linked from P
eProcess repeats indefinitely

B Related to Markov Chain model
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PageRank

A page is important if many other
Important pages point to it

PageRank Score PageRank Score o1 page p;
of page p, that points to page p,

Random jump
probability

Damping factor Out degree of
~ 0.85 page p;
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What is Web Spam?




World Wide Web and Search Engines

Google
E Increasing exposure on the World
YAHOO!  Wide Web may yield significant

financial gains for the Web site

-_ E The increasing importance of search
/y engines to commercial Web sites has

/ given rise to a phenomenon called
altavista “Web Spam”!

00
Bai N EE
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Why Web Spam

¥ E-commerce is rapidly growing
e Projected to $329 billion by 2010

E More traffic > more money
B Large fraction of traffic from Search Engines
B Increase Search Engine referrals:

e Place ads ©
# Provide genuinely better content ©
e Create Web spam... ®
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Defining Web Spam

¥ Spam Web page

¢ A page created for the sole purpose of attracting search
engine referrals (to this page or some other “target” page)

¥ Ultimately a judgment call
e Some Web pages are borderline cases
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Why Web Spam is Bad

¥ Bad for users
¢ Makes it harder to satisfy information need
e Leads to frustrating search experience

¥ Bad for search engines
e \Wastes bandwidth, CPU cycles, storage space
¢ Pollutes corpus (infinite number of spam pages!)
® Distorts ranking of results
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Detecting Web Spam

B Spam detection: A classification problem

¢ Given salient features of a Web page,
decide whether the page is spam

E Which “salient features”?

¢ Need to understand spamming techniques to decide on
features

¢ Finding right features is “alchemy”, not science
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Preliminary of Web Spam Detection

E Ask yourself a question:
¢ Why Web spam exists?

¢ Spammers did, because they are trying to mislead Web
search engines

B Thus, In order to detect Web spam
@ Thinking in the spammers’ way

¢ If | am a spammer, what shall | do to mislead the search
engines as much as possible?

E S0, before going to detect Web spam

e Try to understand how a search engine ranks Web
pages...
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Web Spam Taxonomy

Web Spam = misleading search engines
to obtain higher-than-deserved ranking

<body background="white>
<font color="white”>hidden text</font>

</body>

Web Spam
Techniques

Information
retrieval and text

query
\

Boosting

- —
HITS, PageRank

Hiding

i

Given a URL, spam
Web servers return
different HTML
document to different
Web crawler

Automatically
redirecting the
browser to
another URL as
soon as the page
is loaded

Term Link Content Hidingj Cloaking JRedirection
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How to Detect Web Spam

B Ask yourself following questions
¢ \What kind of features can be useful to detect spam Web
pages?
® Once we get those features, what kind of data mining
methods can be used to detect spam Web pages?

® Once we have Web spam detection methods, what kind of
evaluation metrics can be used to evaluate the results?
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Search Engine Webmaster Guidelines

e Google

¢ http://www.google.com/support/webmasters/bin/answer.py
?answer=35769

E Yahoo!
e http://help.yahoo.com/l/us/yahoo/search/

# Microsoft Live Search

& http://search.msn.com/docs/siteowner.aspx?t=SEARCH_W
EBMASTER_REF_GuidelinesforOptimizingSite.htm
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