Query Processing and Advanced Queries

Advanced Queries (2): R-Tree

Review: PAM

- Given a point set and a rectangular query, find the points enclosed in the query
- We allow insertions/deletions online

Review: kd-Tree

Each leaf node can hold up to 2 points.

Query Answering using kd-Tree

CMPT 454: Database Systems II – Advanced Queries (2)

Review: Spatial Indexing

- Point Access Methods can index only points. What about regions?
 - Use the transformation technique and a PAM
 - New methods: Spatial Access Methods
 SAMs
 - R-tree and variations

Minimum Bounding Rectangle

Approximate each region with a simple shape: usually Minimum Bounding Rectangle (MBR) = [(x1, x2), (y1, y2)]

Transformation Technique

- Map an d-dim MBR into a point: ex.
- [(x_{min}, x_{max}) (y_{min}, y_{max})] => (x_{min}, x_{max}, y_{min}, y_{max})
 Use a PAM to index the 2d points
 Given a range query, map the query into the 2d space and use the PAM to answer it

SAM: The Problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- Organize them on disk, to answer spatial queries (e.g., range query, NN query, etc)

Indexing using SAMs

Two steps:

- •Filtering step: Find all the MBRs (using the SAM) that satisfy the query
- Refinement step: For each qualified MBR, check the original object against the query

- Guttman 84] Main idea: allow parents to overlap!
 - e=> guaranteed 50% utilization
 - easier insertion/split algorithms.
 - (only deal with Minimum Bounding Rectangles - MBRs)

- A multi-way external memory tree
- Index nodes and data (leaf) nodes
- All leaf nodes appear on the same level
- Every node contains between m and M entries
- The root node has at least 2 entries (children)

Fan-out = 4: group nearby rectangles to parent MBRs; each group -> disk page

■ F=4

■ F=4

R-Trees - Format of Nodes

{(MBR; obj_ptr)} for leaf nodes

R-Trees - Format of Nodes

{(MBR; node_ptr)} for non-leaf nodes

R-Trees: Search

R-Trees: Search

R-Trees: Search

Main points:

- Every parent node completely covers its 'children'
- A child MBR may be covered by more than one parent - it is stored under ONLY ONE of them.
- A point query may follow multiple branches.
 Everything works for any(?) dimensionality

Spatial Queries

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer efficiently
 - range queries
 - •k-nn queries

Spatial Queries

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer efficiently
 - range queries
 - •k-nn queries

Spatial Queries

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer efficiently
 - erange queries
 - •k-nn queries

R-Trees - Range Search

pseudocode:

check the root for each branch, if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf)

R-Trees - NN Search

Two Metrics to Ordering the NN Search

- MINDIST (P, R) is the minimum distance between a point P and a rectangle R.
- If the point is inside the rectangle, MINDIST = 0;
- If the point is outside the rectangle, MINDIST is the minimal possible distance from the point to any object in or on the perimeter of the rectangle.

$$\forall o \in R, MINDIST(P, R) \leq \left\| (P, o) \right\|$$

MINMAXDIST

- MINMAXDIST(P,R): for each dimension, find the closest face, compute the distance to the furthest point on this face and take the minimum of all these (d) distances
- MINMAXDIST(P,R) is the smallest possible upper bound of distances from P to R
- MINMAXDIST guarantees that there is at least one object in R with a distance to P smaller or equal to it.

$$\exists o \in R, \left\| (P, o) \right\| \leq MINMAXDIST(P, R)$$

MINDIST and MINMAXDIST

MINDIST(P, R) <= NN(P) <= MINMAXDIST(P,R)</p>

CMPT 454: Database Systems II – Advanced Queries (2)

R-Trees - NN Search

Q: How? (find near neighbor; refine...)

R-Trees - NN Search

Q: How? (find near neighbor; refine...)

